New records of aphid species (Hemiptera: Aphididae) in Greece

Papapanagiotou A. Laboratory of Crop Protection, Department of Greenhouse Crops and Floriculture, Technological Institute of Messolonghi, Nea Ktiria, 302 00, Messolonghi, Greece

Nathanailidou M. Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 384 46 Nea Ionia, Volos, Greece

Taylor M. AgroEcology, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK

Zarpas K. Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 384 46 Nea Ionia, Volos, Greece

Voudouris K. Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 412 21 Larissa, Greece

Tsitsipis J. Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 384 46 Nea Ionia, Volos, Greece & Present Address: Mainalou 4, 152 35 Vrilissia, Athens, Greece

Margaritopoulos J. Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 412 21
To cite this article:

New records of aphid species (Hemiptera: Aphididae) in Greece

A.P. PAPAPANAGIOTOU¹, M. NATHANAILIDOU², M. TAYLOR³, K.D. ZARPAS², K. VOUDOURIS⁵, J.A. TSITSIPIS²,⁴ AND J.T. MARGARITOPOULOS⁵*

¹Laboratory of Crop Protection, Department of Greenhouse Crops and Floriculture, Technological Institute of Messolonghi, Nea Ktiria, 302 00, Messolonghi, Greece
²Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 384 46 Nea Ionia, Volos, Greece
³AgroEcology, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
⁴Present Address: Mainalou 4, 152 35 Vrilissia, Athens, Greece
⁵Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 412 21 Larissa, Greece

ABSTRACT

Several papers have been published on aphid fauna in Greece during the last two decades, but the number of recorded species is still low compared to other European countries, including some from the Mediterranean basin. In this context, we collected aphids from various host-plants and regions in southern, central and northern Greece characterized by diverse flora, climatic conditions and ecological habitats. In total, 128 aphid species belonging to 55 genera and six subfamilies were collected on 200 host-species. Most of the species dominated the subfamily Aphidinae (especially tribes Macrosiphini and Aphidini). Among the species collected, 18 were new records in Greece. The present work improves our knowledge regarding the aphid fauna of Greece and suggests that the number of recorded species could increase further if additional studies were undertaken.

KEY WORDS: Aphidoidea, aphid fauna, Greece.

Introduction

Aphids (Hemiptera: Aphidoidea) are small-sized plant-sucking insects. They make up an insect group with interesting characteristics such as cyclical parthenogenesis (alternation of sexual and asexual reproduction), loss of sexual reproduction, polyphenism (i.e. different morphs produced by a single aphid genotype), close association with host-plants, important virus-vectors and worldwide distribution. These traits make aphids an ideal study model. Aphids are not considered a species rich group when they are compared to other hemi- or holometabolous insect groups (e.g. the number of species of
grasshoppers and weevils are approximately 3- and 12-fold higher than aphids; Dixon 1998). The known world aphid fauna consists of 4358 species placed in 510 genera (Blackman and Eastop 1994, 2000, 2006; see also the updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012). About 450 species have been recorded from crop plants, but only about 100 species are economically important agricultural pests (Blackman and Eastop 2007).

The study of the Greek aphid fauna is fairly limited. Until the early 90s 195 aphid species had been recorded. Later, an almost ten-year survey, based on Rothamsted suction and Moericke traps, increased our knowledge on the Greek aphid fauna substantially. The recorded species reached 300 (Tsitsipis et al. 2007). In this paper *Aphis fabae solanella* Theobald (Hemiptera: Aphididae) was reported as subspecies, but Blackman and Eastop (2006) have proposed that this taxon is elevated to species (*Aphis solanella* Theobald) (see also Thieme and Dixon 2004 and Blackman and Eastop 2007). In addition, a recent study on the *Hyalopterus pruni* complex (Hemiptera: Aphididae) (Lozier et al. 2008) proposed the species status for *Hyalopterus amygdali* B that has been also recorded in Greece (Poulios et al. 2007). Therefore, the total number of recorded aphid species was 302 in Greece at that time. All but one of these species belong to the family Aphididae which is represented by 13 subfamilies and 120 genera. The remaining species belong to the family Phylloxeridae. Kavallieratos et al. (2007) made a survey of aphid species on cultivated and non-cultivated plants in various regions in Greece. The comparison of their data with the check-list provided by Tsitsipis et al. (2007) results in 13 additional species, all of them belonging to the family Aphididae. Therefore, the recorded aphid species in Greece amount to 315. Regardless of these efforts, the number of species recorded is much lower than that in other European countries. In a review, Patti and Bar-bagallo (1998a, see also references there in) reported that the number of species recorded in European countries, including some from the Mediterranean basin, ranged from about 600 to 850, although some of the data reviewed were rather old. According to the Fauna Europaea project (Fauna Europaea 2012) the number of species in some Mediterranean or Balkan countries (and regions) are: Bulgaria 419, Corsica 163, Italian mainland 649, Sardinia 173, Sicily 382 (Italy total: 860 Barbagallo et al. 2011), Spanish mainland 603 and Yugoslavia 344 (total 1373 species in Europe). These data suggest that the knowledge on the Greek aphid fauna would have been richer had there been more studies and surveys performed. In this context, we collected aphids from various host-plants and regions in southern, central and northern Greece which are characterized by diverse flora, climatic conditions and ecological habitats.

Materials and Methods

Approximately 700 samples of leaves or young shoots infested by aphids were collected from various host-plants and regions (altitude 0-800 m) in south (Agrinio, Argos, Messolonghi and Patra), central (Volos, various sites in Pelion Mountain), and north (Thessaloniki, Veroia, Katerini, Nea Moudania in Chalkidiki Peninsula) Greece during the growing season (spring, summer and autumn) of the years 2003-2008 (Fig. 1).

Each sample was placed inside a self-sealing plastic bag containing a piece of paper towel to absorb excessive moisture. The samples were put in insulated plastic containers, containing frozen ice packs, and transferred to the laboratory. In the laboratory wingless females from each sample (along with winged females in some cases) were stored in vials filled with two volumes of ethanol (95%) and one volume of lactic acid 75% w/w (Eastop and van Emden 1972) until species identification. Permanent microscope slides of aphids were prepared accord-
The identification of the aphid species was based mostly on the keys described by Blackman and Eastop (1994, 2000, 2006, updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012). Additional information, when required, was obtained from the keys by Jacky and Bouchery (1980), Taylor (1984), Stroyan (1984), Heie (1986) and Remaudière and Seco Fernandez (1990). The identification of the members of H. pruni complex was based on the keys of Lozier et al. (2008) and the application of multivariate morphometric methods (Poulios et al. 2007).

The classification system in the present paper follows the one used by Blackman and Eastop [1994, 2000, 2006, updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012; see also the online taxonomic database “Aphid Species File” by Favret (2012)] and Remaudière and Remaudière (1997). Permanent slides of the collected aphids are kept in the aphid collection of the last author in the Department of Biochemistry & Biotechnology, University of Thessaly, Greece. Preserved aphid material is also stored in the collection of the first author at the Department of Greenhouse Crops and Floriculture, Technological Institute of Messolonghi, Messolonghi, Greece.

Lastly, the identification of plant species was based on Tutin et al. (1964, 1968, 1972, 1980).

Results and Discussion

A total of 128 aphid species belonging to 55 genera, were identified among the samples collected from 200 host-species. Of these hosts, 91 were cultivated species of economic importance (crops, trees, ornamentals) and the remaining non-cultivated (herbs, weeds or forest tree species). Table 1 provides statistics on the plant species and families that were surveyed in three large geographical regions of Greece as well as on the aphid species and higher taxonomic categories identified. A total of six aphid subfamilies were recorded, although the aphid fauna is dominated by the subfamily Aphidinae (Aphidinae: 102 species, Calaphidinae: 8 species, Chaitophorinae: 5 species, Eriosomatinae: 10 species, Lachninae: 2 species, Thelaxinae: 1 species). The same trend was observed in each of the three regions surveyed, with the percentage of the Aphidinae species being 89.4, 78.9 and 81.7 % in south, central and north Greece respectively. Macrosiphini was the predominant tribe followed by Aphidini in the total sample (47.3 and 31.8 % respectively) and in each of the three regions surveyed (south Greece: 57.4 and 31.9 %; central Greece: 42.1 and 36.8 %; north Greece: 47.9 and 33.8 %) (Table 2).

Eighteen of the 128 aphid species identified in the present study were new records in Greece. These species are: Aphis balloticola Szelegiewicz, Aphis brotericola Mier Duarte, Aphis confusa Walker, Aphis lambersi (Börner), Aphis spiraeaphaga Müller, Aphis tormentillae Passerini, Brachyunguis tamaricis (Lichtenstein), Dysaphis devecta (Walker), Dysaphis lappae (Koch) [particularly the subspecies D. lappae cynarae (Theobald)], Hyadaphis passerinii (del Quercio), Macrosiphum knautiae Holman, Monellia caryella (Fitch), Pemphigus bursarius (L.), Pemphigus sprothecae Passerini, Pemphigus vesicatorius Passerini, Tinocallis takachihoensis Higuchi, Uroleucon carthami (Hille Ris Lambers) and Uroleucon nigrocampanulae (Theobald) (Table 3). General features of these 18 species are summarized below. The complete check-list of the aphid species identified in the present study is not presented here as this information is beyond the purpose of the present paper. The list is available from the authors upon request.
FIG. 1. Sampling sites in Greece. South Greece: 1 Argos, 2 Patra, 3 Messolonghi, 4 Agrinio, Central Greece: 5 Pelion Mountain, 6 Volos, North Greece: 7 Kitros, Katerini, 8 Veria, 9 Thessaloniki, 10 Nea Moudania, Chalkidiki.

TABLE 1. Summary statistics of the number of plant species surveyed and the aphid species identified in south, central and north Greece.

<table>
<thead>
<tr>
<th>Region</th>
<th>Plants</th>
<th>Aphids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Species</td>
<td>Families</td>
</tr>
<tr>
<td>South Greece</td>
<td>53</td>
<td>25</td>
</tr>
<tr>
<td>Central Greece</td>
<td>121</td>
<td>43</td>
</tr>
<tr>
<td>North Greece</td>
<td>92</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>57</td>
</tr>
</tbody>
</table>
1. **Aphis (Aphis) balloticola** Szelegiewicz, 1968 (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are dark gray-blue to mottled green. The aphid is found on stems and abaxial leaf surface of *Ballota nigra* L. causing slight downward leaf curling in early summer (Stroyan 1984). It has been also recorded from *Dracocephalum nutans* L. and *Marrybium* spp. The species is non-host alternating (monocious), holocyclic (cyclical parthenogenesis) with winged males (Börner 1950). It has been recorded throughout Europe (except Scandinavia), Morocco, and eastward to Crimea, Iran and Turkey. The aphid is a member of the *Aphis frangulae* Kaltenbach complex (Blackman and Eastop 2006).

Material examined: adult wingless females from *B. nigra*; sampling site: Thessaloniki, North Greece; collected in June 2007.

2. **Aphis (Aphis) brotericola** Mier Durante, 1978 (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are black, sometimes dusted with gray wax powder. The aphid builds dense colonies on leaves of *Euphorbia* spp. In Spain the species has been characterized as monocious, holocyclic with winged males (Garcia Prieto et al. 2001). It has been recorded in Spain, Italy (Barbagallo and Patti 1998), France, Turkey and Morocco (Blackman and Eastop 2006).

Material examined: adult wingless females from *Euphorbia dendroides* L., sampling site: Aghios Georgios, Pelion Mountain, Central Greece; collected in May 2003.

3. **Aphis (Aphis) confusa** Walker, 1849 (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are pale yellow, yellowish green, green or dark green. The species is widely distributed in Europe. It is monocious, holocyclic with wingless males and it hosts *Knautia* and *Scabiosa* species. It is found as larger green or dark green aphids on upper parts of stems and inflorescences, while in summer as smaller yellow or yellowish green specimens mainly on undersides of lower leaves or on roots. It is ant-attended (Heie 1986, Blackman and Eastop 2006).

Material examined: adult wingless females from *Knautia arvensis* L.; sampling site: Volos, Central Greece; collected on May 2003.

4. **Aphis (Aphis) lambersi** (Börner, 1940) (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are dark green to almost black. The species is widespread throughout Europe. It is monocious holocyclic with apterous males found on lower parts of stems, basal leaf sheaths and root collar of *Daucus carota* L. (Heie 1986, Blackman and Eastop 2006). The aphid has been also recorded on *Conopodium majus* (Gouan) (Nieto Nafria et al. 2005). It is ant-attended.

Material examined: adult wingless females from *D. carota*; sampling site: Lehonia, Pelion Mountain, Central Greece; collected in May 2003.

5. **Aphis (Aphis) spiraephaga** Müller, 1961 (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are dark greyish brown, often with irregular dorsal colour pattern, with transverse dorsal bands of wax and dark appendages. The species *A. spiraephaga* lives in dense colonies on young shoots of *Spiraea* spp. It has been recorded also from *Epilobium* spp. (Holman 1990) and other genera in various plant families (*Arabis, Carum, Erica, Filipendula, Helichrysum, Symphoricarpus, Trinia* and *Valeriana; Müller 1987*). The species has been recorded in several European countries, Western Siberia and Mongolia (Heie 1986). It is monocious, holocyclic with winged males (Blackman and Eastop 2006).

Material examined: adult wingless females from *Spiraea* sp.; sampling site: Thessaloniki, North Greece; collected in May 2006 and May 2007.

Wingless parthenogenetic females are blackish green or black. The species is distributed throughout Europe. It is monoecious, holocyclic with winged males and it hosts *Potentilla* spp., especially *erecta*. The aphids are found on stems, petioles and undersides of leaves. It is usually not ant-attended (Heie 1986, Blackman and Eastop 2006).

Material examined: adult wingless females from *Potentilla reptans* L.; sampling site: Lechonia, Pelion Mountain, Central Greece; collected in May 2003.

7. *Brachyunguis (Brachyunguis) tamaricis* (Lichtenstein, 1885) (Aphidinae: Aphidini - Aphidina)

Wingless parthenogenetic females are velvety grey-green, development of wax dust may depend on age and microclimate. Colonies on twigs are inconspicuous, resembling small leaves or leaf-scales of the host plant. Colonies may be attended by ants. The species *B. tamaricis* infests *Tamarix* spp. and it is recorded in South and Central Europe, North Africa, South-west and Central Asia. The species is monoecious, holocyclic [updated version of Blackman and Eastop (1994, 2006) available online at www.aphidsonworldsplants.info, accessed 15 December 2012].

Material examined: adult wingless females from *Tamarix* sp.; sampling site: Messolonghi, South Greece; collected in May 2006.

8. *Dysaphis (Dysaphis) devecta* (Walker, 1849) (Aphidinae: Macrosiphini)

The aphids roll and redden the edges of the leaves of *Malus* spp. forming galls in spring. The galls contain both wingless and alatiform parthenogenetic females. The former are bluish-grey wax-powdered while the latter dark green to reddish with different degrees of pigmentation and sclerotisation of head and thorax (Blackman and Eastop 2006). It is a monoecious species, with a life cycle of only 3-4 generations. Oviparae (sexual females) and winged males are also produced within the galls (Hille Ris Lambers 1945, Forrest 1970). The species is found in Europe (Blackman and Eastop 2006) and also recorded from China (Zhang et al. 1990).

Material examined: adult wingless females from *Malus domestica* Borkhausen; sampling site: Kitsos, Katerini, North Greece; collected in May 2006.

9. *Dysaphis (Dysaphis) lappae* (Koch, 1854) (Aphidinae: Macrosiphini)

Wingless parthenogenetic females are dirty olive greenish to brownish, sometimes with a purple tinge. Older adults may have yellowish margins on abdomen. The species builds colonies on stem bases, root collars and roots of *Arctium* spp. and it has been also recorded from *Petasites albus* (L.). The colonies are ant-attended. The aphid is distributed in Europe, Transcaucasia, Central Asia and Western Siberia, also in North Africa (Egypt, Eritrea), and has been introduced to Brazil (ssp. *cynarae*). It is monoecious, holocyclic on *Arctium*, with winged males (Blackman and Eastop 2006). There are very similar aphids on *Cirsium arvense* (L.) in Europe and on *Cynara* spp. in the Mediterranean region which are currently classified as subspecies, *D. lappae* ssp. *cirsii* (Börner) and *D. lappae* ssp. *cynarae* (Theobald) respectively (Blackman and Eastop 2006). Colonies of *D. lappae* ssp. *cirsii* are reportedly not ant-attended (Stroyan 1963). In Sicily, ssp. *cynarae* is apparently anholocyclic on *Cynara scolymus* L. and anholocyclic populations have also been found on *Notobasis syriaca* (L.) (formerly *Cirsium syriacum*), *Galactites tomentosa* (L.) (formerly *Lupsia galactites*) and *Silybum marianum* (L.) (Barbagallo 1974).
Material examined: adult wingless females from *C. scolymus*; sampling site: Argos, South Greece; collected in May 2007.

10. *Hyadaphis passerinii* (del Quercio, 1911) (Aphidinae: Macrosiphini)

Wingless parthenogenetic females are greyish green or light green with dark appendages. On its primary hosts *Lonicera* spp. infestations cause upward leaf curling in spring. The species migrates to various Apiaceae, particularly *Daucus* and also *Conium* and *Pastinaca*, colonizing stems, leaves and inflorescences. It reproduces parthenogenetically the year round on Apiaceae in warmer climates. It is recorded from Europe, especially the South, Mediterranean region, Middle East, Pakistan, India, and also introduced to Southern Africa, Australia, New Zealand, North and South America (Blackman and Eastop 2006).

Material examined: adult wingless females from *Lonicera* sp.; sampling site: Thessaloniki, North Greece; collected in April 2008.

Wingless parthenogenetic females are yellowish green to grass-green, rarely pinkish, with dark head and thorax and black siphunculi. The aphid builds colonies on abaxial leaf surface and shoot apices of *Knautia* spp. A monoecious, holocyclic species with oviparae and winged males appearing in October (Blackman and Eastop 2006).

Material examined: adult wingless females from *Knautia* sp.; sampling sites: Messolonghi, South Greece and Nea Mouданia, Chalkidiki, North Greece; collected in May 2006 and June 2007 respectively.

The parthenogenetic females are winged, pale lemon-yellow to greenish yellow with banded antennae. Seasonal variation in colour patterns. The generations from midsummer to autumn bear a continuous broad black band running around front and sides of head and down sides of body as far as the third abdominal tergite, and a broad brown-black band along the anterior margin of the forewing. It infests leaves of *Carya* spp., especially *Carya illinoensis* (Wangenhi) and *C. cordiformis* (Wangenhi) [updated version of Blackman and Eastop (1994, 2006) available online at www.aphidsonworldsplants.info, accessed 15 December 2012]. The species is monoecious, holocyclic and the sexual morphs occur from mid-October to early December (Mansour and Harris 1988). It is widespread in USA (Bissell 1978), Ontario, Canada and introduced into Israel (Mansour and Harris 1988), Spain (Nieto Nafria and Mier Durante 1998) and Argentina (Ortego et al. 2004). In Israel it is a serious pest of pecan.

Material examined: adult winged females from *C. illinoensis*; sampling site: Thessaloniki, North Greece; collected in August 2008.

The species is heteroecious, holocyclic with the sexual phase on *Populus* spp. (mostly on *Populus nigra* L.) but anholocyclic (parthenogenetic) overwintering on roots of secondary hosts is common. The fundatrix makes galls (yellowish or reddish when mature, purse-shaped) on leaf petioles. The fundatrix is greyish green, slightly wax-dusted and produces winged females that leave the gall from late May to September (peak emergence late June-July in northern hemisphere) and migrate to make colonies on roots of various Compositae (e.g. *Cichorium*, *Lactuca*, *Lampsana*, *Sonchus*, *Taraxacum*, *Tussilago*). In the root-feeding colonies the wingless females are yellowish white.
with a tuft of white wax on the posterior part of the abdomen and the winged females (sexuparae) have a brownish orange abdomen. The return migration of sexuparae to *Populus* takes place in October-September. The species is found in Europe, Western and Central Asia, North and Southern Africa, North and South America, and (perhaps) Australia and New Zealand. The aphid colonies are not attended by ants [Blackman and Eastop (1994, 2006) and updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012].

Material examined: winged females and galls from *P. nigra*; sampling site: Katighorhis, Pelion Mountain, Central Greece, collected on June 2004.

Fundatrix make galls on petioles of *P. nigra* leaves, which are green, reddish or yellowish, smooth, formed by thickening, flattering and spiral twisting of the petiole. Fundatrix is pale green, giving rise to second generation wingless females within the gall. The species is monoecious holocyclic and winged sexuparae emerge in August-November to produce sexuals on the bark of the trees (Lampel 1960). First instar nymphs with thick forelegs function as soldiers and defend the gall against predators (Aoki and Kurosu 1986, Foster 1990), repair the gall (Pike and Foster 2004) and remove wax-coated droplets of honeydew (Pike et al. 2002). The species is widely distributed in Europe, in North Africa (Tunisia), Western Siberia, Pakistan and introduced into Canada [Blackman and Eastop (1994) and updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012].

Material examined: winged females and galls from *P. nigra*; sampling site: Katighorhis, Pelion Mountain, Central Greece; collected in June 2004.

15. *Pemphigus* (*Pemphigus*) *vesicarius* Passerini, 1861 (Eriosomatinae: Pemphigini)

It is a holocyclic, heteroecious species and the fundatrix makes galls on leaves of *P. nigra* which originate from the mid-rib at the base of the upper side of the leaf. The developed galls are irregular pale green structures with many tubular outgrowths. The fundatrix is dark slate-grey to blue-black. The winged females leave the gall in May-June and migrate to *Colutea arborescens*. Colonies are found on the stems and basal parts of this plant. The wingless females secreting wax and winged sexuparae are produced in October and return to *Populus*. The species is distributed in Southern Europe, Algeria, South-West and Central Asia, Afghanistan and India [Blackman and Eastop (1994, 2006) and updated version available online at www.aphidsonworldsplants.info, accessed 15 December 2012].

Material examined: winged females and galls from *P. nigra*; sampling site: Katighorhis, Pelion Mountain, Central Greece; collected in June 2004.

All viviparous females are winged, pale yellow-green with shiny black head and thorax, black distal section of hind femur and base of hind tibia and black markings on the wings (Moritsu 1983). The species is recorded from *Ulmus* spp. in Japan (Higuchi 1972), China (Tao 1999), and eastern Siberia as *Tinocallis ussuriensis* Pashtshenko (Pashchenko 1988), and also from *Hemiptelea davidii* (Hance) in China as *Tinocallis hemipteleae* Zhang (Zhang and Zhong 1980). It has been introduced to Europe, where it is recorded from *Ulmus* spp. in southern France (Quednau and
TABLE 2. Summary statistics of the number of aphid species identified in south, central and north Greece.

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Subtribe</th>
<th>South Greece</th>
<th>Central Greece</th>
<th>North Greece</th>
<th>All regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphidini</td>
<td>Aphidina</td>
<td>13</td>
<td>20</td>
<td>19</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Rhopalosiphina</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Chaitophorini</td>
<td></td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Eriosomatini</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Eulachnini</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fordini</td>
<td></td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lachnini</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Macrosiphini</td>
<td>Myzocallidina</td>
<td>27</td>
<td>32</td>
<td>34</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Panaphidina</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Panaphidina</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Pemphigini</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Siphini</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thelaxini</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Shaposhnikov 1988), Germany, Sicily (Patti and Barbagallo 1998b), Andorra (Mier Durante and Perez Hidalgo 2002), Malta (Mifsud et al. 2009), and to USA (first record 1996, Footit et al. 2006). In England it has been collected outdoors on Ulmus glabra Hudson (Döring 2007). Winged males and oviparae occur in Sicily from mid-October (Patti and Barbagallo 1998b).

17. *Uroleucon* (Uromelan) *carthami* (Hille Ris Lambers 1948) (Aphidinae - Macrosiphini)

According to Blackman and Eastop (2006) the color of wingless parthenogenetic female has not been reported and that they are probably reddish brown to blackish brown. In our sample the females were dark brown to blackish brown. The species colonizes *Carthamus* spp. and it is found in South and Central Europe, Israel, Turkey, and eastward to Pakistan and India. Sexual morphs and the life cycle of the species are still unknown (Blackman and Eastop 2006).

Material examined: adult wingless females from *Carthamus lanatus* L.; sampling site: Pinakates, Pelion Mountain, Central Greece; collected in June 2004.

Wingless females are dark brown with black antennae, siphunculi and cauda, and
TABLE 3. New records of aphid species (family Aphididae) in Greece.

<table>
<thead>
<tr>
<th>Aphid genus (subgenus) species</th>
<th>Tribe-Subtribe</th>
<th>Subfamily</th>
<th>Host species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphis (Aphis) balloticola Szelegiewicz</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Ballota nigra L.</td>
</tr>
<tr>
<td>Aphis (Aphis) brotericola Mier Durante</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Euphorbia seguierana Necker</td>
</tr>
<tr>
<td>Aphis (Aphis) confusa Walker</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Knautia arvensis L.</td>
</tr>
<tr>
<td>Aphis (Aphis) lambersi (Börner)</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Daucus carota L.</td>
</tr>
<tr>
<td>Aphis (Aphis) spiraephaga Müller</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Spiraea sp.</td>
</tr>
<tr>
<td>Aphis (Aphis) tormentillae Passerini</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Potentilla reptans L.</td>
</tr>
<tr>
<td>Brachyunguis (Brachyunguis) tamaricis (Lichtenstein)</td>
<td>Aphidini-Aphidina</td>
<td>Aphidinae</td>
<td>Tamarix sp.</td>
</tr>
<tr>
<td>Dysaphis (Dysaphis) devecta (Walker)</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Malus domestica Borkhausen</td>
</tr>
<tr>
<td>Dysaphis (Dysaphis) lappae (Koch)*</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Cynara scolymus L.</td>
</tr>
<tr>
<td>Hyadaphis passerinii (del Quercio)</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Lonicera sp.</td>
</tr>
<tr>
<td>Macrosiphum (Macrosiphum) knautiae Holman</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Knautia sp.</td>
</tr>
<tr>
<td>Monellia (Agrioaphis) caryella (Fitch)</td>
<td>Panaphidini-Panaphidina</td>
<td>Aphidinae</td>
<td>Carya illinoensis (Wangenh)</td>
</tr>
<tr>
<td>Pemphigus (Pemphigus) bursarius (L.)</td>
<td>Pemphigini</td>
<td>Eriosomatinae</td>
<td>Populus nigra L.</td>
</tr>
<tr>
<td>Pemphigus (Pemphigus) spyrothecae Passerini</td>
<td>Pemphigini</td>
<td>Eriosomatinae</td>
<td>Populus nigra L.</td>
</tr>
<tr>
<td>Pemphigus (Pemphigus) vesicarius Passerini</td>
<td>Pemphigini</td>
<td>Eriosomatinae</td>
<td>Populus nigra L.</td>
</tr>
<tr>
<td>Tinocallis (Tinocallis) takachihoensis Higuchi</td>
<td>Panaphidini-Panaphidina</td>
<td>Calaphidinae</td>
<td>Ulmus americana L.</td>
</tr>
<tr>
<td>Uroleucon (Uromelan) nigrocampanulae (Theobald)</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Campanula spp.</td>
</tr>
<tr>
<td>Uroleucon (Uromelan) carthami (Hille Ris Lambers)</td>
<td>Macrosiphini</td>
<td>Aphidinae</td>
<td>Carthamus lanatus L.</td>
</tr>
</tbody>
</table>

The subspecies D. lappae ssp. cynarae (Theobald) has been collected.
bicolored yellowish and brown-black legs. The aphid hosts species of the genus *Campanula*, where it feeds on the leaves causing them to become curled in spring, whereas later attacks and subsequent feeding produces yellow spots. Sexual forms have not been recorded. The species is found in Europe and across Asia to Eastern Siberia (Pashtshenko 1988, Blackman and Eastop 2006).

Material examined: adult wingless females from *Campanula* sp.; sampling site: Thessaloniki, North Greece; collected in May 2007.

The work undertaken during a five year sampling period (emphasis was given to Pelion Mountain due to great biodiversity in wild, forest and cultivated plant species) is an attempt to extent our knowledge on the Greek aphid fauna and to establish the base for the development of a check-list where association between aphid species of the Greek fauna and their host-plant will be described in detail. In this paper we present 18 new species for the Greek aphid fauna which increase the number of species recorded in Greece to 333. The fact that new species were found, which consist 5.4% of the total recorded Greek aphid fauna, suggests that with further research and organization of similar studies in different regions of Greece, the recorded Greek aphid fauna will be substantially increased and might reach that reported in other European countries (Patti and Barbagallo 1998a, Fauna Europaea 2012).

Of the newly recorded species, *D. lappae* is probably an established pest on artichoke *C. cardunculus* in the main production area in Greece (Argolida, Peloponese). Some species (*D. dejecta, M. caryella, P. bursarius, P. spryrotheceae, P. vesicarius and T. takachihoensis*) host plants of economic importance and also *T. takachihoensis* was recently recorded as a vector of the *Potyvirus watermelon mosaic virus* (WMV) (Potyviridae) (Papapanagiotou and Marantis 2011). Lastly, the species *T. takachihoensis* and *M. caryella* are relatively recent introductions in Europe as they have been recorded for first time in the continent in the 80s.

References

Νέες καταγραφές ειδών αφίδων (Hemiptera: Aphididae) στην Ελλάδα

Α.Π. ΠΑΠΑΠΑΝΑΓΙΩΤΟΥ1, Μ. ΝΑΘΑΝΑΪΛΙΔΟΥ2, Μ. TAYLOR3, Κ.Δ. ΖΑΡΠΑΣ2, Κ. ΒΟΥΔΟΥΡΗΣ5, Ι.Α. ΤΣΙΤΣΙΠΗΣ2,4 ΚΑΙ Ι.Α. ΜΑΡΓΑΡΙΤΟΠΟΥΛΟΣ5*

1Εργαστήριο Φυτοπροστασίας, Τμήμα Θερμοκηπιακών Καλλιεργειών και Ανθοκομίας, ΤΕΙ Μεσολόγγι, Νέα Κτήρια, 302 00, Μεσολόγγι
2Εργαστήριο Εντομολογίας και Γεωργικής Ζωολογίας, Τμήμα Φυτικής Εργασιών και Αγροτικού Περιβάλλοντος, Πανεπιστήμιο Θεσσαλίας, Οδός Φιτόκοκ, 384 46 Νέα Ιονία, Βόλος
3AgroEcology, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
4Παρούσα διεύθυνση: Μαϊνάλου 4, 152 35 Βριλήσσια, Αθήνα
5Τμήμα Βιοχημείας και Βιοτεχνολογίας, Πανεπιστήμιο Θεσσαλίας, Πλούτωνος 26, 412 21 Λάρισα

ΠΕΡΙΛΗΨΗ

Τις τελευταίες δυο δεκαετίες έχουν δημοσιευθεί αρκετές εργασίες σχετικές με την αφιδοπανίδα της Ελλάδας. Ωστόσο, ο αριθμός των καταγεγραμμένων ειδών αφίδων είναι αρκετά μικρός από άλλες Ευρωπαϊκές χώρες, συμπεριλαμβανομένων αυτών στη λεκάνη της Μεσογείου. Στην παρούσα εργασία συλλέξαμε δείγματα αφίδων από διάφορες χώρες και περιοχές της Ελλάδας, κεντρικής και βόρειας, συμπεριλαμβανομένων αυτών στη λεκάνη της Μεσογείου. Στην παρούσα εργασία συλλέξαμε δείγματα αφίδων από διάφορες εκτάσεις και περιοχές της Ελλάδας, κεντρικής και βόρειας, συμπεριλαμβανομένων αυτών στη λεκάνη της Μεσογείου. Στην παρούσα εργασία συλλέξαμε δείγματα αφίδων από διάφορες εκτάσεις και περιοχές της Ελλάδας, κεντρικής και βόρειας, συμπεριλαμβανομένων αυτών στη λεκάνη της Μεσογείου. Στην παρούσα εργασία συλλέξαμε δείγματα αφίδων από διάφορες εκτάσεις και περιοχές της Ελλάδας, κεντρικής και βόρειας, συμπεριλαμβανομένων αυτών στη λεκάνη της Μεσογείου.