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της Μηχανικής Μάθησης: πρόβλεψη σε δεδοµένα µικτού τύπου 
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 Στην παρούσα εργασία διερευνήθηκε η δυνατότητα χρήσης ορισµένων µεθόδων 
της Ανάλυσης Δεδοµένων ως προπαρασκευαστικό στάδιο µεθόδων της Μηχανικής 
Μάθησης, µε στόχο τη βελτίωση της προβλεπτικής τους ικανότητας. Οι µέθοδοι της 
Ανάλυσης Δεδοµένων που εξετάστηκαν ήταν η Ανάλυση σε Κύριες Συνιστώσες 
(PCA), η Ανάλυση των Πολλαπλών Αντιστοιχιών(AFC) και η Μη Γραµµική - 
Κατηγορική Ανάλυση σε Κύριες Συνιστώσες µε βέλτιστη κλιµάκωση (CATPCA). Οι 
µέθοδοι της Μηχανικής Μάθησης που εξετάστηκαν ήταν οι Support Vector Machine 
(SVM) και ειδικότερα Support Vector Classifier (SVC), Stochastic Gradient Descent 
(SGDClassifier), Naïve Bayes (GaussianNB), K-Nearest Neighbor (KNN), Decision 
Tree Classifier, Random Forest Classifier και Logistic Regression Multinomial. Οι 
δοκιµές έγιναν µε πραγµατικά δεδοµένα, τα οποία συλλέχθηκαν στο πλαίσιο 
Πανελλαδικής έρευνας. Το συνολικό δείγµα ήταν 42.593 έφηβοι, οι οποίοι 
ερωτήθηκαν και απάντησαν σε περισσότερες από 155 ερωτήσεις, αναφορικά µε τις 
διατροφικές τους συνήθειες. Ως εξαρτηµένη µεταβλητή τέθηκε ο Δείκτης Μάζας 
Σώµατος (Body Mass Index-BMI), ο οποίος µετρήθηκε και χρησιµοποιήθηκε στις 
αναλύσεις ως ποσοτική µεταβλητή, αλλά και ως ποιοτική, αφού προηγουµένως οι 
τιµές του δείκτη χωρίστηκαν σε κλάσεις, µε βάση τις συστάσεις του Παγκόσµιου 
Οργανισµού Υγείας. Με βάση τα αποτελέσµατα των δοκιµών για το συγκεκριµένο 
σύνολο δεδοµένων, η πρόβλεψη είναι πιο ασφαλής όταν χρησιµοποιούµε ως 
εξαρτηµένη µεταβλητη τον δείκτη ΒΜΙ ως ποιοτική µεταβλητή διάταξης µε 4 
κλάσεις. Ο σχεδιασµός µε µια στρατηγική ανάλυσης δεδοµένων, συµβάλλει στην 
εξοικονόµηση χρόνου, αλλά και στην επιλογή του καλύτερου υποδείγµατος 
πρόβλεψης, ενώ η µείωση διαστάσεων, αν δεν βελτιώνει την προβλεπτική 
ικανότητα των µοντέλων, τουλάχιστον συµβάλει στην “ερµηνευσιµότητα” των 
αποτελεσµάτων. 
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Εισαγωγή 

     Οι µέθοδοι της Πολυµεταβλητής και Πολυδιάστατης Στατιστικής Ανάλυσης Δεδοµένων, εκφράζουν µια 
εναλλακτική µεθοδολογική και φιλοσοφική προσέγγιση στη στατιστική συµπερασµατολογία και 
περιλαµβάνουν τρεις βασικές οικογένειες µεθόδων (Μενεξές, 2006): α) την Παραγοντική Ανάλυση των 
Αντιστοιχιών-ΠΑΑ (διµεταβλητή και πολυµεταβλητή), β) την Ανάλυση σε Κύριες Συνιστώσες και γ) την 
Ταξινόµηση σε Αύξουσα Ιεραρχία. Ιδιαίτερο χαρακτηριστικό των µεθόδων αυτών είναι η συµµετρική 
αντιµετώπιση των µεταβλητών, όπου δεν υπάρχει διάκριση µεταξύ εξαρτηµένων και ανεξάρτητων. Σκοπός 
των µεθόδων είναι να αναδείξουν και να περιγράψουν λανθάνουσες δοµές που ενδεχοµένως εµπεριέχονται 
σε πολυδιάστατους πίνακες δεδοµένων. Αυτό επιτυγχάνεται µέσα από διαδικασίες αλλαγής και ελάττωσης 
των διαστάσεων του αρχικού µαθηµατικού χώρου, στον οποίο το υπό εξέταση φαινόµενο µπορεί να 
περιγραφεί. Οι νέες διαστάσεις, οι οποίες δοµούνται συνήθως από πολύπλοκες σχέσεις µεταξύ των 
µεταβλητών, ερµηνεύονται τελικά ως νέες σύνθετες µεταβλητές ή παράγοντες. Επίσης, βασικό 
χαρακτηριστικό των µεθόδων αυτών είναι ότι δεν απαιτούν την a priori παραδοχή ύπαρξης κάποιας 
θεωρητικής κατανοµής ή κάποια υπόθεση σχετικά µε τις παραµέτρους του υπό εξέταση πληθυσµού. 



 ΠΑΠΑΦΙΛΙΠΠΟΥ , ΚΥΡΑΝΑ, ΠΡΑΤΣΙΝΑΚΗΣ, ΜΑΡΚΟΣ, ΜΕΝΕΞΕΣ (2024)  

     Η Μηχανική Μάθηση (Machine Learning) αναφέρεται  στο πεδίο της επιστήµης των υπολογιστών, που 
µελετά τη δηµιουργία αλγορίθµων, οι οποίοι  “µαθαίνουν” από τα δεδοµένα που συλλέγουν και αξιοποιώντας 
την προηγούµενη γνώση και εµπειρία, χωρίς να έχουν προγραµµατιστεί µε συγκεκριµένους κανόνες, µε 
σκοπό  να ανακαλύψουν µοτίβα και σχέσεις ώστε να κάνουν προβλέψεις ή να πάρουν αποφάσεις. Υπάρχουν 
τρεις βασικές µορφές Μηχανικής Μάθησης (Eidelman, 2020): α) η επιτηρούµενη ή επιβλεπόµενη µάθηση 
(supervised learning), όπου ο αλγόριθµος κατασκευάζει µια συνάρτηση που απεικονίζει δεδοµένες εισόδους-
inputs (σύνολο εκπαίδευσης) σε γνωστές επιθυµητές εξόδους-outputs, µε στόχο τη γενίκευση της συνάρτησης 
και σε εισόδους µε άγνωστες εξόδους, β) η µη επιτηρούµενη ή µη επιβλεπόµενη µάθηση (unsupervised 
learning), όπου ο αλγόριθµος κατασκευάζει ένα µοντέλο για κάποιο σύνολο εισόδων υπό µορφή 
παρατηρήσεων χωρίς να γνωρίζει τις επιθυµητές εξόδους και γ) η ενισχυτική µάθηση (reinforcement 
learning), όπου ο αλγόριθµος µαθαίνει µια στρατηγική ενεργειών µέσα από άµεση αλληλεπίδραση µε το 
περιβάλλον. Η πρώτη µορφή χρησιµοποιείται σε προβλήµατα ταξινόµησης (classification), πρόγνωσης 
(prediction) και ερµηνείας (interpretation), η δεύτερη µορφή χρησιµοποιείται σε προβλήµατα ανάλυσης 
συσχετισµών (association analysis), οµαδοποίησης (clustering) και µείωσης διαστάσεων (dimensionality 
reduction), ενώ η τρίτη µορφή χρησιµοποιείται σε προβλήµατα σχεδιασµού (planning), όπως για παράδειγµα 
ό έλεγχος της κίνησης ενός ροµπότ. 
      Κατά την εφαρµογή των αλγορίθµων, το σύνολο δεδοµένων χωρίζεται σε ένα υποσύνολο για εκπαίδευση 
(train_set) και σε ένα υποσύνολο για δοκιµή (test_set) και µερικές φορές επίσης σε ένα υποσύνολο 
επικύρωσης (cross_validation). Το µοντέλο εκπαιδεύεται στο υποσύνολο εκπαίδευσης και στη συνέχεια 
αξιολογείται η προβλεπτική του ικανότητα, χρησιµοποιώντας το υποσύνολο δοκιµών (Mahesh, 2020;Ray, 
2019). 
    Σκοπός της συγκεκριµένης εργασίας ήταν η διερεύνηση της δυνατότητας χρήσης µεθόδων της Ανάλυσης 
Δεδοµένων στο προπαρασκευαστικό στάδιο εφαρµογής µεθόδων της Μηχανικής Μάθησης (data 
preprocessing in Machine Learning), µε στόχο τη βελτίωση της προβλεπτικής τους ικανότητας. Συγκεκριµένα, 
µελετήθηκε η πρόβλεψη του Δείκτη Μάζας Σώµατος (Body Mass Index-BMI), µε βάση τις συχνότητες 
κατανάλωσης 140 τροφίµων από εφήβους (µαθητές) της Ελληνικής επικράτειας. 

Αλγόριθµοι και Τεχνικές Μηχανικής µάθησης 
  Η δηµιουργία υποδειγµάτων ή προτύπων πρόβλεψης στο πεδίο της Μηχανικής Μάθησης, µπορεί να 
επιτευχθεί µέσω αλγορίθµων, αλλά και τεχνικών που βελτιώνουν την ορθότητα (accuracy) τους. Η επιλογή 
του αλγορίθµου εξαρτάται από το είδος της Μηχανικής Μάθησης, τη µορφή των δεδοµένων και τον 
επιδιωκόµενο στόχο (ταξινόµηση, οµαδοποίηση, συσχέτιση, µείωση διαστάσεων). Οι κυριότεροι αλγόριθµοί, 
οι οποίοι χρησιµοποιήθηκαν στην παρούσα εργασία, συνοψίζονται στους εξής: 
  Μηχανές Διανυσµάτων Υποστήριξης (Support Vector Machine, SVM): είναι ένας τύπος εποπτευόµενου 
αλγόριθµου εκµάθησης (Bhandari & Cupta, 2021), που µπορεί να χρησιµοποιηθεί τόσο για εργασίες 
παλινδρόµησης όσο και για εργασίες ταξινόµησης. Βασίζεται στην ιδέα της εύρεσης του υπερεπιπέδου 
µέγιστου περιθωρίου (margin hyperplane), που είναι η γραµµή ή το επίπεδο που χωρίζει τα σηµεία 
δεδοµένων σε διαφορετικές κατηγορίες µε το µέγιστο δυνατό περιθώριο ή απόσταση µεταξύ των κλάσεων. 
Στην περίπτωση ενός προβλήµατος ταξινόµησης δύο κλάσεων, ο αλγόριθµος SVM βρίσκει το υπερεπίπεδο 
που χωρίζει τις δύο κατηγορίες, ενώ µεγιστοποιεί το περιθώριο µεταξύ των δύο κλάσεων. Στην περίπτωση 
ταξινόµησης πολλών κλάσεων, εκπαιδεύονται πολλαπλοί δυαδικοί ταξινοµητές, ένας για κάθε ζεύγος 
κλάσεων. Μπορεί να διαχειριστεί αποτελεσµατικά δεδοµένα µεγάλων διαστάσεων, αλλά και δεδοµένα µε 
µεγάλο ‘θόρυβο’, καθώς η προσέγγιση µέγιστου περιθωρίου συµβάλλει στη µείωση της επιρροής των 
θορυβωδών σηµείων. Επίσης, ένα από τα πλεονεκτήµατα του, είναι  ότι µπορεί να χειριστεί µη γραµµικά 
διαχωρίσιµα δεδοµένα προβάλοντας τα σε χώρο υψηλότερων διαστάσεων, όπου µπορεί να βρεθεί ένα 
γραµµικό όριο. Αυτό επιτυγχάνεται µε τη χρήση συναρτήσεων πυρήνα (Kernel functions), οι οποίες 
αντιστοιχίζουν τα δεδοµένα σε έναν χώρο υψηλότερων διαστάσεων. 
  Ο αλγόριθµος SVM έχει πολλές παραµέτρους που µπορούν να προσαρµοστούν για τη βελτίωση της απόδοσής 
του. Μία παράµετρος είναι οι συναρτήσεις πυρήνα (Kernel functions), µε κυριότερες, τη γραµµική (linear), 
όπου εφαρµόζεται ένας γραµµικός µετασχηµατισµός των δεδοµένων εισόδου, την πολυωνυµική, µε 
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παράµετρο το βαθµό (degree) του πολυωνύµου που χρησιµοποιείται για το µετασχηµατισµό των δεδοµένων 
εισόδου, την Gaaussian Kernel, η οποία χρησιµοποιεί την ακτινική συνάρτηση βάσης (radial basis 
function,rbf), η οποία αντιστοιχίζει τις τιµές εισόδου σε τιµές εξόδου µε βάση τις Ευκλείδειες αποστάσεις από 
ένα κεντρικό σηµείο ή πολλά κεντρικά σηµεία σε πολυδιάστατο χώρο. Η συνάρτηση ορίζεται ως εξής: 
f(x)=∑ 𝜑(‖𝒙 − 𝒄𝒊‖)"

#  µε 𝜑(‖𝒙 − 𝒄𝒊‖)=exp(-γ‖𝒙 − 𝒄𝒊‖𝟐) (Bhandari & Cupta, 2021),  
όπου x το διάνυσµα εισόδου, ci το κεντρικό διάνυσµα, ‖. ‖ η ευκλείδεια απόσταση ανάµεσα στο διάνυσµα 
εισόδου και το κεντρικό διάνυσµα και γ µια παράµετρος που ελέγχει το σχήµα του ορίου απόφασης. Μια 
µικρή τιµή του γ σηµαίνει µεγαλύτερη ακτίνα για τον πυρήνα RBF, µε αποτέλεσµα ένα πιο οµαλό όριο 
απόφασης και ένα µοντέλο πιο ανεκτικό σε ‘θόρυβο’ και ακραίες τιµές, ενώ µεγάλη τιµή του γ σηµαίνει 
µικρότερη ακτίνα για τον πυρήνα, µε αποτέλεσµα ένα πιο περίπλοκο όριο απόφασης που ταιριάζει καλύτερα 
στα δεδοµένα εκπαίδευσης, αλλά είναι πιο επιρρεπές σε υπερπροσαρµογή (overfitting).Μία ακόµη 
συνάρτηση πυρήνα είναι η σιγµοειδής (Sigmoid), η οποία αντιστοιχεί κάθε πραγµατική τιµή σε µια τιµή 
µεταξύ του 0 και 1, δίνεται από τη σχέση: σ(x)=1/(1+exp(-x))  
και είναι χρήσιµη για την αναπαράσταση πιθανοτήτων και δυαδικών αποφάσεων.  
  Άλλες παράµετροι του αλγορίθµου SVM (Bhandari & Cupta, 2021), είναι τα βάρη κλάσεων (class weights), 
όπου λαµβάνοντας υπόψη τις ανισορροπίες κλάσεων στα δεδοµένα εκχωρούµε διαφορετικά βάρη σε κάθε 
κατηγορία, το κριτήριο ανοχής για διακοπή (Tolerance for stopping criterion), που καθορίζει το ελάχιστο 
ποσό βελτίωσης στην αντικειµενική συνάρτηση που απαιτείται για τη συνέχιση των επαναλήψεων και η 
παράµετρος κανονικοποίησης (regularization parameter C), που καθορίζει την αντιστάθµιση µεταξύ της 
µεγιστοποίησης του περιθωρίου και της ελαχιστοποίησης του σφάλµατος ταξινόµησης. Μια µικρότερη τιµή C 
έχει ως αποτέλεσµα ένα ευρύτερο περιθώριο, το οποίο µπορεί να οδηγήσει σε περισσότερες εσφαλµένες 
ταξινοµήσεις, ενώ µια µεγαλύτερη τιµή C έχει ως αποτέλεσµα ένα στενότερο περιθώριο, το οποίο µπορεί να 
οδηγήσει σε υπερπροσαρµογή. Αυτές οι παράµετροι µπορούν να προσαρµοστούν χρησιµοποιώντας τεχνικές 
όπως η αναζήτηση πλέγµατος (grid search) ή τυχαία αναζήτηση (random search) ή Baysian βελτιστοποίηση 
(optimization), για να βρεθεί ο συνδυασµός παραµέτρων που θα έχει ως αποτέλεσµα την καλύτερη απόδοση 
στο σύνολο δεδοµένων. 
  Δέντρα απόφασης (Decision Trees): είναι ένας τύπος αλγόριθµου µηχανικής µάθησης (Liu et al., 2020), 
που χρησιµοποιείται τόσο για εργασίες παλινδρόµησης όσο και για εργασίες ταξινόµησης. Ο αλγόριθµος 
λειτουργεί µε τη δηµιουργία ενός µοντέλου δέντρου αποφάσεων και των πιθανών συνεπειών τους. Κάθε 
κόµβος στο δέντρο αποφάσεων αντιπροσωπεύει µια δοκιµή σε ένα συγκεκριµένο χαρακτηριστικό των 
δεδοµένων και κάθε κλάδος αντιπροσωπεύει το αποτέλεσµα αυτής της δοκιµής. Η διαδικασία συνεχίζεται 
µέχρι να επιτευχθεί ένας κόµβος φύλλου, ο οποίος αντιπροσωπεύει µια πρόβλεψη. Για τα δέντρα ταξινόµησης, 
η πρόβλεψη είναι η ετικέτα κλάσης, ενώ για τα δέντρα παλινδρόµησης, είναι µια συνεχής τιµή. Η δοµή του 
δέντρου παρέχει µια οπτική αναπαράσταση των αποφάσεων και των σχέσεων µεταξύ των χαρακτηριστικών 
και της µεταβλητής στόχου. Η διαδικασία δηµιουργίας ενός δέντρου αποφάσεων περιλαµβάνει την επιλογή 
του χαρακτηριστικού που θα διαχωριστεί σε κάθε κόµβο και τον προσδιορισµό του βέλτιστου σηµείου 
διαχωρισµού. Ένα από τα κύρια πλεονεκτήµατα των δέντρων αποφάσεων είναι ότι είναι εύκολα κατανοητά 
και ερµηνεύσιµα, ενώ µπορούν να χειριστούν τόσο γραµµικές όσο και µη γραµµικές σχέσεις µεταξύ των 
χαρακτηριστικών και της µεταβλητής στόχου. 
  Υπάρχουν διάφοροι αλγόριθµοι για τη δηµιουργία δέντρων αποφάσεων (Liu et al., 2020), όπως των 
αλγορίθµων ID3 (Iterative Dichotomiser 3), C4.5 µια βελτιωµένη έκδοση του ID3 και του CART (Classification 
and Regression Trees). Η επιλογή του αλγορίθµου εξαρτάται από το συγκεκριµένο πρόβληµα και τον τύπο 
των δεδοµένων που χρησιµοποιούνται. Ο ID3 χρησιµοποιεί το κέρδος πληροφοριών (information gain) ως 
κριτήριο για να επιλέξει το καλύτερο χαρακτηριστικό για να χωρίσει τα δεδοµένα. Το κέρδος πληροφοριών 
υπολογίζεται ως η διαφορά µεταξύ της εντροπίας του γονικού κόµβου και του σταθµισµένου αθροίσµατος 
των εντροπιών των θυγατρικών κόµβων. Ο C4.5 χρησιµοποιεί την αναλογία κέρδους (gain ratio) για το 
διαχωρισµό των δεδοµένων, ενώ ο CART κατασκευάζει δυαδικά δέντρα χωρίζοντας αναδροµικά τα δεδοµένα 
σε δύο υποσύνολα µε βάση την τιµή ενός µόνο χαρακτηριστικού και χρησιµοποιεί τον δείκτη Gini ως κριτήριο 
για τον διαχωρισµό των δεδοµένων επιλέγοντας το χαρακτηριστικό που ελαχιστοποιεί την τιµή του.  
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  Ο δείκτης Gini (Tangirala, 2020), υπολογίζεται ως η πιθανότητα µία περίπτωση ενός συνόλου δεδοµένων 
να ταξινοµηθεί λανθασµένα εάν το εκχωρηθεί µία ετικέτα κλάσης µε βάση την κατανοµή κλάσης των 
περιπτώσεων στο σύνολο δεδοµένων και ορίζεται: Gini = 1 – p1

2-p2
2-…-pk

2=1-∑ 𝑝#%&
' ,  

όπου pi η πιθανότητα η περίπτωση να ανήκει στην i κλάση από τις κ του συνόλου δεδοµένων. Ο δείκτης Gini 
κυµαίνεται από 0 έως 1, µε την τιµή 0 να υποδεικνύει ένα απολύτως καθαρό σύνολο δεδοµένων (όλες οι 
περιπτώσεις ανήκουν στην ίδια κλάση) και την τιµή 1 να υποδεικνύει ένα απολύτως ακάθαρτο σύνολο 
δεδοµένων (οι περιπτώσεις χωρίζονται οµοιόµορφα σε όλες τις κλάσεις). Έστω για παράδειγµα, έχουµε ένα 
σύνολο 100 περιπτώσεων και µε βάση κάποιο χαρακτηριστικό οι 60 ανήκουν σε ένα υποσύνολο Α και οι 40 
σε ένα υποσύνολο Β, τότε θα έχουµε: Gini=1-(60/100)2-(40/100)2=0.48. 
Το χαρακτηριστικό που δίνει τη µικρότερη τιµή του δείκτη χρησιµοποιείται για το διαχωρισµό του συνόλου. 
  Η εντροπία (Tangirala, 2020),  είναι ένα µέτρο της καθαρότητας ή αβεβαιότητας ενός συνόλου 
παραδειγµάτων σε ένα δέντρο αποφάσεων ή σε οποιονδήποτε άλλο αλγόριθµο µηχανικής µάθησης. Η τιµή 
της εντροπίας κυµαίνεται από 0 έως 1, όπου το 0 δείχνει ότι το σύνολο είναι απολύτως καθαρό (όλα τα 
παραδείγµατα έχουν την ίδια κατηγορία) και το 1 δείχνει ότι το σύνολο είναι εξίσου ισορροπηµένο (µισό 
θετικό και µισό αρνητικό). Μια υψηλή τιµή εντροπίας υποδηλώνει υψηλή αβεβαιότητα ή ακαθαρσία στο 
σύνολο, ενώ µια χαµηλή τιµή εντροπίας υποδεικνύει χαµηλή αβεβαιότητα ή καθαρότητα στο σύνολο. Η 
εντροπία ενός συνόλου S σε σχέση µε ένα πρόβληµα δυαδικής ταξινόµησης (για παράδειγµα αληθές/λάθος ή 
θετικό/αρνητικό) ορίζεται ως εξής:                                                          
Εντροπία(S) = -p(θετικό) * log2(p(θετικό)) - p(αρνητικό) * log2(p(αρνητικό)), όπου p(θετικό) είναι το ποσοστό 
των θετικών παραδειγµάτων στο S και το p(αρνητικό) είναι το ποσοστό των αρνητικών παραδειγµάτων στο 
S. Για παράδειγµα, εάν ένα σύνολο S περιέχει 9 θετικά και 5 αρνητικά παραδείγµατα, η εντροπία του S µπορεί 
να υπολογιστεί ως εξής: p(θετικό) = 9 / (9 + 5) = 0,64, p(αρνητικό) = 5 / (9 + 5) = 0,36 και  
Εντροπία(S) = -0,64 * log2(0,64) - 0,36 * log2(0,36) = 0,940. 
  Το κέρδος πληροφοριών (Information Gain) (Tangirala, 2020), είναι ένα µέτρο της αποτελεσµατικότητας 
ενός χαρακτηριστικού για τον διαχωρισµό των δεδοµένων σε ένα δέντρο αποφάσεων ή σε οποιονδήποτε άλλο 
αλγόριθµο µηχανικής µάθησης. Το κέρδος πληροφοριών ενός χαρακτηριστικού Α σε σχέση µε ένα σύνολο S 
ορίζεται ως εξής: Κέρδος πληροφοριών (S, A) = Εντροπία(S) - ∑((|Sv| / |S|) * Εντροπία(Sv)),  
όπου Εντροπία(S) είναι η εντροπία του συνόλου S, |Sv| είναι ο αριθµός των παραδειγµάτων στο υποσύνολο 
Sv του S που έχουν τιµή v για το χαρακτηριστικό A και η Εντροπία(Sv) είναι η εντροπία του υποσυνόλου Sv. 
Για παράδειγµα, ας υποθέσουµε ότι έχουµε ένα σύνολο S µε 14 περιπτώσεις, από τις οποίες τα 9 είναι θετικές 
και τα 5 είναι αρνητικές, και θέλουµε να διαιρέσουµε το S µε βάση το χαρακτηριστικό A, το οποίο µπορεί να 
λάβει τιµές v1, v2 και v3. Ο αριθµός των παραδειγµάτων στα υποσύνολα Sv1, Sv2 και Sv3 που έχουν τιµές v1, 
v2 και v3 για το χαρακτηριστικό A είναι ως εξής: στο Sv1 5 θετικά, 1 αρνητικό, στο Sv2 3 θετικά, 3 αρνητικά 
και στο Sv3 1 θετικό, 1 αρνητικό. Η εντροπία του S θα είναι:  
Εντροπία(S) = - (9/14) * log2(9/14) - (5/14) * log2(5/14) = 0,940.  
Η εντροπία των υποσυνόλων Sv1, Sv2 και Sv3 αντίστοιχα θα είναι:  
Εντροπία(Sv1) =-(5/6)*log2(5/6)-(1/6)*log2(1/6)=0,650,  
Εντροπία(Sv2)=-(3/6)*log2(3/6)-(3/6)*log2(3/6)=1,  
Εντροπία(Sv3)=- (1/2)*log2(1/2)-(1/2)*log2(1/2)=1.  
Έτσι, το κέρδος πληροφοριών του χαρακτηριστικού Α µπορεί να υπολογιστεί ως εξής: 
Κέρδος πληροφοριών (S, A)=Εντροπία(S) - [(6/14) * Εντροπία(Sv1) + (6/14) * Εντροπία(Sv2) + (2/14) * 
Εντροπία(Sv3)]= 0,940 - [(6/14) * 0,650 + (6/14) * 1 + (2/14) * 1]=0,246.  
Το χαρακτηριστικό µε το υψηλότερο κέρδος πληροφοριών επιλέγεται ως χαρακτηριστικό διαχωρισµού. 
  Και οι τρεις αλγόριθµοι ακολουθούν µια από πάνω προς τα κάτω προσέγγιση για την ανάπτυξη του δέντρου 
αποφάσεων, ξεκινώντας από τον ριζικό κόµβο και διαχωρίζοντας αναδροµικά τα δεδοµένα µέχρι να 
ικανοποιηθεί ένα κριτήριο διακοπής. Το κριτήριο διακοπής µπορεί να βασίζεται στο βάθος του δέντρου 
(max_depth), στον αριθµό των περιπτώσεων σε έναν κόµβο φύλλων ή στην ποσότητα της καθαρότητας σε 
έναν κόµβο. Ωστόσο, τα δέντρα απόφασης µπορεί επίσης να έχουν ορισµένα µειονεκτήµατα, όπως η τάση 
υπερπροσαρµογής (overfitting) των δεδοµένων και η αστάθεια της δοµής του δέντρου λόγω µικρών αλλαγών 
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στα δεδοµένα. Για να αντιµετωπιστούν αυτά τα ζητήµατα, έχουν αναπτυχθεί διάφορες τεχνικές, όπως το 
κλάδεµα (pruning) και τα τυχαία δάση (Random forest), για τη βελτίωση της απόδοσης τους. 
  Τυχαία Δάση (Random Forest): Η ιδέα πίσω από το Random Forest (Parmar et al., 2019), είναι να 
δηµιουργηθεί ένας µεγάλος αριθµός δέντρων αποφάσεων, καθένα από τα οποία εκπαιδεύεται σε ένα τυχαία 
επιλεγµένο υποσύνολο δεδοµένων. Η τυχαιότητα που εισάγεται µε την εκπαίδευση κάθε δέντρου σε ένα 
διαφορετικό υποσύνολο δεδοµένων βοηθά στη µείωση της υπερπροσαρµογής και στη βελτίωση της 
ικανότητας γενίκευσης του µοντέλου. Είναι πιο ανθεκτικό στην υπερπροσαρµογή, έχει µικρότερη διακύµανση 
και µπορεί να χειριστεί πιο αποτελεσµατικά τα δεδοµένα που λείπουν και τα θορυβώδη δεδοµένα. Παρέχει 
επίσης ένα µέτρο της σηµασίας των χαρακτηριστικών, το οποίο µπορεί να είναι χρήσιµο για την επιλογή 
χαρακτηριστικών. Ωστόσο, το Random Forest είναι ένας πιο περίπλοκος αλγόριθµος και µπορεί να είναι 
υπολογιστικά ακριβός, ειδικά όταν ο αριθµός των δέντρων στο δάσος είναι µεγάλος. Επιπλέον, ο χρόνος 
πρόβλεψης µπορεί να είναι πιο αργός από εκείνον ενός δέντρου απόφασης, καθώς κάθε δέντρο στο δάσος 
πρέπει να κάνει µια πρόβλεψη. 
  Λογιστική Παλινδρόµηση (Logistic Regression): είναι ένας αλγόριθµος µηχανικής µάθησης (Bisong, 
2019), που χρησιµοποιείται για προβλήµατα δυαδικής ταξινόµησης, όπου ο στόχος είναι να προβλέψει µια 
δυαδική µεταβλητή εξόδου (για παράδειγµα σωστό/λάθος ή θετική/αρνητική) µε βάση µία ή περισσότερες 
µεταβλητές εισόδου (επίσης γνωστές ως χαρακτηριστικά ή predictors). Λειτουργεί µοντελοποιώντας την 
πιθανότητα της µεταβλητής εξόδου ως συνάρτηση των µεταβλητών εισόδου χρησιµοποιώντας µια λογιστική 
συνάρτηση, η οποία αντιστοιχίζει οποιαδήποτε είσοδο πραγµατικής τιµής, σε µια τιµή µεταξύ 0 και 1. Ωστόσο, 
σε ορισµένες περιπτώσεις, µπορεί να έχουµε περισσότερες από δύο κατηγορίες, οπότε χρησιµοποιήσουµε µια 
παραλλαγή της λογιστικής παλινδρόµησης που ονοµάζεται πολυωνυµική (multinomial) λογιστική 
παλινδρόµηση ή παλινδρόµηση softmax. Η λογιστική συνάρτηση είναι η σιγµοειδής σ(z)= 1 / (1 + e-z), όπου z 
είναι ο γραµµικός συνδυασµός των µεταβλητών εισόδου και των σχετικών βαρών τους.  
  Το µοντέλο λογιστικής παλινδρόµησης εκπαιδεύεται χρησιµοποιώντας ένα σύνολο περιπτώσεων όπου η 
µεταβλητή εξόδου είναι γνωστή και τα βάρη των µεταβλητών εισόδου προσαρµόζονται για να µεγιστοποιηθεί 
η πιθανότητα των παρατηρούµενων εξόδων δεδοµένων των εισροών. Αυτό γίνεται συνήθως χρησιµοποιώντας 
έναν αλγόριθµο βελτιστοποίησης, όπως ο αλγόριθµος καθοδικής κλίσης (Gradient Descent), ο οποίος 
προσαρµόζει επαναληπτικά τα βάρη για να ελαχιστοποιήσει µια συνάρτηση κόστους που µετρά τη διαφορά 
µεταξύ των προβλεπόµενων πιθανοτήτων και των πραγµατικών πιθανοτήτων. Η συνάρτηση κόστους είναι 
συνήθως η απώλεια διασταυρούµενης εντροπίας, η οποία ορίζεται ως: 
 J(w) = -1/m * ∑[y(i) * log(h(x(i))) + (1 - y(i)) * log(1 - h(x(i)))],  
όπου w είναι το διάνυσµα των βαρών, m είναι ο αριθµός των περιπτώσεων, x(i) και y(i) είναι οι µεταβλητές 
εισόδου και εξόδου για την i-περίπτωση και h(x(i)) είναι η προβλεπόµενη πιθανότητα η µεταβλητή εξόδου 
είναι θετική για την i-περίπτωση. Ο στόχος της εκπαίδευσης του µοντέλου, είναι να βρεθεί το σύνολο των 
βαρών w που ελαχιστοποιεί τη συνάρτηση απώλειας διασταυρούµενης εντροπίας. Στην περίπτωση της 
πολυωνυµικής λογιστικής παλινδρόµησης η πιθανότητα κάθε κλάσης µοντελοποιείται µέσω της συνάρτησης 
softmax: P(Y=j|X=x) = e^(b_j + w_j' * x) / ∑(e^(b_k + w_k' * x)),  
όπου P(Y=j|X=x) είναι η πιθανότητα η µεταβλητή αποτελέσµατος να είναι j µε τις µεταβλητές εισόδου x, b_j 
είναι ο όρος µεροληψίας για την κλάση j, w_j είναι το διάνυσµα βάρους για την κλάση j και k είναι ο δείκτης 
για όλες τις τάξεις. Η συνάρτηση κόστους είναι παρόµοια µε τη συνάρτηση κόστους που χρησιµοποιείται για 
τη δυαδική λογιστική παλινδρόµηση. 
  Καθοδική κλίση (Gradient Descent): είναι ένας αλγόριθµος βελτιστοποίησης (Ketkar, 2017), που 
χρησιµοποιείται για να βρει το ελάχιστο µιας συνάρτησης κόστους. Η βασική ιδέα του αλγόριθµου είναι η 
επαναληπτική προσαρµογή των βαρών προς την κατεύθυνση της αρνητικής κλίσης της συνάρτησης κόστους, 
η οποία είναι η πιο απότοµη κάθοδος προς την κατεύθυνση της µείωσης του κόστους. Ξεκινά µε ένα αρχικό 
σύνολο βαρών και ενηµερώνει επαναληπτικά τα βάρη προς την κατεύθυνση της αρνητικής κλίσης της 
συνάρτησης κόστους έως ότου η συνάρτηση κόστους συγκλίνει στο ελάχιστο ή έως ότου επιτευχθεί ένας 
µέγιστος αριθµός επαναλήψεων. 
  Gaussian Naive Bayes: είναι ένας απλός αλγόριθµος Μηχανικής Μάθησης για εργασίες ταξινόµησης 
(Mahesh, 2020), που βασίζεται στο θεώρηµα πιθανοτήτων Bayes. Ο αλγόριθµος Naive Bayes ονοµάζεται 
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‘αφελής’ επειδή κάνει µια απλουστευτική υπόθεση ότι τα χαρακτηριστικά στο σύνολο δεδοµένων είναι υπό 
όρους ανεξάρτητα µεταξύ τους, δεδοµένης της ετικέτας κλάσης. Ο αλγόριθµος λειτουργεί υπολογίζοντας την 
πιθανότητα κάθε ετικέτας κλάσης για ένα δεδοµένο σύνολο χαρακτηριστικών εισόδου, µε βάση την κοινή 
κατανοµή πιθανότητας των χαρακτηριστικών και των ετικετών κλάσης. Ο ταξινοµητής Naive Bayes εκτιµά την 
πιθανότητα κάθε ετικέτας κλάσης πολλαπλασιάζοντας την προηγούµενη πιθανότητα της ετικέτας κλάσης µε 
το γινόµενο των πιθανοτήτων υπό όρους κάθε χαρακτηριστικού που δίνεται στην ετικέτα κλάσης. Η 
προηγούµενη πιθανότητα κάθε ετικέτας κλάσης εκτιµάται ως η συχνότητα αυτής της ετικέτας κλάσης στα 
δεδοµένα εκπαίδευσης. Η υπό όρους πιθανότητα κάθε χαρακτηριστικού που δίνεται στην ετικέτα κλάσης 
υπολογίζεται µετρώντας τον αριθµό των φορών που εµφανίζεται το χαρακτηριστικό στα δεδοµένα 
εκπαίδευσης, δεδοµένης της ετικέτας κλάσης. Ωστόσο, ο αλγόριθµος Naive Bayes µπορεί να υποφέρει από το 
πρόβληµα των µηδενικών πιθανοτήτων, εάν ένα χαρακτηριστικό στα δεδοµένα δοκιµής δεν έχει εµφανιστεί 
στα δεδοµένα εκπαίδευσης µε µια συγκεκριµένη ετικέτα κλάσης, όπως επίσης υποθέτει ότι όλα τα 
χαρακτηριστικά είναι εξίσου σηµαντικά, κάτι που µπορεί να µην ισχύει πάντα στην πράξη.  
  Κ-Πλησιέστεροι Γείτονες (K-Nearest Neighbors, KNN): είναι ένας τύπος µη παραµετρικού αλγόριθµου 
µηχανικής µάθησης (Mahesh, 2020), που χρησιµοποιείται για εργασίες ταξινόµησης και παλινδρόµησης. Η 
βασική ιδέα πίσω από τον αλγόριθµο KNN είναι η πρόβλεψη της κλάσης ενός σηµείου δεδοµένων δοκιµής µε 
βάση τα K πλησιέστερα σηµεία δεδοµένων στο σύνολο δεδοµένων εκπαίδευσης, όπου το K είναι µια 
υπερπαράµετρος που καθορίζεται από τον χρήστη. Για την ταξινόµηση, ο αλγόριθµος KNN εξετάζει τους K 
πλησιέστερους γείτονες στο σηµείο δεδοµένων δοκιµής και εκχωρεί την κλάση που είναι πιο κοινή µεταξύ 
αυτών των γειτόνων K, ως την προβλεπόµενη κλάση για το σηµείο δεδοµένων δοκιµής. Για την παλινδρόµηση, 
ο αλγόριθµος KNN παίρνει τον µέσο όρο των K πλησιέστερων γειτόνων για να προβλέψει τη µεταβλητή 
συνεχούς εξόδου για το σηµείο δεδοµένων δοκιµής. Η απόσταση µεταξύ του σηµείου δεδοµένων δοκιµής και 
των σηµείων δεδοµένων εκπαίδευσης συνήθως υπολογίζεται χρησιµοποιώντας την Ευκλείδεια απόσταση, 
αλλά µπορούν επίσης να χρησιµοποιηθούν και άλλες µετρήσεις απόστασης όπως η απόσταση του Μανχάταν 
ή η οµοιότητα του συνηµιτόνου. 
  AdaBoost (Adaptive Boosting): είναι ένας αλγόριθµος ενίσχυσης (Wang & Sun, 2021), που συνδυάζει 
αδύναµους ταξινοµητές για να σχηµατίσει έναν ισχυρό. Λειτουργεί µε επαναληπτική εκπαίδευση αδύναµων 
ταξινοµητών στο ίδιο σύνολο δεδοµένων, µε διαφορετικό βάρος που εκχωρείται σε κάθε δείγµα στο σύνολο 
δεδοµένων σε κάθε επανάληψη. Τα βάρη των δειγµάτων που έχουν ταξινοµηθεί σωστά από την προηγούµενη 
επανάληψη αυξάνονται και τα βάρη των σωστά ταξινοµηµένων δειγµάτων µειώνονται. Με αυτόν τον τρόπο, 
οι επόµενοι αδύναµοι ταξινοµητές επικεντρώνονται στα δείγµατα που οι προηγούµενοι αδύναµοι ταξινοµητές 
προσπάθησαν να ταξινοµήσουν. Μόλις εκπαιδευτούν όλοι οι αδύναµοι ταξινοµητές, οι προβλέψεις τους 
συνδυάζονται χρησιµοποιώντας σταθµισµένη πλειοψηφία ή σταθµισµένο µέσο όρο, ανάλογα µε το αν η 
εργασία είναι ταξινόµηση ή παλινδρόµηση, αντίστοιχα. Τα βάρη κάθε αδύναµου ταξινοµητή στην τελική 
πρόβλεψη καθορίζονται από την απόδοσή του στα δεδοµένα εκπαίδευσης. 
  Διοχέτευση (Pipeline): στη µηχανική µάθηση, η διοχέτευση αναφέρεται σε µια ακολουθία βηµάτων 
επεξεργασίας δεδοµένων που µετατρέπουν τα ακατέργαστα δεδοµένα εισόδου σε τελική έξοδο ή πρόβλεψη. 
Ένας τυπικός αγωγός µηχανικής µάθησης περιλαµβάνει τα ακόλουθα βήµατα (Mohr et al., 2020): 
-Προεπεξεργασία δεδοµένων (data preprocessing), η οποία περιλαµβάνει την προετοιµασία των πρωτογενών 
δεδοµένων εισόδου για χρήση σε ένα µοντέλο µηχανικής εκµάθησης, όπως καθαρισµός και κανονικοποίηση 
δεδοµένων, χειρισµός τιµών που λείπουν και κλιµάκωση χαρακτηριστικών 
- Εξαγωγή και επιλογή χαρακτηριστικών, είναι η διαδικασία µείωσης του αριθµού των χαρακτηριστικών µόνο 
στα πιο σχετικά που είναι απαραίτητα για το µοντέλο να κάνει ακριβείς προβλέψεις 
- Επιλογή µοντέλου, περιλαµβάνει την επιλογή ενός κατάλληλου αλγορίθµου που είναι ικανός να παράγει 
ακριβείς προβλέψεις για το συγκεκριµένο σύνολο δεδοµένων 
- Εκπαίδευση µοντέλου, αφού επιλεγεί ο αλγόριθµος, το µοντέλο πρέπει να εκπαιδευτεί στα δεδοµένα 
εκπαίδευσης για να µάθει τα µοτίβα και τις σχέσεις στα δεδοµένα 
- Αξιολόγηση µοντέλου, η απόδοση του µοντέλου αξιολογείται σε ένα ξεχωριστό σύνολο επικύρωσης για να 
διασφαλιστεί ότι µπορεί να γενικευτεί καλά σε νέα δεδοµένα 
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- Συντονισµός µοντέλου: µε βάση τα αποτελέσµατα της αξιολόγησης, οι υπερπαράµετροι του µοντέλου 
βελτιστοποιούνται για τη βελτιστοποίηση της απόδοσής του 
- Ανάπτυξη µοντέλου, το εκπαιδευµένο και επικυρωµένο µοντέλο µπορεί να αναπτυχθεί για χρήση στην 
παραγωγή, όπου µπορεί να κάνει προβλέψεις για νέα δεδοµένα. 
  Η διοχέτευση (pipeline), επιτρέπει την αυτοµατοποίηση ολόκληρης της ροής των εργασιών, από την 
προετοιµασία δεδοµένων έως την ανάπτυξη των µοντέλων. 

Μεθοδολογία 
     Οι µέθοδοι της Ανάλυσης Δεδοµένων που εξετάστηκαν ήταν η Ανάλυση σε Κύριες Συνιστώσες (Principal 
Components Analysis-PCA) (Anderson, 1984∙ Hair et al., 2010), η Παραγοντική Ανάλυση των Πολλαπλών 
Αντιστοιχιών (Multiple Correspondence Analysis-MCA) (Michailidis και De Leeuw, 1998∙ Μενεξές, 2006) και 
η Μη Γραµµική-Κατηγορική Ανάλυση σε Κύριες Συνιστώσες µε βέλτιστη κλιµάκωση (Non-Linear PCA with 
optimal scaling-CatPCA) (Bond και Michailidis, 1996∙ Μενεξές, 2006).  
     Οι αλγόριθµοι της Μηχανικής Μάθησης που εφαρµόστηκαν ήταν ο αλγόριθµος Support Vector Machine 
(SVM) και ειδικότερα ο αλγόριθµος Support Vector Classifier (SVC), ο αλγόριθµος Stochastic Gradient Descent 
(SGDClassifier)  και οι αλγόριθµοι Naïve Bayes (GaussianNB), K-Nearest Neighbor (KNN), Decision Tree 
Classifier, Random Forest Classifier και Logistic Regression Multinomial (Mahesh, 2020∙ Ray, 2019). 
    Για την αξιολόγηση των υποδειγµάτων, διαχωρίσαµε το σύνολο δεδοµένων σε υποσύνολο εκπαίδευσης 
(train) και υποσύνολο δοκιµής (test), όπου το µέγεθος του υποσυνόλου δοκιµής ορίστηκε 25% 
(test_size=0,25), ενώ  χρησιµοποιήθηκαν µέτρα ακρίβειας (metrics accuracy) και ο πίνακας σύγχυσης 
(confusion matrix). Η ακρίβεια  µετρά το ποσοστό των σωστών προβλέψεων και ορίζεται Aκρίβεια= (Σωστές 
Θετικές Προβλέψεις+Σωστές Αρνητικές Προβέψεις)/Μέγεθος Δείγµατος, ενώ ο πίνακας σύγχυσης 
υποδεικνύει τις πραγµατικές τιµές έναντι των προβλεπόµενων τιµών σε µια µορφή πίνακα, η κύρια διαγώνιος 
της οποίας έχει τις αληθινές προβλέψεις, αρνητικές και θετικές (Carvalho e.t., 2019∙ Grandini e.t., 2020).  
    Για τη βελτίωση της ακρίβειας έγινε µετασχηµατισµός των δεδοµένων (Standarscaler), ενώ αναζητήθηκαν 
οι καλύτερες παράµετροι των αλγορίθµων, όπως  για παράδειγµα το µέγιστο βάθος (max_depth) για τον 
αλγόριθµο Decision Tree ή το πλήθος K των πλησιέστερων γειτόνων για τον αλγόριθµο K-Nearest Neighbor,  
µέσω της κλάσης GridSearchCV. Επιπλέον, εφαρµόσθηκαν η διασταυρωµένη επικύρωση (cross-validation) 
και η µέθοδος bootstrapping µέσω της κλάσης AdaBoostingClassifier, καθώς και όλα τα προηγούµενα στη 
σειρά εφαρµόσθηκαν και µέσω της κλάσης «διοχέτευση» (pipeline) (Carvalho e.t., 2019∙ Mahesh, 2020). Οι 
παραπάνω αλγόριθµοι εφαρµόστηκαν στο προγραµµατιστικό περιβάλλον της Python. 
    Η στρατηγική που ακολουθήθηκε στην εν λόγω εργασία αποτελούνταν από τα εξής βήµατα: 

� Συλλογή ενός «αντιπροσωπευτικού» δείγµατος. 
� “Καθαρισµός” των δεδοµένων (data cleaning/cleansing). 
� Εφαρµογή µετασχηµατισµών στα δεδοµένα. 
� Εφαρµογή διµεταβλητής και πολυµεταβλητής συσχετιστικής ανάλυσης. 
� Μείωση των µαθηµατικών διαστάσεων (data reduction). 
� Πρόβλεψη µε και χωρίς τις µεθόδους της Μηχανικής Μάθησης. 

Τα στατιστικά λογισµικά που χρησιµοποιήθηκαν ήταν η Python 3.10 (Eidelman, 2020) µέσω της 
πλατφόρµας Anaconda και του Jupiter notebook 6.4.5, και το IBM SPSS Statistics v26.0. 

Περιγραφή συνόλου δεδοµένων 
  Το σύνολο δεδοµένων που χρησιµοποιήθηκε αποτελούνταν από πραγµατικά δεδοµένα, τα οποία 
συλλέχθηκαν µέσω αναλογικής στρωµατοποιηµένης τυχαίας δειγµατοληψίας (proportionate stratified 
random sampling), από τα Γυµνάσια και Λύκεια κάθε νοµού της Ελληνικής επικράτειας, στο πλαίσιο 
Πανελλαδικής επιδηµιολογικής µελέτης για τις διατροφικές συνήθειες των εφήβων. Η εν λόγω µελέτη 
πραγµατοποιήθηκε τα έτη 2010 έως 2012, από το Τµήµα Διατροφής και Διαιτολογίας του Αλεξάνδρειου 
Τεχνολογικού Εκπαιδευτικού Ιδρύµατος Θεσσαλονίκης, ύστερα από σχετική έγκριση του Παιδαγωγικού 



 ΠΑΠΑΦΙΛΙΠΠΟΥ , ΚΥΡΑΝΑ, ΠΡΑΤΣΙΝΑΚΗΣ, ΜΑΡΚΟΣ, ΜΕΝΕΞΕΣ (2024)  

Ινστιτούτου και του Υπουργείου Παιδείας, Έρευνας και Θρησκευµάτων. Το δείγµα ήταν αντιπροσωπευτικό 
ως προς το συνολικό πληθυσµό των εφήβων της Ελλάδας, µε βάση την απογραφή του 2011. 
  Αναλυτικότερα, το σύνολο δεδοµένων αποτελούνταν από 42.593 «αντικείµενα» (εφήβους), ηλικίας 12 έως 
19 ετών (50,4% αγόρια και 49,6% κορίτσια) και από 155 µεταβλητές (χαρακτηριστικά) µεικτού τύπου (mixed-
type data). Αναλυτικότερα, ως εξαρτηµένη µεταβλητή ορίστηκε ο BMI, ο οποίος µετρήθηκε και 
χρησιµοποιήθηκε στις αναλύσεις ως ποσοτική µεταβλητή (scale) (ελάχιστη τιµή=12,17, µέγιστη τιµή=55,23), 
αλλά και ως µεταβλητή διάταξης (ordinal) µε 4 κλάσεις, σύµφωνα µε τις συστάσεις του Παγκόσµιου 
Οργανισµού Υγείας (Λιποβαρείς: <18,50, Νορµοβαρείς: 18,50-24,99, Υπέρβαροι: 25,00-29,99 και 
Παχύσαρκοι: ≥30,00). Αντιθέτως, ως ανεξάρτητες µεταβλητές ορίστηκαν οι  140 επιλογές τροφίµων και 
«πιάτων» της Ελληνικής κουζίνας (συχνότητα κατανάλωσης/εβδοµάδα) που ήταν ποσοτικές µεταβλητές 
(scale), οι ηµερήσιες ώρες ύπνου, ο ηµερήσιος αριθµός κατανάλωσης ποτηριών νερού, η εβδοµαδιαία 
κατανάλωση “fast food”, ο ηµερήσιος αριθµός γευµάτων, η εβδοµαδιαία κατανάλωση πρωινού και η 
εβδοµαδιαία συχνότητα delivery (οι µεταβλητές αυτές αφορούν στις ατοµικές και διατροφικές συνήθειες των 
εφήβων), που ήταν επίσης ποσοτικές µεταβλητές. Επίσης, ως ανεξάρτητες µεταβλητές ορίστηκαν η 
εβδοµαδιαία συχνότητα οικογενειακού τραπεζιού που ήταν µια µεταβλητή διάταξης µε 4 κατηγορίες 
(Ποτέ=0,1-2 φορές=1, 3-4 φορές=2 Καθηµερινά =3)  και οι ποιοτικές µεταβλητές (nominal) του φύλου µε 2 
κατηγορίες, του νοµού µε 37 κατηγορίες, της γεωγραφικής περιοχής µε 3 κατηγορίες (Αστική=1, 
Περιαστική=2, Αγροτική=3), της µορφής της οικογένειας µε 5 κατηγορίες (Χωρίς γονείς=0, Και µε τους δύο 
γονείς=1, Με έναν γονιό λόγω διαζυγίου=2, Με έναν γονιό λόγω θανάτου=3, Μονογονεϊκή=4), της νηστείας 
µε 3 κατηγορίες (Όχι=0, Μερικές φορές=1, Ναι=2) και του delivery µε 2 κατηγορίες (Όχι=0, Ναι=1), (οι 
µεταβλητές αυτές αφορούν στα δηµογραφικά χαρακτηριστικά και στις συνήθειες των εφήβων).  

Αποτελέσµατα 
    Σε πρώτο στάδιο διερευνήσαµε τη συσχέτιση του δείκτη µάζας ΒΜΙ τόσο ως ποσοτική, όσο και ως ποιοτική 
(διάταξης) εξαρτηµένη µεταβλητή, σε σχέση µε το φύλο, µε τα ατοµικά και κοινωνικά χαρακτηριστικά, καθώς 
και µε τις ατοµικές και διατροφικές συνήθειες, µέσω t-test, one-way και multiway ANOVA, Simple και 
Multiple Regression µε και χωρίς επιλογή µεταβλητών και Χ2-test. Η προβλεπτική ικανότητα των 
εξεταζόµενων υποδειγµάτων βρέθηκε πάρα πολύ χαµηλή. Συγκεκριµένα οι τιµές των συντελεστών R2 των 
γενικών γραµµικών υποδειγµάτων κυµάνθηκαν από 0,2% έως 3,4% και οι συντελεστές Cramer’s V ή Lambda 
ή Goodman and Kruskal tau, κυµάνθηκαν από 0,001 έως 0,09. Στη συνέχεια εφαρµόσαµε Κατηγορική 
Παλινδρόµηση µε Βέλτιστη Κλιµάκωση (Categorical Regression with Optimal Scaling), θεωρώντας ως 
εξαρτηµένη µεταβλητή πάλι το δείκτη µάζας ΒΜΙ ως ποσοτική και ως ποιοτική και ανεξάρτητες τα ατοµικά 
και κοινωνικά χαρακτηριστικά, καθώς και τις ατοµικές και διατροφικές συνήθειες των εφήβων. Η 
προβλεπτική ικανότητα των υποδειγµάτων βρέθηκε πάλι πολύ χαµηλή, οι τιµές των αντίστοιχων συντελεστών 
R2 κυµάνθηκαν από 2,4% έως 3,9%.  
   Σε δεύτερο στάδιο εφαρµόσαµε µεθόδους µείωσεις διαστάσεων στις 140 µεταβλητές που αφορούσαν τις 
συχνότητες κατανάλωσης τροφίµων. Συγκεκριµένα εφαρµόσαµε την Ανάλυση Κύριες Συνιστώσες, τη Μη 
Γραµµική-Κατηγορική Ανάλυση σε Κύριες Συνιστώσες µε βέλτιστη κλιµάκωση και την Παραγοντική Ανάλυση 
των Πολλαπλών Αντιστοιχιών, µετασχηµατίζοντας τις ποσοτικές µεταβλητές σε 3 κλάσεις (σηµεία αποκοπής 
το 33,3% και το 66,6%). Από την Ανάλυση σε Κύριες Συνιστώσες βρέθηκε ότι 28 παράγοντες ερµήνευσαν το 
50% της ολικής αδράνειας, ενώ 68 παράγοντες ερµήνευσαν το 73% της ολικής αδράνειας. Από την 
Κατηγορική Ανάλυση σε Κύριες Συνιστώσες βρέθηκαν 10 σηµαντικοί παράγοντες που ερµήνευσαν το 34% 
της ολικής αδράνειας, ενώ η Παραγοντική Ανάλυση των Αντιστοιχιών έδωσε 8 σηµαντικούς παράγοντες, που 
ερµήνευσαν το 37% της ολικής αδράνειας.  
   Στη συνέχεια θεωρώντας τα παραγοντικά σκορ (factor scores) των 28 παραγόντων που προέκυψαν από την 
Ανάλυση σε Κύριες Συνιστώσες ως ανεξάρτητες µεταβλητές, εφαρµόσαµε την Πολλαπλή Γραµµική 
Παλινδρόµηση (Multiple Linear Regression) µε τον δείκτη ΒΜΙ ως  εξαρτηµένη ποσοτική µεταβλητή, την 
Κατηγορική Παλινδρόµηση µε Βέλτιστη Κλιµάκωση µε τον BMI ως κατηγορική εξαρτηµένη µεταβλητή και τα 
παραγοντικά σκορ ως ανεξάρτητες, καθώς και την Κατηγορική Παλινδρόµηση µε Βέλτιστη Κλιµάκωση µε τον 
δείκτη BMI ως ποσοτική ή ως κατηγορική εξαρτηµένη µεταβλητή και τα παραγοντικά σκορ, τα ατοµικά 
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χαρακτηριστικά και τις ατοµικές και διατροφικές συνήθειες ως ανεξάρτητες. Η προβλεπτική ικανότητα των 
υποδειγµάτων βρέθηκε πάλι πάρα πολύ χαµηλή µε τιµές των αντίστοιχων συντελεστών R2 να κυµαίνονται 
από 0,1% έως 5,9%. 
    Εφαρµόζοντας παρόµοια υποδείγµατα µε τα παραγοντικά σκορ  των 10 παραγόντων της Κατηγορικής 
Ανάλυσης σε  Κύριες Συνιστώσες και των 8 παραγόντων της Πολλαπλής Παραγοντικής Ανάλυσης των 
Αντιστοιχιών, η προβλεπτική ικανότητα των υποδειγµάτων βρέθηκε επίσης πάρα πολύ χαµηλή, µε τιµές των 
αντίστοιχων συντελεστών R2 να κυµαίνονται από 0,0% έως 6% και από 0,1% έως 6,2% αντίστοιχα. 
   Παρόλη τη χαµηλή προβλεπτική ικανότητα των υποδειγµάτων, αξιοπερίεργο είναι πως η εφαρµογή της 
µεθόδου Classification Trees – CHAID, θεωρώντας το ΒΜΙ σε κατηγορίες ως εξαρτηµένη, τα ατοµικά 
χαρακτηριστικά και τις συνήθειες ως ανεξάρτητες, έδωσε ως αποτέλεσµα 64% ορθής πρόβλεψης. 
  Τέλος, εφαρµόσαµε τεχνικές Μηχανικής Μάθησης µέσω αλγορίθµων ταξινόµησης (Singh et al., 2016) µε 
σκοπό να προβλέψουµε το ΒΜΙ ως κατηγορική εξαρτηµένη µεταβλητή, θεωρώντας ως χαρακτηριστικά τόσο 
τα πρωτογενή δεδοµένα, όσο και τα παραγοντικά σκορ, που προέκυψαν από την εφαρµογή της Ανάλυσης σε 
Κύριες Συνιστώσες, της Μη Γραµµικής-Κατηγορικής Ανάλυσης σε Κύριες Συνιστώσες και της Παραγοντικής 
Ανάλυσης των Πολλαπλών Αντιστοιχιών αντίστοιχα. Για τον έλεγχο της προβλεπτικής ικανότητας και τη 
σύγκριση των διαφόρων µεθόδων χρησιµοποιήσαµε το µέτρο της Ακρίβειας.  
  Αρχικά εφαρµόσαµε τον αλγόριθµο SVC (Support Vector Classifier) στα πρωτογενή δεδοµένα, η αξιολόγηση 
του οποίου έδωσε ακρίβεια α=0,66, η οποία δεν βελτιώθηκε, ούτε µε την κανονικοποίηση των δεδοµένων, 
ούτε και µε την εφαρµογή των βέλτιστων παραµέτρων (kernel functions, C regularization, γ parametr) που 
αναζητήθηκαν µέσω της αναζήτησης πλέγµατος (Grid Search). Στη συνέχεια εφαρµόσαµε τον αλγόριθµο 
στοχαστικής καθοδικής κλίσης για ταξινόµηση (SGDClassifier), όπου στα αρχικά δεδοµένα η αξιολόγηση 
έδωσε ακρίβεια α=0,60, ενώ η κανονικοποίηση των δεδοµένων βελτίωσε την ακρίβεια σε α=0,65. Επίσης η 
διασταυρωµένη επικύρωση (cross-validation, cv=5), έδωσε µέση ακρίβεια 0,63 µε τυπική απόκλιση s=0,016. 
Η εφαρµογή του αλγορίθµου Naïve Bayes (GaussianNB), έδωσε ακρίβεια 0,38, ενώ ο αλγόριθµος ΚΝΝ, έδωσε 
ακρίβεια 0,60, µε βέλτιστη τιµή του Κ=6, από την αναζήτηση πλέγµατος (Grid Search).  
  Στη συνέχεια εφαρµόσαµε τον αλγόριθµο “Δέντρα Απόφασης για Ταξινόµηση” (Decision Tree Classifier), 
όπου η αρχική αξιολόγηση έδωσε ακρίβεια α=0,51, η οποία βελτιώθηκε µε την εφαρµογή του αλγορίθµου 
Adaboost σε α=0,66. Παρόµοια ήταν και η αξιολόγηση α=0,66 κατά την εφαρµογή του αλγόριθµου Τυχαία 
Δάση για ταξινόµηση (Random Forest Classifier). Επίσης αναζητήθηκαν οι βέλτιστοι παράµετροι (Gini, 
Entropy, max_depth), µέσω της αναζήτησης GridSearchCV, από όπου προέκυψαν ως καλύτερο κριτήριο η 
ενροπία και µέγιστο βάθος max_depth=5. Στην Εικόνα 1 παραθέτουµε ένα δέντρο απόφασης ταξινόµησης 
των δεδοµένων µε βάθος 3, όπου διακρίνονται τα χαρακτηριστικά µε τα οποία γίνεται ο διαχωρισµός. 

 

 

                                                         Εικόνα 1: Δέντρο Απόφασης µε βάθος 3 

  Η εφαρµογή του αλγορίθµου της πολυωνυµικής  λογιστικής παλινδρόµησης (LogisticRegression), καθώς 
είχαµε τέσσερις κλάσεις, έδωσε ακρίβεια α=0,66. Στη συνέχεια εφαρµόσαµε όλες τις προαναφερθείσες 
διαδικασίες στα πρωτογενή δεδοµένα µέσω της αυτοµατοποιηµένης κλάσης διοχέτευσης (pipeline), από όπου 
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προέκυψε η δεύτερη στήλη (Ακρίβεια) του παρακάτω πίνακα (Πίνακας 1). Οι υπόλοιπες τρεις στήλες του 
πίνακα (Ακρίβεια PCA_28, Ακρίβεια CatPCA_10, Ακρίβεια AFC_8), προέκυψαν από την εφαρµογή των 
αλγόριθµων Μηχανικής Μάθησης στα παραγοντικά σκορ, που προέκυψαν από την  εφαρµογή της Ανάλυσης 
σε Κύριες Συνιστώσες, της Μη Γραµµικής-Κατηγορικής Ανάλυσης σε Κύριες Συνιστώσες και της 
Παραγοντικής Ανάλυσης των Πολλαπλών Αντιστοιχιών αντίστοιχα. 
 
Πίνακας 1 : Πρόβλεψη του δείκτη BMI ως κατηγορική εξαρτηµένη µεταβλητή 

Μοντέλο Ακρίβεια 
Ακρίβεια 
PCA_281 

Ακρίβεια 
CatPCA_102 

Ακρίβεια 
AFC_83 

Logistic Regression 
Multinomial 

0,66 0,65 0,65 0,65 

SVC 0,66 0,66 0,65 0,66 
KNN 0,60 0,60 0,61 0,60 

Decision Tree Classifier 0,52 0,52 0,51 0,53 
Random Forest 

Classifier 0,66 0,66 0,67 0,66 

SGD 0,64 0,65 0,65 0,65 
Naive Bayes 0,38 0,61 0,63 0,63 

   Με βάση τα στοιχεία του Πίνακα 1, καλύτερη πρόβλεψη έδωσε ο αλγόριθµος Random Forest Classifier (0,67) 
µε τους 10 παράγοντες που προέκυψαν από την Κατηγορική Ανάλυση σε Κύριες Συνιστώσες, ενώ µε εξαίρεση 
τον αλγόριθµο Naïve Bayes, δεν υπάρχουν σηµαντικές διαφορές στην ακρίβεια µεταξύ των αλγόριθµων που 
εφαρµόστηκαν στα πρωτογενή δεδοµένα (140 µεταβλητές) και των αντίστοιχων αλγόριθµων που 
εφαρµόστηκαν στα δεδοµένα µειωµένων διαστάσεων (28, 10 και 8 µεταβλητές). 

Συµπεράσµατα  
   Από τις παραπάνω αναλύσεις προέκυψε ότι για το συγκεκριµένο σύνολο δεδοµένων, η εφαρµογή των 
αλγορίθµων (SVC, KNN, SGD, Naive Bayes,  Decision Tree Classifier, Random Forest Classifier, Logistic 
Regression Multinomial) σε δεδοµένα µειωµένων διαστάσεων, έδωσε παρόµοια αποτελέσµατα και για 
κάποιους αλγορίθµους καλύτερα σε σχέση µε την εφαρµογή τους στα πρωτογενή δεδοµένα. Επίσης, η 
πρόβλεψη είναι πιο ασφαλής όταν χρησιµοποιούµε ως εξαρτηµένη µεταβλητή  τον δείκτη ΒΜΙ ως ποιοτική 
µεταβλητή διάταξης µε 4 κλάσεις.  
    Γενικότερα, ο σχεδιασµός µε µια στρατηγική ανάλυσης δεδοµένων συµβάλλει στην εξοικονόµηση χρόνου, 
αλλά και στην επιλογή του καλύτερου υποδείγµατος πρόβλεψης. Η µείωση διαστάσεων, αν δεν βελτιώνει την 
προβλεπτική ικανότητα των υποδειγµάτων, τουλάχιστον συµβάλει στην “ερµηνευσιµότητα” (interpretability) 
των αποτελεσµάτων. Και αυτό διότι οι παράγοντες, οι οποίοι προέκυψαν από την Ανάλυση σε Κύριες 
Συνιστώσες, την Παραγοντική Ανάλυση των Πολλαπλών Αντιστοιχιών και τη Μη Γραµµική-Κατηγορική 
Ανάλυση σε Κύριες Συνιστώσες (28, 8 και 10 αντίστοιχα), σε όλες τις περιπτώσεις, είχαν φυσική ερµηνεία στο 
θεωρητικό πλαίσιο της έρευνας , µε συνέπεια οι 140 µεταβλητές να µπορούν να αντιπροσωπευτούν από έναν 
µικρότερο αριθµό συνιστωσών, δηλαδή από έναν µικρότερο αριθµό νέων σύνθετων και κυρίως, 
“ερνηµεύσιµων” µεταβλητών. 
   Προτείνεται λοιπόν, να επιχειρείται η η µείωση των διαστάσεων µε διάφορες µεθόδους πριν την εφαρµογή 
Μεθόδων Μηχανικής Μάθησης. Επίσης, η µικρή τιµή του δείκτη R2, που έδωσαν τα υποδείγµατα που 
εξετάστηκαν στο προπαρασκευαστικό στάδιο,  καθιστούν απαραίτητο τόσο τον έλεγχο της ποιότητας των 

 
1 PCA_28: Εφαρµογή αλγορίθµου µε χαρακτηριστικά τους 28 παράγοντες που προέκυψαν από την Ανάλυση σε Κύριες Συνιστώσες 
2 CatPCA_10: Εφαρµογή αλγορίθµου µε χαρακτηριστικά τους 10 παράγοντες που προέκυψαν από την Κατηγορική Ανάλυση σε 
Κύριες Συνιστώσες 
3 AFC_8: Εφαρµογή αλγορίθµου µε χαρακτηριστικά τους 8 παράγοντες που προέκυψαν από την Παραγοντική Ανάλυση 
Αντιστοιχιών 
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δεδοµένων (Data Quality) όσο και τον “καθαρισµό” των δεδοµένων (data cleaning/cleansing), πριν την 
εφαρµογή οποιασδήποτε µεθόδου, µε την προϋπόθεση ότι οι µεταβλητές που θα χρησιµοποιηθούν τόσο στο 
προπαρασκευαστικό στάδιο όσο και στα υποδείγµατα και αλγόριθµους πρόβλεψης να είναι 
αντιπροσωπευτικές και να περιγράφουν µε όσο το δυνατόν µεγαλύτερη πληρότητα το υπό εξέταση 
φαινόµενο-σύστηµα.  
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Using Multivariate Data Analysis methods prior to using Machine 
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 In this study, we investigated the potential of employing specific Multivariate Data 
Analysis techniques (MDA) as an initial phase to enhance the predictive capabilities 
of Machine Learning (ML) methods. The MDA techniques evaluated included 
Principal Component Analysis, Multiple Correspondence Analysis, and Non-Linear 
Categorical Principal Component Analysis with optimal scaling. The ML methods 
assessed were the Support Vector Machine (SVM), particularly the Support Vector 
Classifier (SVC), Stochastic Gradient Descent (SGDClassifier), Naïve Bayes 
(GaussianNB), K-Nearest Neighbor (KNN), Decision Tree Classifier, Random Forest 
Classifier, and Multinomial Logistic Regression. The evaluation was conducted using 
data from a national survey, involving a total sample of 42,593 teenagers who 
participated in interviews and responded to over 155 questions about their eating 
habits. The dependent variable was the Body Mass Index (BMI), measured and 
analyzed both as a quantitative and a qualitative variable. For the qualitative analysis, 
BMI values were categorized into classes based on World Health Organization 
guidelines. The testing results for this dataset indicated that predictions are more 
reliable when BMI is used as a qualitative ordinal variable with four classes. Designing 
a data analysis strategy not only saves time but also aids in selecting the most effective 
prediction model. Furthermore, while dimensionality reduction may not always 
enhance the predictive performance of the models, it at least improves the 
interpretability of the results. 
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