Flight of San Jose scale, Quadraspidiotus perniciosus males and time of crawler appearance in orchards of northern Greece

Kyparissoudas D.S. Plant Protection Service of Thessaloniki GR-54626 Thessaloniki, Greece

http://dx.doi.org/10.12681/eh.13951

To cite this article:
Flight of San Jose Scale *Quadraspisidiotus perniciosus* Males and Time of Crawler Appearance in Orchards of Northern Greece

D.S. KYPARISSOUDAS

Plant Protection Service of Thessaloniki
GR-54626 Thessaloniki, Greece

ABSTRACT

The seasonal flight of San Jose scale (SJS), *Quadraspisidiotus perniciosus* Comstock, males was studied during 1984-1987 in peach and nectarine orchards, under two different climatic conditions in Central Macedonia (Northern Greece), using sex pheromone traps. In late-season regions there were three periods of male flight activity (May, July-August, September-October), while in early-season regions there was also a partial fourth one (mid April-May, mid June-July, August-mid September and late September-early November). In the latter regions these flights can be correlated with the appearance of the scale crawlers during three periods (late May-early July, mid July-August, September-October) and a partial fourth one (November) in milder years, as determined using the sticky-tape trap technique. Pheromone traps and sticky-tape traps can be used for the study of phenology of San Jose scale, under conditions prevailing in Northern Greece.

Introduction

The San Jose scale (SJS), *Quadraspisidiotus perniciosus* Comstock (Homoptera: Diaspididae), is a key pest in most deciduous fruit orchards of Northern Greece. It was first recorded in Greece in 1968 (Paloukis 1969), and since then it has been found in many locations throughout the country (Paloukis 1979, Kyparissoudas 1987). The phenology of the scale was studied in peach and almond orchards of Central Macedonia, using a sampling method and yellow sticky traps (Paloukis 1984, Katsoyannos and Argyriou 1985). The discovery (Rice 1974) and identification (Gieselmann et al. 1979) of a sex pheromone for SJS has resulted in the use of pheromone traps to detect and monitor adult flight activity. Male phenology has been determined by pheromone trapping studies (Rice and Jones 1977, Rice and Hoyt 1980). In the last years, sticky electrical-tape traps, a more sensitive, effective and practical technique, were used for monitoring seasonal activity and relative abundance of crawlers in commercial orchards (Mague and Reissig 1983). These techniques provide an effective and yet economic method of sampling this scale and were used recently for the study of the SJS phenology in apple orchards (Mague and Reissig 1983). A similar study was conducted in apple orchards in regions of Western Macedonia (Kyparissoudas et al. 1987). Further, this method was also utilized in the development of a forecast model to time sprays against all crawler generations (Reissig et al. 1985).

The objective of this study was to determine the seasonal flight activity of SJS males by using sex pheromone traps, and to monitor seasonal crawler activity on sticky-tape traps, in peach and nectarine orchards of Central Macedonia (Northern Greece).

Materials and Methods

Data on the timing of male flights were collated for three years (1984-1986) from two untreated peach orchards infested by the scale: one 15 years old, covering an area of 0.4ha, and one 10 years old, 0.35ha in size, at Naoussa and Rahi, respectively. During 1986 and 1987 male flight activity and the appearance of crawlers were monitored in a 0.2ha untreated nectarine orchard, at Naoussa.

Male flight activity was monitored from April to mid-November with standard San Jose scale pheromone «tent» traps (Zoecon, Palo Alto, California). At each experimental orchard in early April,
three pheromone traps were placed 1.8-2.0 m above
the ground in the north-east side of the trees (Rice et
al. 1982). Each trap contained a pheromone dis­
penser charged with 300 µg of 7-methyl-3-methylen­
e-7-octen-1-yl propanoate (SJS-2, Giesel­
mann et al. 1979). Trap catches were recorded 3 times
each week and dispensers were replaced every 4
weeks. In 1986, in the peach orchard located in
Naoussa the observations were taken daily. For SJS
male counting the traps were transferred to the labo­
ratory where captured males were counted under a
dissecting microscope.

Seasonal crawler activity was measured on sticky-
tape traps (Mague and Reissig 1983, Kyparissoudas
et al. 1987) in four trees from mid-May (approxi­
mately twenty-five days after the onset of male flight)
until mid-December. Four such traps were placed on
branches 3-4 cm in diameter in each of the four trees;
the traps were checked daily until the first appearance
of the crawlers and then at one week intervals. Craw­
lers on the traps were counted under a dissecting
microscope in the laboratory. Since tape traps were of
varying length due to differences in branch diamet­
ers, counts were expressed as number/cm² of tape
(Mague and Reissig 1983).

Temperature data were collected daily from a re­
cording thermograph and max-min thermometers
from a weather station located near the observation
orchards.

Results and Discussion

The seasonal flight of male San Jose scale during
the study period, in both regions, is shown in Figs.
1, 2 and 4. In the late-season region (Rahi) there
were annually three periods of male flight activity
(Fig. 1B). The first flight began in May, a second
appeared early in July, while the third occurred
late in August and continued until the second half
of October. In the early-season region (Naoussa),
in both orchards, there were three periods of SJS
male flight activity and a partial fourth one (Figs.
1A, 2, 4). The appearance of overwintering gener­
ation males began in mid to late April and con­
tinued for 3-4 weeks. During spring the males fly
for only a few days (Fig. 2). Similar observations
have been reported by Rice and Hoyt (1980), Rice
et al. (1982) and Kyparissoudas et al. (1987). The
early flights were followed by a period of 5-6 weeks
with no male activity. In mid to late June, first gen­
eration male flights started and following peak
emergence during July, continued at declining
levels into the second generation in early August-
mid September. A partial fourth period of male
flight activity occurred in mid to late September
and continued until late October-early November.
In contrast, Paloukis (1979) and Katsiyannos and
Argyriou (1985), who studied the biology of SJS in

http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 26/01/2020 04:23:18 |
similar regions, reported only three periods of adult male activity for three generations of the species. The average daily catches in relation to flight threshold temperatures at Naoussa is shown in Fig. 2. It is seen that the flights begin when the temperatures at sunset are above 17° C, but decline rapidly or cease at temperatures below 17° C, resulting in only low captures for these days. These data agree with those of Rice and Hoyt (1980).

The seasonal crawler appearance in the region of Naoussa during 1986 and 1987 is shown in Fig. 3. It is seen that there were three distinct periods of crawler appearance, and a partial fourth one. Emergence of first generation crawlers began in late May or 30-32 days after the first males had been captured in pheromone traps, and peaked within 10-12 days. A second generation started in mid July or approximately 25 days after the beginning of the second male flight and continued until the end of August. In early September the third generation of crawlers appeared, followed by a partial fourth generation from late October until the end of November. The first two periods of seasonal crawler activity, and in most part the third appearance as shown by tape traps (Fig. 3), coincide to a large degree with crawler appearance observed in similar regions by Katsoyannos and Argyriou (1985). These workers reported that for the year 1978 there were only three periods where crawlers were present and that all larvae of the 3rd generation stopped development at the 1st instar and hibernated. Only a small number of reproducing females, as well as a few crawlers generated by them were observed during the winter period. Baskerville and Emin (1969) and Anonymous (1978) reported a lower threshold of scale development, 10.5° C and 7.3° C, respectively, while Vasseur and Schvester (1957) showed that the threshold of development of SJS crawlers kept at various temperatures from mid-August to mid-December was 9.0 to 10° C. This information, in relation with the data of Table 1, confirms that the field development of SJS crawlers as well as the number of generations per year depend mainly on weather conditions, especially temperature (November - December). Hence, in cool years, such as 1978 the insect might complete three generations (Katsoyannos and Argyriou 1985), while in milder years (1986-1987) in some regions a partial fourth one might also appear (Table 1).

In the region of Rahi the three major periods of male flight activity as shown by Fig. 1B (May, July-August, September-October), coincide quite closely with male appearance observed during 1983 to 1986 in late-season regions of Western Macedonia by Kyparissoudas et al. (1987). They also found that these flights correlated with the presence of the scale crawlers which were ob-
served during June, August and October. This suggests that in the region of Rahi, there must also be three similar periods of crawler appearance.

The present study indicates that pheromone traps can be used to accurately monitor flight activity of male SJS, and to identify discrete generations of scale under field conditions. Further, it shows that the sticky-tape traps are an effective and practical technique of monitoring seasonal crawler activity in commercial orchards. These

<table>
<thead>
<tr>
<th>Year</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>1978</td>
<td>20.0</td>
<td>19.0</td>
<td>16.8</td>
<td>18.0</td>
</tr>
<tr>
<td>1979</td>
<td>20.2</td>
<td>19.5</td>
<td>21.0</td>
<td>20.8</td>
</tr>
<tr>
<td>1980</td>
<td>19.8</td>
<td>20.5</td>
<td>19.8</td>
<td>16.7</td>
</tr>
<tr>
<td>1981</td>
<td>21.0</td>
<td>19.5</td>
<td>21.5</td>
<td>20.0</td>
</tr>
<tr>
<td>1982</td>
<td>21.5</td>
<td>21.5</td>
<td>21.7</td>
<td>15.0</td>
</tr>
<tr>
<td>1983</td>
<td>20.2</td>
<td>20.5</td>
<td>18.2</td>
<td>18.5</td>
</tr>
<tr>
<td>1984</td>
<td>22.0</td>
<td>21.0</td>
<td>19.5</td>
<td>21.0</td>
</tr>
<tr>
<td>1985</td>
<td>21.0</td>
<td>19.0</td>
<td>20.5</td>
<td>18.0</td>
</tr>
<tr>
<td>1986</td>
<td>20.0</td>
<td>23.5</td>
<td>19.5</td>
<td>18.0</td>
</tr>
<tr>
<td>1987</td>
<td>22.0</td>
<td>25.0</td>
<td>21.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Average | 20.9 | 20.9 | 20.0 | 18.1 | 16.1 | 13.2 | 10.8 | 9.0 | 8.8 | 6.8 | 6.8 | 6.2
techniques can be used as a method to study the phenology of SJS, and to determine the proper timing of chemical application against the immature stages of scale, under conditions prevailing in Northern Greece.

Acknowledgment

Appreciation is expressed to Prof. Byron Katsoyannos, University of Thessaloniki, who made useful suggestions on the text, to Anestis Sidera for his assistance in the field, and to Michael Lysandrou for revising the English text. This research was supported in part by the National Program of Agricultural Warning System of the Ministry of Agriculture.

References

KEY WORDS: Quadraspidiotus perniciosus, Pheromone traps, Sticky-tape traps

Περίληψη των Αρσενικών και Εμφάνιση των Κινητών Προνυμφών του Quadraspidiotus perniciosus σε Οπωρώνες της Βόρειας Ελλάδας

Δ.Σ. ΚΥΠΑΡΙΣΣΟΥΔΑΣ

Σταθμός Φυτούζευξισμολογικού Ελέγχου Θεσσαλονίκης,
Τ.Θ. 14516, 546 26 Θεσσαλονίκη

ΠΕΡΙΛΗΨΗ

Μελέτες που έγιναν από το 1984 μέχρι το 1987 με παγίδες φερομόνης σε οπωρώνες ροδακινιάς και νεκταριάς της Κεντρικής Μακεδονίας έδειξαν ότι στις όψιμες περιοχές (Ράχη) υπάρχουν κάθε
χρόνο τρεις περιόδου (Μάιος, Ιούλιος-Αύγουστος, Σεπτέμβριος-Οκτώβριος) πτήσης των αρσενικών του Quadraspisae perniciosus Comstock, ενώ στις πρώιμες περιοχές (Νάουσα) υπάρχουν τρεις περιόδοι (μέσα Απριλίου-Μάιος, μέσα Ιουνίου-Ιούλιος, Αύγουστος-μέσα Σεπτέμβριο) και μία τέταρτη μερική (τέλος Σεπτέμβριο-αρχές Νοεμβρίου). Στις πρώιμες περιοχές οι τρεις πρώτες πτήσεις συσχετίζονται με την ύπαρξη τριών περιόδων (τέλος Μαίου-αρχές Ιουλίου, μέσα Ιουλίου-Αύγουστος, Σεπτέμβριος-Οκτώβριος) εμφάνισης των κινητών μορφών του κοκκοειδούς, όπως αυτές προσδιορίστηκαν με τη χρήση κολλητικών-παγίδων ταινίων, ενώ η τέταρτη μερική πτήση συσχετίζεται με μία αντίστοιχη περίοδο εμφάνισης κινητών μορφών κατά τη διάρκεια του Νοεμβρίου, μόνο όμως σε χρονιές που κατά τη διάρκεια του φθινοπώρου επικρατούν συνθήκες ευνοϊκές για την ανάπτυξή τους. Οι παγίδες φερομόνης και οι κολλητικές-ταινίες παγίδες φαίνεται ότι μπορούν να χρησιμοποιηθούν ως μέθοδος για τη μελέτη της βιολογίας του Q. perniciosus στις κλιματικές συνθήκες της Βόρειας Ελλάδας.