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Abstract  

Semi-Markov chains are used for studying the evolution of seismicity in the 
Northern Aegean Sea (Greece). Their main difference from the Markov chains is 
that they allow the sojourn times (i.e. the time between successive earthquakes), to 
follow any arbitrary distribution. It is assumed that the time series of earthquakes 
that occurred in Northern Aegean Sea form a discrete semi-Markov chain. The 
probability law of the sojourn times, is considered to be the geometric distribution 
or the discrete Weibull distribution. Firstly, the data are classified into two 
categories that is, state 1: Magnitude 6.5-7 and state 2 Magnitude>7, and secondly 
into three categories, that is state 1: Magnitude 6.5-6.7, state 2: Magnitude 6.8-7.1 
and state 3: Magnitude 7.2-7.4. This methodology is followed in order to obtain 
more accurate results and find out whether there exists an impact of the different 
classification on the results. The parameters of the probability laws of the sojourn 
times are estimated and the semi-Markov kernels are evaluated for all the above 
cases. The semi-Markov kernels are compared and the conclusions are drawn 
relatively to future seismic hazard in the area under study.  
Key words: semi-Markov chains, Markov chains, transition probability matrix, 
sojourn time distribution function 

Περίληψη 

Οι ημι-Μαρκοβιανές αλυσίδες χρησιμοποιούνται για τη μελέτη της σεισμικότητας στο 
Βόρειο Αιγαίο. Η βασική τους διαφορά από τις Μαρκοβιανές αλυσίδες είναι ότι 
επιτρέπουν μια οποιαδήποτε αυθαίρετη κατανομή για τους χρόνους παραμονής 
(χρόνοι μεταξύ διαδοχικών σεισμών). Υποθέτουμε ότι η χρονοσειρά των σεισμών που 
έχουν γίνει στο Βόρειο Αιγαίο αποτελεί μια διακριτή ημι-Μαρκοβιανή αλυσίδα. 
Θεωρείται ότι οι χρόνοι παραμονής ακολουθούν γεωμετρικές ή διακριτές κατανομές 
Weibull. Πρώτα ταξινομήθηκαν τα δεδομένα σε δυο κατηγορίες, όπου κατάσταση 1: 
Μέγεθος 6.5-7 και κατάσταση 2 Μέγεθος>7, και στη συνέχεια σε τρεις κατηγορίες, 
όπου κατάσταση 1: Μέγεθος 6.5-6.7, κατάσταση 2 : Μέγεθος 6.8-7.1 και κατάσταση 3 
: Μέγεθος 7.2-7.4. Εκτιμήθηκαν οι παράμετροι των συναρτήσεων πιθανότητας των 
χρόνων παραμονής και υπολογίστηκαν οι πίνακες πυρήνες της ημι-Μαρκοβιανής 
αλυσίδας για όλες τις παραπάνω περιπτώσεις. Έγινε σύγκριση των πινάκων πυρήνων 
και προέκυψαν συμπεράσματα για τη μελλοντική σεισμική επικινδυνότητα στην υπό 
μελέτη περιοχή.  
Λέξεις κλειδιά: ημι-Μαρκοβιανές αλυσίδες, Μαρκοβιανές αλυσίδες, πίνακας 
πιθανοτήτων μετάβασης, συνάρτηση πιθανότητας χρόνων παραμονής 
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1. Introduction  
Stochastic models are widely used to obtain results concerning the seismic hazard assessment. In 
Patw-ardhan et al. (1980) a semi-Markov model is developed to estimate the likelihoods of 
occurrences of great earthquakes (M 7.8). Fujinawa (1991) studied the earthquake occurrence via 
a Markov chain and data from China, whereas Al-Hajjar and Blanpain (1997) used a semi-Markov 
model in a swarm sequence and obtained the optimal value for the total duration of the sequence. 
Altinok and Kolcak (1999) estimated the earthquake occurrence probabilities by a semi-Markov 
model and studied the inte-rval transition probabilities. Nava et al. (2005) evaluated the seismic 
hazard of the Japan area via a Ma-rkov chain and Sadeghian (2010) applied a semi-Markov model 
to forecast the triad dimensions of ear- thquakes. Votsi et al. (2010a, b, 2012a, b) applied hidden 
Markov and hidden semi-Markov modeling for the description of seismicity patterns.  

In this paper a discrete semi-Markov model is proposed for the area under study, which is the 
Northern Aegean Sea (Greece). This model can be successfully applied in Seismology, 
considering the earthqua-kes as discrete events of the chain. It allows the interevent times (sojourn 
times) between two earthqua-kes, to follow any arbitrary distribution, which makes the semi-
Markov chains a generalization of Mar-kov chains (Kemeny and Snell, 1976). Using this model, 
important quantities can be estimated, such as the mean value of the first hitting times (the mean 
time that an earthquake of state j will occur for the first time given that the previous earthquake 
was of state i, (Howard, 2007).  

The data are obtained by a complete, homogeneous and accurate catalogue from the Geophysics 
Depar-tment of the Aristotle University of Thessaloniki and cover the period 1845-2008.  

In this paper the quantity that is studied, is the discrete semi-Markov kernel, which gives the 
probabili- ty that an earthquake of state j will occur after k time units, given that the previous 
earthquake was of state i. It is assumed that the probability law of the sojourn times is either the 
geometric or the discrete Weibull distribution and the results are compared.  

2. Semi-Markov Kernel for the two Dimensional State Space 
The state space is firstly assumed to be two dimensional by classifying the data into two 
categories, ac-cording to the range of magnitudes (smaller and larger earthquakes). The sojourn 
times are supposed to follow geometric or discrete Weibull distributions, in order to examine the 
differences of the probabili- ties related to the aforementioned distributions. 

2.1 Geometric Sojourn Times 
In this section, it is assumed that the sojourn time distribution law is the geometric which is a 
common distribution law and it can be well adapted in the area under study (Pertsinidou, 2012). 
The probability mass function of the geometric distribution is the following:  

Definition 1-Geometric distribution 

 
In the sequel we give some definitions concerning the semi-Markov chains which are necessary 
for what follows (Barbu and Limnios, 2008).  

Let E={1,…,s} be a finite state space, whose evolution in time is governed by a stochastic process 
. Let us also denote by  the successive time points when state changes in 

 occur and by  the chain which records the visited states at these time points. 
Let  be the successive sojourn times in the visited states. Thus, 

, and, by convention, we set = =0. If , 
, , then  is 

called a semi-Markov chain and the couple ( , ) is call- ed a Markov renewal chain. The 
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visited-state chain  is called the embedded Markov chain. We denote by  the transition 
probabilities, that is: 

Definition 2 – Transition probabilities 

 
The matrix  is called the transition probability matrix. The distribution function of the 
sojourn times is defined as follows: 

Definition 3 – Sojourn time distribution function 

 
The semi-Markov kernel probabilities that we study throughout this paper are defined as follows: 

Definition 4 – Discrete-time semi-Markov kernel probabilities   

 
Then the semi-Markov kernel is the matrix  and constitutes the essential quantity 
which defines a semi-Markov chain.  

The data concerning earthquakes that occurred in Northern Aegean Sea from 1845-2008 are 
classified, according to their magnitude, into two categories which are state 1: Magnitude 6.5–7 
and state 2: Magnitude>7. In order to study the semi-Markov kernel probabilities, we need first to 
estimate the transition probabilities. The estimators of the transition probabilities are (Barbu and 
Limnios, 2008): 

Definition 5 – Estimators of the transition probabilities  

, if , 

where  is the number of transitions of the embedded Markov chain to state i, until time M, 
and , is the number of transitions of the embedded Markov chain from state i to state j, until 
time M. If  we set  for all M and if  = 0 we set  for all M. 
The time unit is considered to be the year and the transition matrix for our data is found to be 

P= .  

If we assume that the sojourn times follow geometric distributions, the maximum likelihood 
estimators of these geometric distributions are found to be (Pertsinidou, 2012): 

f11(n)=  , f12(n)=  , f21(n)=  , f22(n)= . 

Then the kernel of the semi-Markov chain becomes 

Q(n)= , n=1,2,3,…  

The corresponding graphs, in which the decay of the kernel probabilities as time passes can be 
observed, are the following: 
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Figure 1 -  Kernel probabilities , of 

the geometric distribution. 
Figure 2 - Kernel probabilities  of 

the geometric distribution. 

    
Figure 3 - Kernel probabilities , of 

the geometric distribution.  
Figure 4 - Kernel probabilities ,  of 

the geometric distribution .
It is evident from Figure 1, that there is a higher probability for an earthquake of state 1 to be 
followed by an earthquake of state 1 during the next year (0.254). There is also a still high 
probability that such an earthquake will occur after two or three years, while these probabilities 
decay quickly from three years on. In Figure 2, given that the previous earthquake was of state 1, 
there is a high probability that the next earthquake of state 2 will occur in the next year. The 
probabilities  decay very quickly and, as we can also observe by the values given in Table 1 
below, they become nearly 0 for n>5. Figure 3 shows that if the previous earthquake was of state 
2, then it is very probable that the next earthquake of state 1 will occur in the next four years and 
for n>4 the probabilities become considerably smaller. Figure 4 shows that if the previous 
earthquake was of state 2 then there is a small probability that the next earthquake will also be of 
state 2, but if so, this is to be expected in the next four years. For n>4 the probabilities become 
zero. The aforementioned probabilities are given analytically below (for n [1,20]).  

Thus, the probability that an earthquake of state 1, will be followed within three years by an 
earthquake of state 1, is high and from the third year on the probabilities decay quickly. If the next 
earthquake is of state 2, given that the last earthquake was of state 1, then this is expected to occur 
in the first five years. An earthquake of state 2, is more probable to be followed by an earthquake 
of state 1 in the next three years. Finally, if we assume that the an earthquake of state 2, will be 
followed by an earthquake of state 2, then this is more likely to happen within the next two years. 
As already mentioned, the probabilities  and  decay very quickly, which means that 
visiting state 2 (M>7) is less probable as the sojourn time increases. 

2.2 Discrete Weibull Distributions for the Sojourn Times 
It is now assumed that the transition probability matrix is the same as previously, but the sojourn 
time distribution function is the discrete Weibull of equation 2 that follows. This distribution 
allows the sojourn times to obtain greater values than the geometric, thus the time between two  
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Table 1 - Semi-Markov kernel probabilities of the geometric distribution (two dimensional 
case). 

   
 

 
 

 
 

 
 

1 0.254 0.193 0.396 0.118 
2 0.163 0.064 0.209 0.029 
3 0.104 0.021 0.111 0.007 
4 0.067 0.007 0.059 0.002 
5 0.043 0.002 0.031 0.000 
6 0.027 0.000 0.016 … 
7 0.018 … 0.009  
8 0.011  0.005  
9 0.007  0.002  
10 0.005  0.001  
11 0.003  0.000  
12 0.002  …  
13 0.001    
14 0.000    
… … … … … 
20 0.000 0.000 0.000 0.000 

 

successive earthquakes can now be greater. In the sequel the probability mass function of the 
discrete Weibull distribution is cited, where x stands for the sojourn time and q and b are positive 
parameters. 

Equation 2 – Discrete Weibull 

f(n)= , n=1,2,…. , 0<q<1 and b>0. 

The parameters of the discrete Weibull distribution can not be estimated via the maximum 
likelihood method. There exists an empirical estimation effort (Kulasekera, 1994) which can not 
be used in our dataset, because of the small sample size of the sojourn times. Therefore, the 
parameters are estimated numerically and the distribution functions derived are (Pertsinidou, 
2012): 

f11(n) = , f12(n) =  

 

f21(n) = , f22(n) =  

Then the kernel matrix turns out to be 

Q(n)=  

The corresponding graphs of the discrete semi-Markov kernel functions are: 
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 Figure 5 - Kernel probabilities , of 

the discrete Weibull distribution. 
Figure 6 - Kernel probabilities , of 

the discrete Weibull. 

   
 

Figure 7 - Kernel probabilities , of 
the discrete Weibull distribution. 

Figure 8 - Kernel probabilities , of 
the discrete Weibull distribution. 

Comparing the above figures and also the values of the semi-Markov kernel probabilities given 
below, with the corresponding figures and values of the geometric distribution presented in the 
previous section, it can be seen that the results are similar, though we would expect the discrete 
Weibull kernel probabilities to decay much slower, than they do. This reinforces the previous 
conclusions concerning the expected seismicity. The values are given analytically (for comparison 
reasons) in the following Table 2.  

3. Semi-Markov Kernel for the three Dimensional Transition Matrix 
It is useful to classify the data into more than two categories, in order to observe if there are any 
differ- rences in the results. Now the data will be classified into three categories (we notice that 
more than three categories would lead to estimation problems due to the already small size of the 
dataset.) It is again firstly assumed that the times between two successive earthquakes follow the 
geometric distribu- tion and secondly the discrete Weibull distribution.  

3.1 Geometric Sojourn Times 
The data, concerning earthquakes that occurred in Northern Aegean Sea, are now classified into 
three categories, i.e. state 1: 6.5-6.7, state 2 : Magnitude 6.8-7.1, state 3 : Magnitude 7.2-7.4. The 
number  of visits in each state i and the transitions  from state i to state j, until time 
M are found to be  
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Table 2 -. Semi-Markov kernel probabilities of the discrete Weibull distribution (two 
dimensional case) 

   
 

 
 

 
 

 
 

1 0.284 0.217 0.421 0.104 
2 0.147 0.035 0.188 0.045 
3 0.091 0.015 0.099 0.008 
4 0.059 0.008 0.055 0.000 
5 0.039 0.005 0.032 … 
6 0.027 0.003 0.018  
7 0.018 0.002 0.011  
8 0.019 0.001 0.006  
9 0.009 0.000 0.004  
10 0.006 … 0.002  
11 0.004  0.001  
12 0.003  0.000  
13 0.002  …  
14 0.001    
15 0.001    
16 0.000    
… … … … … 
20 0.000 0.000 0.000 0.000 

 

)=29, Ν2(Μ)=33, Ν3(Μ)=12, Ν11(Μ)=11, Ν12(Μ)=14, Ν13(Μ)=5, Ν21(Μ)=15, Ν22(Μ)=12, 
Ν23(Μ)=5, Ν31(Μ)=3, Ν32(Μ)=7, Ν33(Μ)=2. 

The transition matrix is 

P= . 

Using the maximum likelihood function (Pertsinidou, 2012) we obtain the sojourn time 
distributions: 

f11(n)=  , f12(n)=  , f13(n)=  

 

f21(n)=  , f22(n)=  , f23(n)=  

f31(n)= , f32(n)=  , f33(1)= , and f33(n)= 0 for n>1. 

The transitions from state 3 to state 3 found in the data are only two, which explains the fact that 
f33(1) = , and f33(n) = 0 for n>1. 
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The kernel matrix is 

Q(n)=  

The only difference is that the probabilities now decay faster, compared with the two dimensional 
case, in most of the cases. We cite as an example only the first graph. 

 
Figure 9 - Kernel probabilities , of the geometric distribution. 

The kernel probabilities are the following (n [1,20]): 

Table 3 - Semi-Markov kernel probabilities of the geometric distribution (three dimensional 
case). 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 0.163 0.192 0.107 0.187 0.18 0.138 0.057 0.29 
2 0.091 0.115 0.031 0.109 0.09 0.039 0.044 0.145 
3 0.051 0.069 0.009 0.064 0.045 0.011 0.034 0.073 
4 0.028 0.041 0.002 0.037 0.022 0.003 0.026 0.036 
5 0.016 0.025 0.000 0.022 0.011 0.000 0.02 0.018 
6 0.009 0.015 … 0.013 0.005 … 0.015 0.009 
7 0.005 0.009  0.007 0.003  0.012 0.005 
8 0.003 0.005  0.004 0.001  0.009 0.002 
9 0.002 0.003  0.002 0.000  0.007 0.001 
10 0.000 0.002  0.001 …  0.005 0.000 
11 … 0.001  0.000   0.004 … 
12  0.000     0.003  
13       0.002  
14       0.002  
15       0.001  
… … … … … … … 0.001 … 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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We recall that  and =0 for n>1. We remind that in the two dimensional case it 
was =0.254. The corresponding probabilities appear to be smaller due to the different 
classification. We now expect fewer events of state 1, (6.5-6.7) given that the previous state was 1, 
which is reasonable since the class is smaller. From the values of Table 3, we realize that if the 
previous earthquake was of state 1, and the next one of state 2, then this is more probable to occur 
in the next 5 years. From the fifth year on, the probabilities decay and they become nearly zero for 
n>11 years. Furthermore, it is more likely for an earthquake of state 3 to be followed by an 
earthquake of state 1 in the next year and the probability that this transition will occur for n>4 
years is almost zero. However, if the previous earthquake was of state 1, it is difficult to determine 
which one earthquake of the three classes is more likely to happen in the following year, because 
the related probabilities are found to be very close. We can also realize that if the last earthquake 
was of state 2, an earthquake of state 1 is more likely to happen after one or two years. For n>2 the 
probabilities are smaller and for n>10 they tend to zero. Also, given that the last earthquake was of 
state 2, an earthquake of state 2 is more likely to occur in the next five years, and for n>8 these 
probabilities become almost zero. If the previous earthquake was of state 2 and we assume that 
next one will be of state 3, then this is more likely to happen after one year, and the probability 
decays very quickly since for n>4 it is almost zero. Finally, comparing the values of  with 

 we find out that if the previous earthquake was of state 3, then an earthquake of state 2 is 
more likely to happen than an earthquake of state 1, in the next four years. 

3.2 Discrete Weibull Distributions for the Sojourn Times 
It is now assumed that the transition matrix is three dimensional, as estimated in the previous 
section, while the sojourn times follow discrete Weibull distributions. The parameters are 
estimated numerical- ly (Pertsinidou, 2012): 

f11(n)= , f12(n)=  

 

f13(n)= , f21(n)=  

 

f22(n)= , f23(n)=  

 

f31(n)= , f32(n)=  
 

Then the kernel functions are found to be: 

q11(n)= , q12(n)=  

q13(n)= , q21(n)=  

q22(n)= , q23(n)=  

q31(n)= , q32(n)=  

q33(n)=0 

We will cite, indicatively, only the graph of  which seems to differ from the others, which 
decay in a similar way to the already presented graphs in page 5. 
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Figure 10 - Kernel probabilities , of the discrete Weibull distribution. 

From the above graph we observe that the probabilities exhibit an increase for n=2,3. The values 
are shown in the following table. 

Table 4 - Semi-Markov kernel probabilities of the discrete Weibull distribution (three 
dimensional case). 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 0.170 0.235 0.09 0.238 0.176 0.152 0.027 0.278 
2 0.090 0.062 0.047 0.089 0.075 0.011 0.039 0.198 
3 0.049 0.037 0.011 0.047 0.041 0.005 0.038 0.075 
4 0.027 0.025 0.002 0.027 0.024 0.003 0.028 0.021 
5 0.015 0.018 0.000 0.016 0.015 0.002 0.023 0.005 
6 0.008 0.014 … 0.010 0.009 0.002 0.017 0.000 
7 0.005 0.011  0.006 0.006 0.001 0.009 … 
8 0.003 0.009  0.004 0.004 0.001 0.006  
9 0.001 0.008  0.003 0.007 0.000 0.005  
10 0.000 0.006  0.002 0.002 … 0.003  
11 … 0.005  0.001 0.001  0.002  
12  0.005  0.000 0.000  0.001  
13  0.004  … …  0.000  
14  0.004     …  
15  0.003       
16  0.003       
17  0.002       
18  0.001       
19 … 0.001 … … … … … … 
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

From the above table we realize, that it is more probable for an earthquake of state 1, to be 
followed by an earthquake of state 2 or of state 1, and less probable of state 3, if the earthquake 
occurs during the next year. The probability of having a transition from state 2 to state 1 is more 
probable to happen after one year. The same holds for the probabilities  and . Also, 
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given the fact that an earthquake was of state 3, the probability that the next will be of state 1 is 
more likely to happen between 2-4 years, as we mentioned before in the graph of . Finally if 
an earthquake of state 3, will be followed by an earthquake of state 2, we expect this to happen in 
the next five years, since for n>5 0.  

4. Conclusions 
The use of semi-Markov chains is a useful tool that provides the probabilities that the chain will 
visit a state after a certain time given the previous state. In our case this means, that knowing the 
previous ear-thquake we can evaluate the probability that the next earthquake will occur after n 
time units and will be of state j. Classifying the states to earthquake clusters, allows us to obtain 
results concerning the sei-smic hazard. The discrete semi-Markov kernel, is studied in the 
Northern Aegean Sea. The kernel pro- babilities derived under the assumption that the sojourn 
times follow geometric or discrete Weibull di- stributions, in the two dimensional case, are very 
similar in most of the cases. Concerning the three di-mensional case we observe a mixed behavior 
for small number of steps, but as time increases the geo-metric probabilities decay faster than the 
discrete Weibull probabilities. A remarkable observation is that the q31(n) probabilities of the 
discrete Weibull distribution, are higher for n=2,3,4. This means that the occurrence of an 
earthquake of state 1, given that the previous earthquake was of state 3, is more li-kely to happen 
for n=2,3,4. We notice here that the mean hitting times of the various states for the mo-dels we 
studied in the present paper are also of main interest concerning seismic hazard assessment and 
have already being studied in Pertsinidou and Tsaklidis (2012). 
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