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Statistical procedures are widely used in the social sciences, as 
they provide techniques for drawing conclusions from quantitative 
data. The first part of this work isconcerned with the i business — 
insensitivity of procedures to departures from the assumptions— 
ot some classical tests. The second part is a brief and partial review 
of the modern theory of robustness of a location parameter.

I. the robustness of classical tests for means 
and variances

For many experimenters the most commonly used 
statistical tests are those for comparing sample means 
and sample variances. Sometimes, they are used 
mechanically, with little regard to whether or not the 
required assumptions are satisfied. We will give a 
brief review here of the effects on them, of depar
tures from the underlying assumptions, such as the 
effect of non-normality, the effect of inequality of 
variances and the effect of violation of the indepen
dence assumption. Any test or estimate which per
forms well under the above effects is usually referred 
to as «robust».

1. The one sample t-test

Let χ=τ5- Σ *i
i = l

_J__
n-1 Σ <Xj-x)2

be the mean and variance of a sample of n observa
tions Xj, Xj,....,xn from a population with mean μ and 
unknown finite variance σ2. Suppose we wish to test 
the null hypothesis Η0:μ=μο against Η,: μφμ,,. 
where μ0 is a specified value.

Let
s

be the test statistic. Then if the parent population is 
normal and the observations are independently sam
pled, under H0 t will follow a Student’s t-distribution 
with n-1 degrees of freedom, and the one-sample 
t-test of H0 against FL at the 100a% level of signifi
cance is to reject H0 it|t| >tn-i;a/2. where tn-i;o/2 is the 
100(1-a/2) percentile of the t-distribution with n-1 
d.f.

1.1. The effect of non-normality
If the parent population is not normal, the statistic 

t no longer follows the t-distribution. However, if n is 
large and the population has a finite variance, it fol
lows from the Central Limit Theorem (CLT) and the 
fact that s2 converges stochastically to σ2, that the 
statistic t has an asymptotic standard normal distribu
tion. Thus, for sufficiently large samples the t-test is
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robust against non-normality. But, in the case of 
small samples, the effect on non-normality is quite 
important. Table 1 shows the approximate percen
tage increase in the critical value of t at the 2i/2% 
(one-tail) significance level, when sampling from 
some «typical» non-normal populations.

Thus, positive kurtosis (γ2) has little effect. Ex
treme negative kurtosis affects the critical value of t 
for samples up to 30 but the moderate negative kur
tosis of a rectangular population ceases to have effect 
out if the sample size becomes greater than 15. The 
moderate skewness (γ^ of the skew-normal popula
tion is effective up to samples of size 50 and the 
extreme skewness of the exponential population is 
effective up to samples of size 80. Various corections 
to the standard normal Tables have been proposed 
by Geary, Gayen, Tiku and Srivastava, when popula
tion normality cannot be assumed, based on Charlier 
Differential Series, Edgeworth expansions or Her- 
mite polynomials.

1.2. The effect of departure from the 
independence assumption

Suppose that the observations xj i=l....n have a
multivariate normal distribution with E(xj)=p, 
var(x[)=o2 and p as the serial correlation coefficient. 
Then we find that for large n the statistic t will be 
asymptotically distributed as N (0,1+2p) instead of 
N(0,1). Thus, the effect of serial correlation on the 
true significance level of a two-sided t-test having a 
nominal significance level of 5 % can be very serious, 
which is shown in Table 2.

2. The two-sample t-test

Consider two populations 1,2 with means μι, μ2 
and variances σχ2, σ,2 respectively, from which we 
obtain samples of size nj. nWe wish to test the 
H0: μχ-μ: = 0 against Η,: μΓμ.^0. Then if the two 
populations are normal with the same variance σ2

and all values are independently sampled, the two- 
sample t-test is based on the statistic

which under H0 follows a t-distribution with ηχ + η -2 
d.f., where s2 is the pooled estimator of σ2. and the 
procedure for a test at the iOOcCf level of signifi
cance is to reject Ho if |tj>tni+ni-2;ct,2.

2.1. The effect of non-normality

For sufficiently large samples, the two-sample 
t-test is robust against non-normality (the other as
sumptions being satisfied). In the case of small or 
moderate sample sizes, the results of studies made by 
Bartlett, Geary, showed that in the case of unequal 
sample sizes drawn from different populations, the 
deviation of the distribution of t from its normal 
theory law may be considerable. But in cases of equal 
sample sizes, even skewness in the parents are of 
little effect and if the parents are symmetrical the test 
will be robust even for differing sample sizes.

2.2. The effect of inequality of var
iances

If the parent populations are normal, with unequal 
variances, we can see that is distributed approxi
mately for large sample sizes:

N (O,(0 + R)(R0+1) ) , R =—*- , θ=-^2
n2 σ22

TABLE 1

Parent population
5 15

Sample size 
30 50 SU

U-shaped (γ1=0, y,-l. 6 9) 100“,, 0“„ 0“„ 0"„ 0“„
Rectangular (γι=0, γ,=-1.2) 100",, 50",, 0”„ 0"„ 0"„
Exponential (γ, =2, γ.= 6) 100",, 50"„ 40"„ 20" „ 0“„
Skew-normal (γι=0. 92, γ2=0. 9) 100",, 25“„ 10" „ 0”„ 0"„

TABLE 2

Ρ : -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Sign. Level: 1.10 1 0.002 0.011 0.028 U.ooO 0.074 0.09 0.12 0.14
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Hence, apart from the case of equal sample sizes, 
(R=l) the effect of inequality of variances is very 
serious on the type I error, prob. Table 3 shows the 
effect of inequality of variances and unequal sample 
sizes on the nominal type I error prob, of 0.05, for 
large nj, n2.

worse. In spite of this feature, the distribution of the 
ANOVA F-ratio is less dependent on the underlying 
distribution because of the correlation between the 
numerator and the denominator of it, and turns out 
to be robust against non-normality (assuming equal 
variances).

TABLE 3

Θ
0 1/5 1/2 1 2 5 00

1 0.05 0.05 0.05 0.05 0.05 0.05 0.05
R 2 0.17 0.12 0.08 0.05 0.029 0.014 0.006

5 0.38 0.22 0.12 0.05 0.014 0.002 1.10-
X 1.00 0.38 0.17 0.05 0.016 1.10--s 0

3. The analysis of variance
Consider k populations with means pb and fi

nite variances σ2 ......,σ( respectively, from which
we obtain samples of size np i= 1 ,..,k. We wish to test 
the null hypothesis that all the means are equal 
against the general alternative that not all of them 
are. Then if the k populations are normal, have the 
same variance σ2 and all the observations are inde
pendent, the usual ANOVA F-test is based on the 
statistic F.

F=
B/(k—1) 
W/(N-k )

Y“' _ 2B = 2. π, ( Xj - X .)

Ν=Ση,' -=|ΣΣν *ΗγΣ*.il N I J 1 ni j

w=£

1-1 i-1

3.2. The effect of inequality of 
variances

The deviations which occur in the ANOVA F-test 
due to the above effect are usually not very serious 
when the sample sizes are equal but very serious 
when they are not. Table 4 shows the effect of un
equal variances on the prob, of type I error at nomi
nal 5% level.

TABLE 4

. of samples Ratio of sample 
variances

Sample sizes Probab. of type 
I error

3 1 ;2;3 5,5,5 .056
3,9,3 .056
7,5,3 .092
3,5,7 .040

3 1 ; 1 ;3 5,5,5 .059
7,5,3 .11
9,5,1 .17
1,5,9 .013

5 1;1;1;1;3 5,5,5,5,5 .07
9,5,5,5,1 .14
1,5,5,5,9 .02

which under the null hypothesis follows an F distribu
tion with k-i and N-k d.f., and the procedure for a 
test at the 100a% level of significance is to reject H0 
if F>Fk-l, N-k;a.

3.1. The effect of non-normality
If all populations are not normal (the other as

sumptions holding) Β/σ2 and W/σ2 no longer follow 
χ2 distributions nor they are independent, and as the 
sample sizes increase the situation of the latter gets

Thus, for two of three lines of the Table, if not for all 
three, when the sample sizes are equal, the deviations 
can be considered bearable. However, this cannot be 
said for the other eight lines where the sample sizes 
are unequal. A common practice in using the 
ANOVA F-test has been to test first the assumption 
of equality of variances, before conducting the test. 
But this is not recommended. The result is to mask 
differences when they exist if γ2<0 and to find when 
none exist if γ2>0. When the samples are of unequal 
size and differences in variances might occur, it 
would seem logical to replace the ANOVA F-test by
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an alternative criterion proposed by Welch and 
James in 1951. The last one is robust to inequality of 
variances and almost certainly to non-normality also.

While tests on means are robust or moderate 
robust, tests on variances are extremely non-robust. 
For that, various alternatives have been proposed.

4. The χ2 test on a single variance
Consider a population with unknown mean and 

finite variance from which we take a sample of size n. 
We wish to test the null hypothesis Η0:σ2= σ2 
against the general alternative, where 05 is a 
specified value. Then if the parent population is nor
mal and the observations are independent, the test 
statistic used is

σο

which under H0 has a χ2 distribution with (η-1 ) d.f. 
and the usual procedure for a test at the 100 a% level 
is to reject H0 if V>X2(n.1);a/2 or if V<X2(n.1);1_a/2

4.1 The effect of η ο η - η o r m a 1 i t y

It can be easily proved that the size of the test 
based on the statistic V will be different from the 
nominal level of significance if γ2 differs greatly from 
zero. Thus, the effect of non-normality is very seri
ous, and the test not robust. Table 5 shows for a sig. 
level of 0.05, the actual probability of type I error for 
the usual two-tailed test.

5. Tests for the equality of several variances

Suppose we have k independent samples from 
populations with unknown means and finite vari
ances of,....σ^, and that we wish to test
Η0:σϊ = ...=σ2κ against the general alternative that 
not all the of are equal. The assumptions made here 
are that the populations are normal and that all the 
observations are independent.

5.1 The effect of non-normality

The standard test for the equality of two variances 
is the F test, based on the ratio of the sample vari
ances, which is extremely non-robust to non
normality. The standard test for the equality of sev
eral variances is Bartlett’s test, which is also not 
robust (see Box (1953)). The alternatives which have 
been proposed to them are Scheffé’s X2-test, the Box 
test, the Box-Andersen test, the Jackknife test and 
the Levene’s test (see Miller (1968)). We will only 
give a short comparison of them. For large samples 
the efficacies for the Box-Andersen test, Levene’s, 
and Jackknife are identical and asymptotically more 
efficient than all the other tests. For small samples, 
Monte-Carlo studies have been carried out to com
pare their power functions. The results were that the 
F-test is non-robust. Its actual significance level 
under the null hypothesis is much smaller than the 
nominal value a for short-tailed distributions 
(uniform) and much larger than a for long-tailed dis
tributions (double-exponential). Under H0 the Bart
lett test gives too few significant results for the un
iform distribution (γ2=-1.2) and too many for the 
double exponential. The Box-Andersen test and the 
Jackknife with m=l (where m is the size of the n 
groups in which we divide the data) have about the 
same power and together with Scheffé’s X2-test are 
the most powerful tests. Box-Andersen has slightly 
better power for u=0.05 level tests while the Jack
knife is slightly better for a=.01 level tests. The Box 
test is tobust with respect to sign, level but its power 
is not as good as Box-Andersen or the Jackknife 
test.

In connection with part II the main effect of actual 
contamination is not considered for all the previous 
tests.

II. the modern theory of robust estimation, and 
robustness of a location parameter

Statistics like other bodies of scientific knowledge 
and technique, can undergo revolutions in both 
thought and practice. «There is no such thing as a 
universally applicable and acceptable method of 
going about doing science or statistics» (Irvine, Miles 
and Evans, 1979). By 1960 statisticians had recog
nized that:
— one never has a very accurate knowledge of the 
true underlying distribution;

TABLE 5

72: ' -1.5 -1 -0.5 0 0.5 1 2 4 7
Prob: 9.10'5 0.006 0.024 0.05 0.08 0.11 0.17 0.26 0.36
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—the parametric models are never strictly true. The 
main reasons for that are: (i) the occurrence of 
«gross errors» either as clear outliers or as «hidden 
contamination» (5-10% wrong values exist, almost in 
any data set); (ii) that the parametric model is only 
an approximation of the true underlying chance 
mechanism. Samples of thousand of data in as
tronomy, w hich should follow' the normal law of error 
are mildly but definitely leptokurtic. Geary in i 947 
was proposing to write in all new text-books that: 
«Normality is a myth; there never was and never will 
be a normal distribution».
— the performance of some classically optimal pro
cedures is inefficient under small deviations from a 
strict parametric model, (e.g. the arithmetic mean 
being worse than the median in the presence of very 
mild outliers).

Robust estimation comes to consider all the above. 
«As the main aim of robust estimation, we can con
sider building in safeguards against unsuspectibly 
large amounts of gross errors, putting a bound on the 
influence of hidden contamination and questionable 
outliers, isolating clear outliers for separate treat
ments and still being nearly optimal at the strict 
parametric model. Robust are all the old methods, 
but modified a little, with sensible looking at the 
data» (Hampel, 1973).

1. Some examples of robust estimators of location

There are three main methods for constructing es
timators of location (see Huber (1968)): (i) max
imum likelihood type estimators; (ii) estimators 
based on linear combinations of order statistics; (iii) 
estimators derived from rank tests.

Maximum likelihood estimators are the solutions T 
of an equation of the form

Σ ψ
1=1

= 0

where ψ is an odd function and s is a measure of 
spread, either estimated independently or simultane
ously from another equation. One estimator of this 
type is Huber’s M-estimators, where

z <— k
—k 4 z ^.k 

z > k 0 < k < oc

Another estimator of this type, due to Hampel, is the 
three-parts descending M-estimators, where

ψ (z)—sign(z)

c-b

°<|z|<a 

a^. I z I < b 

b< |z|<c 

|z|>c

a=2.5, b=4.5, c=9.5 (estimate 25A) or a=1.2, 
b=3.5, c=8.0 (estimate 12A)

Estimators based on linear combination of order 
statistics are the g-trimmed mean (0<g< 1 /2) which 
deletes the gn smallest and largest observations of the 
ordered sample before taking the mean. Thus the 
effect of outliers may be considerably reduced. It is 
defined as:

( f n ( 1 - g )]

π <1-2g)

+ (l-ng + [n9])(*([ng)+i)+X([n(l g)>l))

The 0-trimmed mean is the sample mean which is the 
worst estimate when outliers exist. The 0.5 0-trimmed 
mean is the median, the most robust estimator being 
least affected by gross errors but non- robust when 
grouping effects are considered. Another estimator 
of method (ii) is the g-Winsorized mean which is cal
culated by taking the mean of those values which 
result from replacing the g most extreme values at 
each end by the next most extreme value, and taking 
the mean of the modified sample. It is defined as:

/ ητΜ
([gn] x[gnj +Y x(i)+ [gn] xn_|gn]+1 )

i=fgn|+i /

Ì42
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Winsorization treats extreme values as though they 
were not so extreme and the effect of those values is 
not eliminated as happens with trimming.

An estimator based on rank tests is the Hodges- 
Lehmann estimator, derived from the non para
metric Wilcoxon (Mann-Whitney) test, which can 
be defined as the median of all pairs of observati
ons,

M_ med (x, + xj) 
i<j 2

If we want to choose between different robust 
competitors to a classical procedure, we have to 
make precise the goals we want to achieve. Accord
ing to Huber (1972) untortunately we can find five or 
six conflicting goals:
(i) a robust estimator should possess a high absolute 
efficiency for all suitably smooth shapes F(the under
lying distribution).
(ii) a robust estimator should possess a high effi
ciency relative to the sample mean, and this for all F.
(iii) a robust estimator should possess a high abso
lute efficiency over a strategically selected finite set F 
of shapes e.g. normal, logistic, double exponential. 
Cauchy, and rectangular shapes.
(iv) a robust estimator should possess a small asymp
totic variance over some neighborhood of one shape, 
in particular of the normal.
(v) the distribution of a robust estimator should 
change little under arbitrary small variations of the 
underlying distribution F, and this uniformly in the 
sample size n.

Concerning the goal (i) Takeuchi (1971) proposed 
an estimate which involved estimating the minimum 
variance unbiased linear combination of order statis
tics from a subsample of size k. The expected value of 
this linear combination under all permutations was 
then calculated as the estimate. As for (ii), Bickel 
(1965) proposed the Hodges-Lehmann estimate as 
the safest one. Concerning (iii), studies were made by 
Crow and Siddiqui, and Birnbaum and Miké, but 
while this goal is attractive for small samples, is 
dangerous as an independent goal for optimization. 
As for (iv), Huber (1964) justifies it by arguing that 
we usually have quite a good idea of the approximate 
shape of the true distribution, so that we can consider 
the neighborhood of only one shape. He constructed 
his M-estimators using as a measure of robustness for 
asymptotically normal estimators/the supremum of 
the asymptotic variance when F ranges over some 
suitable set of underlying distributions, in particular 
over the set of all F=(l-s)0+eG (this model arises 
for instance if the observations are assumed to be 
normal with variance 1, but a fraction ε of them is 
affected by «gross errors»). Hampel (1968) intro

duced the goal (v) studying the stability aspects of 
robustness. He introduced the notions of influence 
curve1 and qualitative robustness.2 and developed 
the requirements that a robust estimator should pos
sess:
— they should react little to small perturbations 
—corresponding to qualitative robustness—and they 
should be safe in the presence of large contamination 
(or many gross errors)—corresponding to a high 
breakdown point.3
— they should keep a bound on the maximal relative 
influence of any fixed amount of contamination— 
corresponding to a low gross-error sensitivity.4
— they should react smoothly to rounding and 
grouping and they should separate extreme observa
tions from the bulk of the data—meaning a low rejec
tion point.'

Hampel (1974) constructed a class of estimators to 
possess all the above properties and at the same time 
rather high efficiency at the normal distribution, cal
led the three-parts descending M-estimators 
(estimates 25A and 12A in Table 6).

2. Concluding remarks

The question of which estimator to choose, does 
not have a simple answer. A year-long research 
seminar was held in 1971 at Princeton, on the 
robustness of a location parameter. About 70 es
timators were studied, their Monte-Carlo variances, 
influence curves, etc. under about 20 different distr
ibutions. Table 6 shows the Monte-Carlo variances 
of some estimators, mentioned here, under different 
distributions. The main results were that the mean is 
the worst estimate, being very sensitive to outliers, 
while the three parts descending M-estimators are 
the best, especially for the case of poorly specified

1. The influence curve is the derivative of an estimator 
(functional) T on the space of prob, distributions at some distribu
tion F. and measures the change of the estimate caused by an 
additional observation x.

Τ(( 1 —t)F + εδχ)—T(F)
ICTF(x)=lim ---------------------2------------

ε—-ο ε

2. Qualitative robustness — small change of the estimate with 
small change of the model— is described by continuity of the 
estimator with respect to the Prochorov metric. The Prochorov 
distance takes care of a small fraction of arbitrary gross errors, of 
rounding and grouping effects.

3. The breakdown point tells us the fraction of gross errors 
needed until the estimator becomes completely unreliable.

4. The gross error sensitivity—the supremum of the absolute 
value of the influence curve—measures the worst approximate ef
fect which a fixed amount of contamination can have on the value 
of the estimator.

5. The rejection point tells whether an estimator rejects out
liers, and at what distance.
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TABLE 6

Monte-Carlo variances of n Tn for selected estimates and distributions, sample size n =--20

N(0,1) (n-p)N(0,l)+pN(0,9)

p=l p=3 p=5

18N(0,1)

2N(0,100)
( 1 -ε)Ν (0,1 ) + πΝ/U*

ε=0.1 ε=0.25

mean 1.00 1.40 2.20 3.00 10.90
g=0.05 1.02 1.16 1.64 2.27 2.90 1.47 3.84

trimmed g=0.1 1.06 1.17 1.47 1.93 1.46 1.26 1.81

mean g-0.15 1.10 1.19 1.44 1.80 1.43 1.26 1.64
median 1.50 1.52 1.75 2.16 1.80 1.64 1.94

k=2.0 1.01 1.17 1.66 2.30 1.78 1.30 2.17
Huber k= 1.5 1.04 1.16 1.49 1.96 1.50 1.24 1.74
prop. 2 k= 1.0 1.11 1.21 1.44 1.78 1.43 1.26 1.62

Hodges-Lehmann 1.06 1.18 1.50 1.88 1.52 1.26 1.70
Takeuchi 1.05 1.19 1.53 2.02 1.32 1.22 1.60

Hampel 25A 1.05 1.16 1.49 1.94 1.26 1.19 1.59
Hampel 22A 1.20 1.26 1.47 1.78 1.32 1.30 1.56

*N/U denotes the distribution of the quotient of a normal (0,1) variable divided by a uniform (0,1) variable.

and possibly long-tailed situations. In more specified, 
approximately normal cases use the g-trimmed mean 
(g=0.1 or 0.15) or Huber M-estimators. Later, 
Tukey compared rejection rules with robust es
timators. He found that when «gross errors» were 
very clear, hard rejection procedures did as well as 
robust estimators, but when the distinction between 
«good» and «bad» observations was more difficult, 
the rejection procedures were much inferior to 
robust estimators.

Research is continued to robustify regression, 
analysis of variance, time-series problems, etc. Some 
robust methods that good practical statisticians were 
applying before, are justified now by theory. In con
nection with computers, Tukey considers robust 
statistics as the «third-generation statistics» after 
parametric and non-parametric statistics.
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