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Abstract

The Pissouri basin (Cyprus Island) corresponds to a small tectonically controlled depression elon-
gated NNW-SSE and widening southward in the direction of the deep Mediterranean domain. In the
centre of the basin, the section Pissouri South, about 100 m thick, consists of well-preserved cyclic
marine sediments including laminated brownish layers alternating with grey homogeneous marls.
Plankton biostratigraphy (calcareous nannofossil and planktonic foraminifera) revealed a remark-
able number of biovents bracketing the Zanclean-Piacenzian boundary.

In particular the Highest Occurrence (HO) of Reticulofenestra pseudoumbilicus suggests the pres-
ence of NN14/15-NN16 nannofossil biozone boundary, dated at 3.84 Ma. Additionally the defined
planktonic foraminiferal MPL3-MPL4a and MPL4a-MPL4b zone boundaries point to ages between
3.81 and 3.57 Ma, in Pissouri North section. Zanclean/Piacenzian boundary (3.6 Ma) is placed at
75.8 m from the base of the section, considering Discoaster pentaradiatus top paracme (3.61 Ma)
and Globorotalia crassaformis first influx (3.6 Ma) bioevents.

The cyclically developed sapropelic layers around the Zanclean – Piacenzian boundary suggest a
climate characterized by a period of warm temperate conditions and a highly stratified water col-
umn that occurred at times of precession minima.
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1. Introduction

The Neogene-Quaternary marine stratigraphy exposed on land in the Mediterranean region has been
of interest to Earth scientists and has become the reference standard for the chronostratigraphy of
this time interval (Berggren, 1971; Rio et al., 1984, 1991, 1997). Calcareous plankton biostratigra-
phy, mainly based on the appearance/disappearance and relative abundance patterns of selected
species of planktonic foraminifera and calcareous nannofossils, provides high time resolution and
accurate correlation at regional and global scale and is widely used for a first-order age control in
many Mediterranean Neogene and Quaternary marine successions (Cita, 1973,1975; Cita & Gart-
ner, 1973; Rio et al., 1988, 1990; Hilgen, 1991; Sprovieri, 1992, 1993; Cita et al., 1996; Di Stefano
et al., 1996; Lourens et al., 1996; Di Stefano, 1998; Raffi et al., 2006).
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Simultaneously, the dynamics of calcareous planktonic communities are of paramount significance
in palaeoenvironmental studies because they quickly respond to oceanographic changes (primary
production, water stratification, temperature, salinity, etc.).

Cyprus is located in the eastern Mediterranean Sea (Fig. 1). The island is built up from three major
tectonostratigraphic terrains namely Troodos, Kyrenia and Mamonia (Robertson et al., 1991). The
Neogene and Quaternary marine succession of the island have been recognized in five main sedi-
mentary sub-basins (Fig. 1). The Pissouri basin is one of these, which is located on the SW of island.
It corresponds to a small tectonically controlled depression elongated NNW-SSE and widening
southward in the direction of the deep Mediterranean domain. Based on data from Robertson et al.
(1991), five sedimentary formations have been recognized in the basin and adjacent regions: Plio-
Pleistocene succession represented by Nicosia and Athalassa formations, Kalavassos Formation be-
longs to Messinian evaporites, whereas Eocene-Miocene limestone succession is distinguished in
Lefkara and Pachna formations.

The Pissouri South section, about 100 m in thickness, is characterised by the deposits of Pissouri
marlstone unit (Stow et al., 1995) which belongs to Nicosia formation. It is located in the centre of
the Pissouri sub-basin and offers the opportunity to study the assemblage composition of calcareous
plankton contents (calcareous nannofossil and planktonic foraminifera). In this study, we present the
results of a tighter integrated calcareous plankton biostratigraphic examination of an early Pliocene
marine succession outcropping in the section and evaluate the climate variability during this interval.
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Fig. 1: a) Generalized map of the Mediterranean Sea. Cyprus is located in the eastern Mediterranean Sea. B)
Simplified geological sketch map of the Cyprus Island (modified after Robertson et al., 1991; Stow et al., 1995;
Krijgsman et al., 2002 and Kouwenhoven et al., 2006).



2. Materials and methods

The studied Pissouri South section consists of well-preserved cyclic marine sediments including
laminated brownish marly layers alternating with grey homogeneous marls. These sediments are
overlying Pachna limestones. We focused our analyses in the part of the section between 50-100 m
height, which was measured and sampled at 0.2 to 0.5 m intervals (Fig. 2). This high resolution sam-
pling allowed us to perform detailed biostratigraphical studies.

Calcareous nannofossil analyses were carried out on 72 samples. Sample preparation followed stan-
dard “smear slide” techniques. Analyses were performed using a Leica DMSP polarising light mi-
croscope at 1250x magnification by counting the marker species at least 500 specimens per sample.
Moreover, the frequencies of Discoaser species are established in a count of 50 discoasterids fol-
lowing the methods and determination of the biostratigraphic events described in Rio et al. (1990)
and Raffi et al. (2006). Results were converted to relative frequencies (percentages). In order to
evaluate primary production, the depth of the nutricline, and stratification in the water column we
have used the ratio between Florisphaera profunda (F) and small gephyrocapsids (sG) abundances:
S index = F/F+sG.

A quantitative study of the planktonic foraminiferal assemblages was performed on the same sam-
ples. Each sample was washed, sieved at 150μm and then dried at 60°C. Quantitative analysis was
carried out on aliquots separated from each sample by means of a microsplitter, in order to obtain
at least 300 specimens. Raw data were transformed into percentages over the total abundance of
planktonic foraminifera. The palaeoclimatic curve inferred from the planktonic foraminiferal as-
semblages was obtained by the formula (w–c)/(w + c) × 100, where w represents the warm-water
indicators and c the cold-water indicators. The ratio Neogloboquadrina sp. (dex) / Neogloboquad-
rina sp. (dex) + G. ruber has been used to establish a valuable stratification index.

Twenty three samples were selected from the studied succession to assess the bottom-water condi-
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Fig. 2: Lithology and position of samples of the Pissouri South section.
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tions. For the benthic quantitative analysis, the fraction larger than 150 μm of the washed residue
was splitted with a microsplitter to a statistically significant size, which contained more than 250
specimens of benthic foraminifera. Reconstruction of bottom water conditions concerning oxygen
content was based on the presence of the dysoxic indicators in the assemblage. For this purpose, the
percentage occurrence of the well established redox front dwelling taxa (Bulimina exilis, Bulimina
costata, Globobulimina spp., Bolivina spathulata/dilatata) which according to Rogerson et al. (2006)
is related to disturbance and/or environmental stress was calculated.

3. Biostratigraphic results

3.1 Calcareous nannofossils

Calcareous nannofossils are abundant throughout the section and generally well-preserved in all
samples. Trends of representative taxa are plotted in Fig. 3.

In Pissouri South section, the nannoflora assemblage is dominated by discoasterids and sphenoliths,
which provide important biostratigraphic markers in the Pliocene. Discoasters are relatively well di-
versified and contain Discoaster assymetricus, D. tamalis, D. surculus, D. pentaradiatus, D. brouw-
eri and D. variabilis. Sphenolithus spp. include S. abies, S. neoabies that are the only representatives
of their genus in the Pliocene. Placoliths are represented mainly by small Gephyrocapsa, followed by
Reticulofenestra pseudoumbilicus (>7micron) and Pseudoemiliania lacunosa. Florisphaera profunda,
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Fig. 3: Calcareous nannofossil biostratigraphy of the Pissouri south section. Quantitative distribution patterns
of calcareous nannofossil marker species and the position of the main events.



Rhabdosphaera clavigera and Helicosphaera selli are also well represented. Scyphosphaera spp.
shows an insufficient occurrence with very low proportions.

The results reveal four important calcareous nannofossil events: (1) subbottom Discoaster tamalis
(2) HO (Highest Occurrence) of Reticulofenestra pseudoumbilicus, (3) HO of Sphenolithus spp.,
(4) top paracme Discoaster pentaradiatus. The HOs of R. pseudoumbilicus and Sphenolithus spp.
allow us to recognize the MNN14/15-MNN16 (Rio et al., 1990) nannofossil biostratigraphic bound-
ary dated at 3.84 Ma.

The subbottom D. tamalis is recorded at 53.0 m, in the lower part of the section. The D. tamalis
higher frequencies occur in the interval above 76.0 m with maximum value (72%) at 83.2 m. R.
pseudoumbilicus presents maximum value (3.6%) at 53.3m. The highest occurrence of R. pseudoum-
bilicus marks the base of MNN16 at 67.8 m. The highest occurrence of Sphenolithus spp. occurs just
above the disappearance of R. pseudoumbilicus, at 74.4 m, its stratigraphic position slightly above
the base of MNN16. D. pentaradiatus is marked by high abundance and a continuous distribution,
except in the interval between 71.2 to 76.0 m being completely absent. The identification of the top
of the D. pentaradiatus paracme at 76.0 m allows the recognition of the lower part of the MNN16
zone, just above the extinction level of Sphenolithus spp. The age proposed for this event is 3.61 Ma
(Lourens et al., 2004) and can be used to approximate in the Mediterranean the base of the Piacen-
zian Stage (3.60 Ma).

3.2 Planktonic foraminifera

Planktonic foraminifera are abundant throughout the section and well-preserved in all samples. The
distribution pattern of the representative taxa is plotted in Fig. 4.

Planktonic foraminiferal assemblage is characterized by high abundances of G. ruber, G.
obliquus, G. apertura, G. trilobus and O. universa. All these species are indicative of warm and
oligotrophic conditions (Hemleben et al., 1989). Cool water species are represented by G. scit-
ula, T. quinueloba, although in low percentages and G. glutinata (3-15%). High abundances are
also recorded for Neogloboquadrina sp. dextral coiled specimens and Sphaeroidinellopsis,
whereas the distribution pattern of G. margaritae, G. puncticulata and G. crassaformis is used
to detect the biostratigraphic framework of the section following the zonation of Cita 1973,
1975b, emended by Sprovieri, 1992.

Six planktonic foraminiferal bioevents were recognized: (1) LCO (Last Common Occurrence) of
Globorotalia margaritae, (2) LO (Last Occurrence) of Globorotalia margaritae, (3) FO (First Oc-
currence) of Globorotalia crassaformis, (4) disappearance of Globorotalia puncticulata, (5) reap-
pearance of G. crassaformis and (6) reappearance of G. puncticulata.

The G. margaritae zone MPL3 is clearly identified at the base of the section characterized by the
high abundance of G. margaritae (up to 20%), the occurrence of G. puncticulata (5-10%) and
Sphaeroidinellopsis (2-5%). The LCO of G. margaritae (10%) is recorded at 61 m and its LO at 69
m of the section. The last bioevent has been dated by Lourens et al. (1996; 2004) at 3.81 Ma and
marks the end of MPL3 biozone and the base of MPL4a. The FO of G. crassaformis is recorded at
76 m and marks the Zaclean/Placentian boundary at 3.60Ma (Lourens et al., 1996). The FO of G.
crassaformis closely approximates the temporary disappearance of G. puncticulata, at 3.57 Ma, and
also the transition to MPL4b at 78 m. Above this level and up to 87 m of the section, G. crassaformis
is completely absent. The reappearance of this species has been dated at 3.35 Ma and predates the
reappearance of G. puncticulata at 3.31 Ma recorded at 29 m.
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4. Sapropelic layers at Pissouri North Section

Micropaleontological analyses in this study also show direct relationships with lithological changes
and confirm the presence of numerous cycles (Fig. 5). High relative abundant of TOC (Trianta-
phyllou et al., 2008) indicates that these layers can be associated with sapropelites. The marly lev-
els of the Pissouri section can be correlated to grey and sapropelitic sediments in contemporaneous
sections throughout the Mediterranean. Pliocene to Holocene Mediterranean sediments contain nu-
merous sapropels (dark-coloured organic-rich sedimentary layers), which demonstrate that dra-
matically different conditions periodically occurred and coincided with changes in global and
regional climate (Cita et al. 1977; Vergnaud-Grazzini et al., 1977). Detailed work in southern east-
ern Mediterranean sections (Jonkers, 1984; Verhallen, 1987, 1991; Hilgen, 1991) has shown that
Pliocene sapropels are correlative and have a coherent and distinct cyclic pattern which correspond
closely with minima in the precessional index (e.g. Rossignol-Strick, 1983; Hilgen, 1991; Lourens
et al., 1992) when perihelion occurs in the Northern Hemisphere summer (Rossignol-Strick, 1983,
1985; Hilgen, 1991).

Florisphaera profunda (Fig. 5A) is a species restricted to the light-limited, lower euphotic zone
(Winter et al., 1994) and has proven to be a very reliable proxy to locate the nutricline-thermocline
level (Molfino & McIntyre, 1990) being important element of sapropel layers (Castradori, 1993). In
order to trace stratification and nutricline fluctuations, we used the ratio between Florisphaera pro-
funda (F) and small gephyrocapsids (sG)) abundances: S = F/F+sG. The increase of the nutricline
proxy (Molfino & McIntyre, 1990) F. profunda vs the high nutrient indicator (Young, 1994) gephy-
rocapsids suggests high values of S index (Fig. 5E), that imply the gradual establishment of strati-
fied conditions and the onset of a nutrient-rich environment in the deep photic zone during sapropel
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Fig. 4: Planktonic foraminiferal biostratigraphy of the Pissouri south section.



formation. Higher abundance of Rhabdosphaera spp. at the same levels implies oligotrophic surface
waters due to the increased stratification of the water column. Intervals of increased abundance of
F. profunda and Rhabdosphaera spp. alternate with those of intense mixing of the surface waters that
are featured by the intense presence of gephyrocapsids and anticorrelate to F. profunda.

The ratio Neogloboquadrina sp. (dex) / Neogloboquadrina sp. (dex) + G. ruber (Fig. 5D) has been
used as additional stratification index that displays a similar trend (Fig. 5). Neogloboquadrina sp.
(dex) is observed to be abundant in deep chlorophyll maxima (DCM) and, therefore, is assumed to
proliferate under high productivity surface water masses and/or stratified surface water conditions.
In the Mediterranean Sea, high abundance of Neogloboquadrina sp. (dex), (Fig. 5C) is often asso-
ciated with sapropel layers (Rohling & Gieskes, 1989) and high abundance of Globigerinoides ruber
(Fig. 5B), indicating intensive surface water stratification during relatively warm summers and a
seasonal DCM (Lourens et al., 1992).

The continuous alternations in calcareous nannofossil and planktonic foraminiferal assemblages are
reflected to the pronounced lithological cyclicity presented in the Pissouri South section. The sapro-
pelites developed close to Zanclean/Piacenzian boundary suggest a climate characterised by a pe-
riod of warm temperate conditions (Fig. 5F) and a highly stratified water column that occurred at
times of precession minima.

These palaeoclimatic conditions enhanced palaeoproductivity and limited the availability of dis-
solved oxygen in bottom waters, temporarily establishing dysoxic conditions. At the same levels, an
oligotypic benthic foraminiferal assemblage prevails. The fauna is entirely composed of the well-
established redox-front taxa with Bulimina exilis making up to 94% of the total benthic assemblage
(Fig. 5G). Bulimina exilis is often associated with sapropels formed under conditions of significant
oxygen depletion (Jonkers 1984). Therefore, the high frequency values of this species may indicate
a temporal reaction of benthic foraminifera to the input of fresh water organic matter. Hence, the shal-
lowing of the redox front could be linked to the increase of food availability that leads to an in-
creased consumption of oxygen (Jorissen et al., 1995).
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Fig. 5: Sapropelic layers at Pissouri South section.



5. Conclusions

Calcareous plankton biostratigraphy in this study confirm the presence of Zanclean/Piacenzian
boundary of the early Pliocene marine succession in the Pissouri South section. Z/P boundary (3.6
Ma) is placed at 75.8 m from the base of the section, considering Discoaster pentaradiatus top
paracme (3.61 Ma) and Globorotalia crassaformis first influx (3.6 Ma) bioevents.

Micropaleontological analysis revealed the presence of numerous cycles that resulted in the sapro-
pelitic/homogeneous marl alternations. The sapropelites developed around the Zanclean – Piacenz-
ian boundary suggest a climate characterised by fluctuations of warm – temperate to humid –
subtropical conditions associated with a highly stratified water column at times of precession minima.
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