Sandfly (Diptera: Psychodidae) distribution in Northern Greece

Karanis P. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Frank C. Helixor Heilmittel GmbH, P.O. Box 8, D-72344 Rosenfe

Schmalle H. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Naucke T. J. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Jorden U. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Metallinou C. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Haralabidis S. Laboratory for Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotelian University, Thessaloniki, Greece

Maier W. A. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Seitz H. M. Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany

Himonas C. Laboratory for Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotelian University, Thessaloniki, Greece

https://doi.org/10.12681/eh.14032
Sandfly (Diptera: Psychodidae) Distribution in Northern Greece


2 Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany,
3 Helixor Heilmittel GmbH, P.O. Box 8, D-72344 Rosenfeld,
4 Laboratory for Parasitology and Parasitic Diseases, Veterinary Faculty, Aristotelian University, Thessaloniki, Greece

ABSTRACT

This study is a part of investigations on leishmaniasis vectors which began in 1992. Sandflies were collected in different areas of Kassandra, Sithonia and Athos and in several biotopes of the Xanthi district in Thrace. A total of 811 sandflies were caught using oil-traps in peridomestic sites in the town of Neos Marmaras in 1992, and 4264 specimens were collected by CDC miniature light traps in different parts of Chalkidiki in 1993. Similarly 3465 specimens were collected in Xanthi in 1996. Eight species of sandflies were identified: Phlebotomus (Larroussius) neglectus Tonnoir 1921, P. (L.) tobbi Adler et al. 1930, P. (L.) perfiliewi Parrot 1930, P. (Paraphlebotomus) sergenti Parrot 1917, P. (Adleriuss) simici Nitzulescu & Nitzulescu 1931, P. (Phlebotomus) papataci Scopoli 1786, Sergentomyia minuta Rondani 1843 and S. dentata Sinton 1933. The roles played in the transmission of leishmaniasis by different species of sandflies is discussed.

Introduction

In Greece, the anti-malarial vector control campaign initiated in 1946 resulted concomitantly in dramatic reduction of sandfly population (WHO 1990). As a consequence, the incidence of leishmaniasis in human populations declined for many years during the anti-malarial vector control program and subsequently.

Leishmaniasis was described early in the 20th century (Cardamatis, 1909). Phlebotomus (Larroussius) neglectus Tonnoir 1921, was found implicated as vector for L. infantum in Greece (Léger et al., 1986; Chaniotis et al., 1994; Papadopoulos and Tseletis, 1994). The objective of our field studies was to determine the species composition of sandflies in different parts of Northern Greece.

Materials and Methods

Sandflies were collected in peridomestic places of Neos Marmaras in 1992, in different places of Kassandra, Sithonia and Athos, the three peninsulas of Chalkidiki in 1993, and in the district of Xanthi (Thrace) in 1996. A total of 811 sandflies were collected from July to October 1992 in domestic and peridomestic sites around of Neos Marmaras (Sithonia) using papers sheets (20 x 30 cm) smeared with
Results

Seven sandfly species were among the insects trapped in Neos Marmaras, Sithonia: from a total of 811 collected sandflies, 803 (99%) belonged to the genus Phlebotomus and only 8 (1%) to the genus Sergentomyia. Phlebotomus (Larroussius) neglectus Tonnoir 1921 (80.2%) and P. (L.) tobbi Adler et al. 1930 (13.8%) were the dominant species. The other species were P. (Paraphlebotomus) sergenti Parrot 1917 (3%), P. (Adlerius) simici Nitzulescu & Nitzulescu 1931 (1.9%), P. (L.) perfiliewi Parrot 1930 (1.1%), Sergentomyia minuta Rondani 1843 (0.7%) and S. dentata Sinton 1933 (0.3%). The sex ratio was 683 m: 128 f. Results on the number and species composition of sandflies collected in the area are listed in Table 1.

A total of 4264 sandflies of eight different species were caught in Kassandra, Sithonia and Athos. The sandflies were identified as: P. perfiliewi (52.7%), P. tobbi (18.9%), P. simici (15.7%), P. neglectus (6.6%), S. dentata (4.1%), S. minuta (1.4%), P. sergenti (0.5%), and P. (Phlebotomus) papatasi Scopoli 1786 (0.1%). The genus Phlebotomus represented about 98% of the sandflies captured. The sex ratio was 1 180 m:3 084 f. Results on the number and species composition of sandflies collected in the area are listed in Table 2.

TABLE 2. Species and number of sandflies trapped in light traps from early June to late October 1993 in several biotopes of Cassandra, Sithonia, the Holy Mount of Athos and other parts of Chalkidiki.

<table>
<thead>
<tr>
<th>Species</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. perfiliewi</td>
<td>484</td>
<td>1763</td>
</tr>
<tr>
<td>P. tobbi</td>
<td>144</td>
<td>660</td>
</tr>
<tr>
<td>P. simici</td>
<td>249</td>
<td>423</td>
</tr>
<tr>
<td>P. neglectus</td>
<td>155</td>
<td>127</td>
</tr>
<tr>
<td>S. dentata</td>
<td>96</td>
<td>79</td>
</tr>
<tr>
<td>S. minuta</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>P. sergenti</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>P. papatasi</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

A total of 3465 sandflies of seven different species were caught in Xanthi. The sandflies were classified as: P. perfiliewi (79%), P. tobbi (12.20%), P. simici (0.20%), P. neglectus (6.75%), S. dentata (0.99%), S. minuta (0.84%), and P. sergenti (0.03%). The genus Phlebotomus represented again more than 98% of the sandflies captured. The sex ratio was 2223 m:1242 f. Results on the number and species composition of sandflies collected in the area are listed in Table 3.

TABLE 3. Species and number of sandflies trapped in light traps from early July to early October 1996 in several biotopes of Xanthi (Thrace).

<table>
<thead>
<tr>
<th>Species</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. perfiliewi</td>
<td>975</td>
<td>1762</td>
</tr>
<tr>
<td>P. tobbi</td>
<td>141</td>
<td>282</td>
</tr>
<tr>
<td>P. simici</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>P. neglectus</td>
<td>108</td>
<td>126</td>
</tr>
<tr>
<td>S. dentata</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>S. minuta</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>P. sergenti</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Discussion

Our survey of sandflies in Northern Greece confirmed the occurrence of eight species. The sandfly species *P. alexandri*, *P. balcunicus*, *P. mascitii* and *S. theodori* that have been previously reported to occur in Greece (Léger et al., 1986) were not found in the present survey. These are some differences in the species composition in the different regions. These differences may be the result of using different collection methods (light traps or oil papers), and of collecting at irregular or regular time intervals in various biotopes. Seasonal changes and weather conditions can affect the sandfly populations too.

The sandfly fauna of the Mediterranean Basin and its implication in the transmission of *Leishmania* spp. varies in different geographic regions. Sandfly species, like *Phlebotomus ariasi* and *P. perniciosus* are vectors in France and Italy, whereas *P. sergenti* and *P. neglectus* are vectors in Greece. *P. neglectus* is a proven vector of *L. infantum* in Greece (Léger et al., 1988).

We expect to shed more light on the leishmaniasis situation in Northern Greece in the future. Current research is aimed at collecting data about the biotopes of the sandflies, their ecology, the prevalence and molecular characterization of *Leishmania* spp. in Northern Greece. Research on the epidemiology, diagnosis and transmission of leishmaniasis is essential in the proposed area of study because the epidemiological significance of domestic and feral dogs and other animals acting as reservoirs of infection, and the roles played in transmission by different species of sandflies, requires more clarification.

Acknowledgements

The project was supported by the Volkswagen Foundation, Hannover, Germany. We thank also the Boehringer Ingelheim Fonds/Germany for partially supporting this study.

References


KEY WORDS: Diptera, Psychodidae, sandflies, *Phlebotomus*, Sergentomyia, Greece.
Εξάπλωση Φλεβοτόμων (Diptera: Psychodidae) στη Βόρεια Ελλάδα

Π. ΚΑΡΑΝΗΣ1, C. FRANK2, H. SCHMALLE1, T. J. NAUCKE1, U. JÖRDEN1, Χ. ΜΕΤΑΛΛΙΝΟΥ1, Σ. ΧΑΡΑΛΑΜΠΙΔΗΣ3, W. A. MAIER1, H. M. SEITZ1, X. ΧΕΙΜΩΝΑΣ3

1 Institut für Medizinische Parasitologie, Universität Bonn, D-53127 Bonn, Germany
2 Helixor Heilmittel GmbH, P.O. Box 8, D-72344 Rosenfeld,
3 Εργαστήριο Παρασιτολογίας και Παρασιτικών Νοσημάτων, Τμήμα Κτηνιατρικής, Αριστοτέλειο Πανεπιστήμιο, 54006 Θεσσαλονίκη

ΠΕΡΙΛΗΨΗ