Waxing lyrical: ancient medical authors on wax and wax tablets

Laurence Totelin

doi: 10.12681/dj.38106

Copyright © 2024, Laurence Totelin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.
Waxing lyrical: ancient medical authors on wax and wax tablets

Laurence Totelin

Abstract
This short survey discusses some of the uses of wax in ancient medicine: it was a key pharmacological ingredient; it served to create models of surgical tools; and it was a support for the writing of ancient recipes. Physicians distinguished between different types of wax, some of which were considered more efficacious than others. Wax could be consumed orally, but most commonly entered in the production of salves (cerates).

Key Words: wax; writing tablets; surgical instruments; cerates

Introduction
The relaunch of Deltos invites us to reflect on the uses in ancient medicine of deltoi, writing tablets, and the wax with which they were filled. For wax was a key substance in ancient medicine, one that entered the composition of numerous remedies, especially of cerates.

Writing tablets and other deltoi in ancient medicine
In his Commentary to the Sixth book of the Epidemics, Galen described the way in which he thought some of the books of Hippocratic Epidemics had been compiled by Thessalus, Hippocrates’ son: τὰ γὰρ ἐν διφθέραις ἢ χάρταις ἢ δέλτοις ὑφ’ Ἱπποκρά-
They say that Thessalus, Hippocrates’ son, collected what his father had written on leather sheets, or rolls of papyrus, or tablets, and composed two books, the second and the sixth books [of the Epidemics]; some also add the fourth (Galen, Commentary to the Sixth Book of the Epidemics 2.15).

Galen imagined that the Epidemics, and possibly other Hippocratic texts, had been written in short instalments, which would fit on supports that could accommodate a short amount of text\(^1\). The wax tablet, the deltos, was one of these possible supports\(^2\). It was made of wood that had been carved out to pour in wax; several tablets could be bound together by means of leather threads\(^2\). Archaeology has uncovered examples of such writing tablets, for instance recently at the Bloomberg site in London, as well as examples of styli, the implement used to write in the wax (Fig. 2). However, no medical example to date has been discovered. That is not to say that this was not a frequent support for medical writing. Indeed, its portability and relative ease of use would have made it an excellent support for taking notes in a clinical context.

In a medical context, the word deltos might also have referred to a pharmacological box. Indeed, the theologian Basil of Caesarea (fourth century CE) mentioned deltoi divided in many compartments (polyptchos) that contained numerous remedies (Homilies, edited in\(^7\)). Such boxes are also well known archaeologically. They are rectangular, lidded boxes, divided into compartments, which could accommodate various types of medicinal preparations. They are variously made of copper alloy, silver, ivory or bone, and measure between 10 and 12cm in length, 6 and 7cm in breadth, and 2 and 3cm in height. The lid is either sliding or hinged\(^8\) (Fig. 3). The diminutive deltarion also appears to have designated such a pharmacological box or a medical instrument box\(^9,10\). There are several representations of these boxes as medical toolboxes, including one on the sarcophagus of a physician from Ostia, who died in the early fourth century CE (New York, Metropolitan Museum of Art, 48.76.1) (Fig. 4). The toolbox rests opened atop a cupboard. It contains scalpels and other surgical tools. Pharmacological and surgical boxes were probably named deltoi because of their similarity to the writing tablets with which physicians were familiar.

Moulding instruments

Not only were medical cases called deltoi by analogy with wax tablets, but wax also served an important purpose in the creating of new surgical instruments according to a unique testimony from Galen:

\[\text{θαυμάζειν οὐχ ὅτι καὶ ἀργυρίου καὶ χρυσίου καὶ ἀργυρωμάτων πολλῶν ἀποκείμενων ἃ διεφθάρη κατὰ τὴν πυρκαῖαν ἀλύπως ὤφθη φέρων ἀλλ’ ὅτι πλῆθος ἄλλο τῶν ὑπ’ ἐμοῦ σεσωρευμένων αὐτοῦ, φάρμακα δὲ πάντοι πάμπολλα, τὰ μὲν ἁπλὰ, τὰ δὲ συγκείμενα, καὶ ἀρμενὰ παντοδαπά, τὰ μὲν εἰς τὰς ἰατρικὰς ἐπιτήδεια}\]

Figure 2. (a) Roman bronze stylus found in the River Fleet; (b) Roman stylus with a separate greenstone writing point and bronze eraser (the wooden shaft is modern); (c) a Roman bronze stylus with five gold bands found in the Roman Senate in the mid-19th century. Photos courtesy of the Museum of Writing Research Collection, University of London.

Figure 3. Brass pharmacological box divided into four compartments. Copy of a Roman original in the Naples Museum, London, Science Museum, A62298. Licensed under a Creative Commons Attribution 4.0 licence.

Figure 4. Roman sarcophagus from Ostia, ca. 300 CE, showing a physician reading a scroll, sat on a chair, next to a cupboard on top of which is an open box of surgical instruments. New York, Metropolitan Museum of Art, 48.76.1. Open Access.

You were amazed that I was seen to bear without grief the destruction in the fire of my silver, gold, silverware, and many contracts that had been deposited there, but also of the further many things that I had stored there, namely numerous remedies of all sorts, some simple and some compound, and many kinds of instruments. Some instruments, useful for medical practice, I said that I had lost but I hoped to reacquire, but other instruments, which I had created myself, moulding models of wax myself before giving them to the bronze smiths, I cannot recover without much time and effort (Galen, Avoiding Distress 1.4-5, edited in15).

Galen was here talking about the losses that he had endured in a great fire at Rome, when many of his possessions, left in storage via the Via Sacra, were burnt down16. Among his losses were surgical tools that he had invented himself and brought in existence using the cire perdue (lost wax process) (11, Nutton17). Galen moulded models (hypodeigmata) of his tools, which he passed on to bronze smiths, which the smiths then poured copper alloy in the mould to make the surgical tool. This technique could create complex, but unique tools, since the original wax mould to make the surgical tool. This technique could create complex, but unique tools, since the original wax mould was lost in the process18. The creation of instruments (organa) was one of the categories in the medical contests held in Ephesus during the Great Asclepeia, known through a series of second-century CE inscriptions15,16. While Galen’s description of making medical tools by means of the cire perdue method was unique, it is likely that other physicians employed it in antiquity.

Wax in ancient pharmacology

Wax was a key ingredient in ancient pharmacology19. All medical authors who described simples, that is, single medical substances, devoted chapters to beeswax. These included Dioscorides (On Materia Medica 2.83, edited in18), Pliny the Elder (Natural History 21.83-85, edited in19), Galen (On the Properties of Simple Medicines 7.10.23, edited in20), Oribasius (Medical Collection 15.1.10.15, edited in21), Aetius (1.198, edited in22), and Paul of Aegina (7.3.10, edited in23). In their chapters devoted to wax, Pliny and Dioscorides, who often relied on the same sources, singled out specific types of wax as excellent: Cretan (Κρητικός) and Pontic (Ποντικός) for Dioscorides; Punic (Punica), Cretan (Cretica), Pontic (Pontica), and Corsican (Corsica) for Pliny. In other parts of his work, Dioscorides also mentioned Tyrrenhian wax (e.g. On Materia Medica 2.76.6 and 14, edited in20). Punic and Tyrrenhian waxes appear very frequently as ingredients in ancient medical recipes – Cretan, Corsican, and Punic waxes do not. That is not to say that these waxes were not commonly employed in medicine, but rather that medical writers did not stress their use. Further, geographical epithets, such as Cretan, Pontic, or Tyrrenhian, attached to medical ingredients were not always an indication of their actual geographical origins, but could refer to a particular standard of quality or a method of production24. Both Pliny and Dioscorides described a method to cleanse wax with sea water to make an excellent quality wax. Pliny specified that it was this process that led to the creation of Punic wax, which was particularly useful in medicine:

Punica fit hoc modo: ventilatur sub diu saepius cera fulva, dein fervet in aqua marina ex alto petita addito nitro. inde lingulis hauriunt florem, id est candidissima quaeque, transfunduntque in vas quod exiguum frigidae habeat, et rursus marina decocunt separatim, dein vas ipsum aqua refrigerant. et cum hoc ter fecere, iunce crate sub diu siccant sole lunaeque. haec enim candorem facit, sol siccat, et ne liquefactiat, protegunt tenui linteo. candidissima vero fit post insolacionem etiamnum recocata. Punica medicinis utilissima.

Punic [wax] is made in this way: yellow wax is exposed to the air in the open several times, then it is boiled in sea water taken from the deep sea, and to which soda is added. Then, with a Skinner, they collect the ‘flower’, namely, the whitest parts, and they transfer it to a vessel which contains a little bit of cold water. Then, they boil it [the flower] again on its own in sea water, after which they cool down the vessel itself with water. When they have done this three times, they dry the wax in the open, on rush mats, under the light of the moon. For the moon makes it white, while the sun dries it; and in order for it not to melt, they cover it with a thin linen cloth. To obtain the whitest wax, after the exposure to the sun, it should be boiled once again. Punic [wax] is the most useful for medicine. (Pliny the Elder, Natural History 21.84)
saponified wax25,26. The Roman architect Vitruvius, for his part, noted that Punic wax, mixed with oil, served as a coating for wall paintings, so that they would keep their colour (\textit{On Architecture} 7.9.3-4, edited in27). This has prompted art historians and conservationists to investigate whether traces of Punic waxes can be found in ancient artefacts, such as the so-called Fayum portraits28-31. Similar analyses (by gas chromatography–mass spectrometry) were carried out on residues from medicine containers from the British Museum, showing that a compartment in a four-compartment bronze cylindrical medicine box (1968, 0626.37) (fig. 1) had held wax that could have been prepared following the Punic wax process32.

Dioscorides described the properties of beeswax as follows:

\begin{quote}
δύναμιν δὲ ἔχει πᾶς κηρὸς θερμαντικήν, μαλακτικήν, πληρωτικήν τε μετρίως. μείγνυται δὲ καὶ ῥοφήμασιν ἐπὶ τῶν δυσεντερικῶν, καταπινόμενος δὲ μεγέθη κεγχριαῖα δέκα οὐκ ἐᾷ τυροῦσθαι ἐπὶ τῶν τιθηνουσῶν τὸ γάλα.
\end{quote}

Every wax has a quality that is warming, emollient, and moderately filling. It is also mixed with gruels for people suffering from dysentery and, when drunk in the amount of ten grains of millet, it prevents the milk of nurses from curdling. (\textit{On Materia Medica} 2.83.3).

The final assertion, concerning the power of wax to prevent breast milk, is perhaps surprising. It is repeated by Oribasius (\textit{Synopsis for Eustathius} 9.9.11, edited in33) and Aetius (16.38, edited in34). The Greeks and Romans believed that breast milk could turn into cheese in the breast, making it unsuitable for an infant’s consumption, as they could choke on the lumpy milk (Soranus, \textit{Gynaeology} 2.18.1-3, edited in35). Dioscorides also appears to be alone among our preserved sources to recommend wax in a gruel for people suffering from dysentery. Indeed, wax was more often applied than consumed by mouth. It entered in the composition of many pessaries, suppositories, poultices, and salves. Salves containing wax were known as cerates (κηρωτή in Greek). Numerous recipes for cerates are preserved in ancient medical writings. Perhaps the most famous was the \textit{tetrapharmakos}, a salve, which as its named indicated, contained four (tetra) ingredients: wax, bull suet, resin, and pitch (see e.g. Celsus, \textit{On Medicine} 5.19.9, edited in36). A reference to the \textit{tetrapharmakos} is also found on a papyrus letter dated to 59 CE, from a certain Chaeras to the physician Dionysius (\textit{P. Mert.} 1.12, line 24, edited in37). Most of the time, ancient medical writers did not elaborate on the methods involved in making cerates, probably because they were very familiar with them. Aetius, however, sometimes gave more detail, as in this recipe for a cerate to apply to the belly, when people suffer from fevers:

\begin{quote}
sκεπαξέ δὲ οὕτως τὴν κηροτήν· κηροῦ <ϛ ῥοδίνου <δ. τῆκε τὸν κηρὸν μετ’ ὀλίγου ροδίνου ἐπὶ διπλώ-ματος καὶ ἔπιε ἐπὶ ὕδορ ψυχροῦν καὶ ψυγέντα ἀράς τῆκε πάλιν καὶ ἔπιε καὶ μάλασσε ταῖς χερσὶ ἀποπλύνων τὸν κηρὸν τὸ ὑδάτι καὶ πάλιν τὸ τρίτον τῆκε καὶ ἐπιγέρσεις πλένε, εἶτα ἐπιβάλλει τὸ λοιπὸν τοῦ ροδίνου τῆκε καὶ ἀράς κινῶν ψύξε καὶ ἔπιε ἐν θυίᾳ καὶ λείου ἐπιστάζων ὕδωρ ὅσον ἐπιδέχεται καὶ ἀνελόμενος ἀπόθου εἰς ὕδωρ ἀλλάσσων. Prepare the cerate in this way: 6 ounces of wax; 4 ounces of rose oil. Melt the wax with some rose oil in a double pot (diplōma) and pour over cold water. While it is cooling take it, melt it again, pour over water and soften with the hands, washing the wax with the water. And again, melt for a third time and wash having poured over water. Then add the remainder of the rose oil; melt; stir; cool down and pour into a mortar. Crush it, letting the water fall in drops, as much as can be taken. Remove from the mortar and put away (Aetius 1.113, edited in 22).
\end{quote}

This four-stage process, when recreated in a simple kitchen context, led to the creation of a thick salve that could easily be applied as a poultice to the body38. Cerates were not difficult to make, but they required time and some specialist equipment in the form of a double boiler.

ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΛΗΨΗ

Ενθουσιώδεις αναφορές στο κερί και στις κηρωμένες δέλτους από τους αρχαίους ιατρικούς συγγραφείς

dosage: 6 ounces of wax; 4 ounces of rose oil. Melt the wax with some rose oil in a double pot (diplōma) and pour over cold water. While it is cooling take it, melt it again, pour over water and soften with the hands, washing the wax with the water. And again, melt for a third time and wash having poured over water. Then add the remainder of the rose oil; melt; stir; cool down and pour into a mortar. Crush it, letting the water fall in drops, as much as can be taken. Remove from the mortar and put away (Aetius 1.113, edited in 22).

This four-stage process, when recreated in a simple kitchen context, led to the creation of a thick salve that could easily be applied as a poultice to the body38. Cerates were not difficult to make, but they required time and some specialist equipment in the form of a double boiler.

Laurence Totelin

Aρχαία χρήσεις του κεριού και των κηρωμένων δέλτων από τους αρχαίους εργαλείων.
REFERENCES

12. Raeder J, Oribasii Collectionum medicarum reliquiae, libri IX-XVI, edidit J. Raeder, CMG VI 1,2 Leizpig and Berlin: Teubner; 1929.

Corresponding author:
Laurence Totelin
e-mail: totelinlm@cardiff.ac.uk