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he purpose of this paper is to study the theoretical outcome of an ali-

quot equidistant fingering / fretting pattern on a string, within stan-

dard formality, a. by stating and proving a theorem expressing the 

exact resulting intervallic structure mathematically –a set of interval ratios 

between adjacent terms of a mirrored arithmetic sequence, b. by pursuing 

the complete mathematical properties of this structure, c. by discussing its 

various applications, with emphasis put on drillings on flutes, d. by calling 

upon practice in order to spot actual historical manifestations of the theorem 

and its discussion, e. by hypothesizing the rôle of the particular conditions 

implicit in the theorem towards the historical emergence and evolution of 

two primeval prototypes of the most prominent and universally dissemina-

ted intonational systems / “ur-scales”: an anhemitonic pentatonic one ([C, 

D, E¼↑, G, A+]) and the lower fifth of a “smooth” heptatonic one ([D, 

E¼↓, F+, G, A+]). 
 

Keywords: String; Aliquot fingering / fretting; Flute / finger-hole; Interval 

ratio; Musical scale; Arithmetic / harmonic sequence; Harmonic mean. 
 

Περίληψη: 

Σκοπός αυτής της εργασίας είναι να μελετήσει το θεωρητικό αποτέλεσμα ε-

νός ισομετρικού ισαπεχόντως υποδιαιρετικού σχεδίου σε μια χορδή, μέσα 

στα πάγια καθιερωμένη τυπικά καθεστηκότα, [1] διατυπώνοντας και απο-

δεικνύοντας ένα Θεώρημα που εκφράζει την ακριβή προκύπτουσα διαστη-

ματική δομή με μαθηματικό τρόπο, μέσω ενός συνόλου διαστηματικών λό-

γων μεταξύ των παρακείμενων όρων μιας κατοπτριζόμενης αριθμητικής 

αλληλουχίας, [2] διερευνώντας τις πλήρεις μαθηματικές ιδιότητες αυτής 

της δομής, [3] συζητώντας τις ποικίλες εφαρμογές της, με έμφαση στην 

τρήση των αυλών, [4] με επίκληση στην πράξη ώστε να εντοπιστούν οι κυ-

ριότερες ιστορικές εκφάνσεις του Θεωρήματος και της συζήτησης επάνω 

σ’ αυτό, [5] υποθέτοντας τον ρόλο των ιδιαίτερων συνθηκών που είναι εγ-

T 
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γενείς στο Θεώρημα και οδηγούν προς την ιστορική ανάδυση και εξέλιξη 

των δύο πρωτογενών προπλασμάτων των πλέον επιφανών και παγκοσμίως 

εξαπλωμένων συστημάτων φθογγοθεσίας / «αρχε-κλιμάκων»: αφενός μιας 

ανημιτονικής πεντατονικής ([C, D, E «υπέρ» / οξύτερο κατά περ. ένα τε-

ταρτημόριο τόνου, G, A «υπέρ» / οξύτερο κατά περ. ένα τεταρτημόριο τό-

νου]) και αφετέρου της κάτω πέμπτης (δηλ. του τετραχόρδου / πενταχόρ-

δου βάσης) μιας «ομαλής διατόνου» επτατονικής ([D, Ε «παρυστερούν» / 

βαρύτερο κατά περ. ένα τεταρτημόριο τόνου, F «συν» / οξύτερο κατά ένα 

κόμμα / περ. ενατημόριο τόνου, G, Α (πυθαγόρειο)]). 

 

Λέξεις-κλειδιά: Χορδή, Ισομετρικός δακτυλισμός / ταστιέρα, Φλάουτο / 

δακτυλική οπή, Διαστηματικός λόγος, Μουσική κλίμακα, Αριθμητική / 

αρμονική ακολουθία, Αρμονικός μέσος (αρμονική μεσότητα). 

 

Note: Please visit http://epistemeproject.org, section “έργα” to find the vi-

deo where you may listen to various intervals presented in this paper. 

 

1. Preliminaries 

Let there be a musical string of irrelevant mass and diameter, stretched at an 

irrelevant tension between points N (nut) and B (bridge), distanced at total 

length L. Let there be a fingering or fret at point X, distanced from the nut at 

a fraction r of overall length L of the string, so length [NX] is rL. 

 

------------ rL ------------ 

   V       

N   X                B   (fig1) 

 

Let the frequency (/ pitch) produced by the total length of the string (note 

N) be fN and let the frequency (/ pitch) produced by fingering / fretting at 

point X (note X) be fX. 

Given that length [XB] is L – rL = (1 – r) L, these two frequencies / pitches 

are given by the following formulae, for some c serving as a cumulative 

constant for the string’s physical parameters. 

fN = 
L

c
   fX = 

Lr

c

)1( 
               (1) 

The interval ratio fX / fN between the two pitches X and N, i.e. the interval 

by which fX is higher than fN, simplifies to 1 / (1 – r). Let us call that R. In 

other words, 

fX  RfN                 (2) 



Demetrios E. Lekkas 47 

R = 
r1

1
   r = R – 

R

1
 = 

R

R 1
            (3) 

 

Suppose now that we split segment [NX] into k aliquot parts by interposing 

(k – 1) equally spaced fingering points / frets, so that the nut N corresponds 

to the 0
th

 ordinal point and X to the k
th

 one; suppose, also, that we name the 

j
th

 such point Y (0 ≤ j ≤ k), so that length [NY] is j/k times length [NX]. 

Then the following holds: 

[NY] = 
k

j
[NX] = 

k

j
r [NB] = 

k

j
rL             (4) 

------------ rL ------------ 

|  |  | …       v     … |  | V       
N       Y  X                B   (fig2) 

--- (j/k) rL --- 

In order to determine the frequency fY of pitch produced at point Y (note Y), 

we observe that the vibrating segment [YB] of the string fingered or fretted 

at point Y is 

L – 
k

j
rL = (1 – 

k

j
r) L   fY = c / (1 – 

k

j
r) L             (5) 

Suppose now we place an extra fingering / fret at point Z, so that segment 

[ZY] is the j
th

 aliquot segment of our subdivision. Z, then, must be the very 

preceding point, i.e. the (j – 1)
st
 one. Again we have note Z at some pitch / 

frequency to be determined. 

 

------------ rL ------------ 

|  |  | …    v v     … |  | V        
N    Z Y  X                B   (fig3) 

--- (j/k) rL --- 

The immediate objectives of our quest are to study a. the intervallic result 

of the particular fingering / fretting point Y set in place in the particular 

fashion or, in other words, the tonal relationships (interval ratios) between 

notes Y and N and between notes X and Y, b. the rational relationship be-

tween two consecutive points of an equitable fingering / fretting subdivision 

in the specific case of the interval ratio corresponding to the j
th

 such 

segment, towards building the general case. 

In the process we need keep track of a situation stemming from the 

tricky enumeration applied: for segments to be counted from 1
st
 to k

th
, 

subdividing points must be numbered from 1
st
 to (k – 1)

st
; if we include the 

endpoints, ordinals go from 0
th

 to k
th

. 
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2. The theorem 

 

2.1. Convention 

All musical intervals mentioned in this paper as frequency quotients are 

assumed ascending. In this sense, ratios expressing them must have their 

numerator  their denominator; wherever operations produce descending 

intervals, ratios will be inverted. In order to cope with this situation, we 

need an extra auxiliary definition.  
 

2.2. Definition I 

Two interval ratios a/b and c/d are said to be ascending-equivalent iff a/b 

= c/d or a/b = d/c. 
 

2.3. Lemma 

In an arithmetic subdivision of a given numerical interval [w, R], where w < 

R, into k equal parts: 

a. the m
th

 subdividing point is given by general formula w + (R – w) 
k

m
; 

b. the m
th

 ratio between two successive subdividing points is the one 

between m
th

 and (m – 1)
st
 point; the general formula for its ascending 

version is 

[w + (R – w) 
k

m
] / [w + (R – w) 

k

m 1
].             (6) 

Proofs follow directly from the definitions. 
 

2.4. Definition II 

A subdivision of a “reference interval” R complying with the procedure 

given in the Preliminaries in chapter 1, i.e. as a result of an equitable 

fingering / fretting scheme, shall be called an “(upwards) harmonic 

subdivision”. 
 

2.5. Theorem 

The constituent –ascending– intervals produced by an “(upwards) 

harmonic subdivision” of “reference interval” R into k segments duplicate 

the results of an arithmetic subdivision (i.e. an aliquot spacing of 

frequency units / Hertz contained) of the same reference interval, R, into the 

same number of segments, k, in the reverse order. 
 

2.6. Proof 

First let us indeed determine the ascending tonal / intervallic relationship of 

note Y –placed at the j
th

 subdividing point– with respect to the endpoints of 
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the subdivision, i.e. to notes N and X; by skipping a couple of intermediate 

operations and by expressing both in terms of R: 

N

Y

f

f
 = 1 / (1 – 

k

j
r) = 1 / (1 – r + r – 

k

j
r) = R / [1 + (R – 1) (1 – 

k

j
)]          (7) 

Y

X

f

f
= 

NY

NX

ff

ff
= R / {R / [1 + (R – 1) (1 – 

k

j
)]} = 1 + (R – 1) (1 – 

k

j
)          (8) 

Already we know that the straight, simple expression contingent on j is the 

latter one, which ties note Y to note X –because it involves a direct 

proportionality, as it features j at a numerator of its second term–, whereas 

the former ascending ratio, between Y and N, carries a complicated inverse-

related proportion to j –lying at the denominator. 

Let us now turn our attention to extra note Z and its own pitch. By the same 

token, as it is sounded at the (j – 1)
st
 subdividing point, its ascending 

equations turn out thus: 

N

Z

f

f
= R / [1 + (R – 1) (1 – 

k

j 1
)] = R / [1 + (R – 1) 

k

jk 1
]          (9) 

Z

X

f

f
= 1 + (R – 1) (1 – 

k

j 1
) = 1 + (R – 1) 

k

jk 1
          (10) 

As the j
th

 ascending (upwards) harmonic ratio is that between j
th

 and (j – 1)
st
 

points: 

Z

Y

f

f
 = 

YX

ZX

ff

ff
= [1 + (R – 1) 

k

jk 1
] / [1 + (R – 1) 

k

jk 
]         (11) 

By defining  as the difference between k and j, i.e. between denominator 

and numerator of the ratio characterizing Y –the point interposed–, j 

becomes (k – ) and 

Z

Y

f

f
 = [1 + (R – 1) 

k

1
] / [1 + (R – 1) 

k


]          (12) 

 

Yet, because of the tricky nature of our ordinal enumeration from 0 rather 

than from 1, this would be the ( + 1)
st
 ascending interval ratio; the th

 one 

should be: 

[1 + (R – 1) 
k


] / [1 + (R – 1) 

k

1
]           (13) 

First and foremost, this result duplicates exactly the formulae of our lemma, 

with unity in the place of w and with  supplanting m. Second of all, it 

appears to be a. directly related to the top note of the subdivision, b. -
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dependent, i.e. running backwards, as  is a difference term and reduces 

from k to 0 as j grows from 0 to k. 

 

2.7. Comments 

This concludes the proof of the 2
nd

 main question posed by the introduction 

to the theorem, as it says that the j
th

 interval ratio corresponding to each pair 

of consecutive subdivision points, placed at (j – 1) and at j k
ths

, is 

ascending-equivalent to the th
 ratio in an arithmetic subdivision, i.e. that 

between ( – 1) and  k
ths

, which is the same thing as that between (k – j) 

and [k – (j + 1)] or, in other words, the one found by counting the ratios 

backwards or mirrored from last ordinal number to zeroth. This is an 

extremely important result, as it unveils two essential properties of an 

equitably spaced fingering / fretting subdivision of a certain reference 

interval: 

 the intervallic subdivision produced yields the same set of ascending 

results as that of an arithmetic subdivision into k in the reverse / mirrored 

order (q.e.d.); 

 the basic harmonically meaningful set of relations of the subdividing 

pitches occurs towards a common reference pitch, which lies at the top 

of the ascending interval being subdivided, unlike an arithmetic 

subdivision, where the bottom pitch constitutes the tonal, modal and 

harmonic focus. 

 

3. Study 

Several music-theoretical issues are settled by this theorem. 

 

3.1. Flutes 

Ideally, our results are equally valid for holes on cylindrical flutes grosso 

modo, given one chief difference and a clarification. Difference: L here 

corresponds to some specific effective length depending on the particular 

mix of the flute’s parameters each time; usually, actual lengths of flutes are 

visibly shorter than L towards the mouth-hole and longer at the far end, 

which is why, at end-blown and whistle-type flutes (shakuhachi, kena, 

recorder), the mouth is customarily made at the same size as finger-holes. 

Otherwise the proportion is more or less sensitive to a series of factors like 

relation of hole size to bore diameter, distance of next open hole etc. If, for 

instance, we assume that a. point N represents the open free end of a flute or 

a recorder, b. point X corresponds to a finger-hole sized exactly the same as 

the hole at the free end and somehow tuned to a specific reference interval, 
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c. the in-between segment of the pipe is drilled at a number of equally sized 

and shaped and evenly spaced finger-holes, our results practically apply just 

as well, regardless of whatever discrepancy between effective and actual 

lengths.
1
 Clarification: not all holes need necessarily be drilled, in which 

case all we may have to do is to assume a number of intervening “virtual 

holes”, granted certain versatile theoretical adjustments.
2
 

 

------------ rL ------------ 

             

o |  | …         … |  |            ← 
          N    Z Y  X     B  (fig4) 

--- (j/k) rL --- 

 

3.2. Subdividing a superparticular interval 

Let us simplify the analysis for a moment by assuming the simplest case 

possible, where relative reference pitch R is a superparticular fraction, i.e. 

of the form (n + 1) / n. It is vital to note that no loss of generality occurs, 

because the results are analogous for all other rational fractions, give or take 

a few cancellations of common factors. Most of the usual crucial divisible 

reference intervals are superparticular anyhow. 

Since our relations work both ways throughout, it is reasonable to make 

the following observations, assuming that we wish to subdivide the above-

mentioned reference interval [(n + 1) / n] into k parts, and given that we 

define number K as the product kn. 

 

                                                 
1
 Typically, our interest in flutes is focused on distances from the far end. All an unequally 

sized open end does is blow the length of the bottom joint out of proportion. The situation 

can be remedied by simply assuming a different virtual / effective length for that joint only, 

properly contingent on the overall drilling pattern. The said constriction of the mouth of 

certain flutes is one way around “faulty” analogy of lengths. The “extreme” width of finger-

holes on several archaeological finds of ancient cylindrical auli, at diameters adjusted so as 

to match the mouth, affords a second standard way. 
2
 By the same token, not all fingerings need be fretted under a string; absent “virtual frets” 

or “extra in-between frets” are conceivable and reported as well. A creative manipulation of 

this type of considerations and their varieties leads directly to a set of theoretical concepts 

and controls capable of forming a compact model for dealing with flutes, or even with mere 

fragments of flutes; in fact, it contributes towards the formulation of a powerful analytical 

tool useful towards studying the intervallics of just about any 1-dimensional sound source; 

this model will be the object of a future more specialized paper. 
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3.2.1. As is widely known, an arithmetic subdivision of a superparticular 

reference interval produces an ordered sequence of k successive ascending 

fractions of the forms 

K

K 1
, 

1

2





K

K
, 

2

3





K

K
 …… 

3

2





kK

kK
, 

2

1





kK

kK
, 

1



kK

kK
 

For those concerned, in the particular case under discussion, this is a 

segment of the complete harmonic series between partials kn, or K, and k (n 

+ 1), or (K + k), of some fundamental,
3
 and its consecutive frequencies 

define an arithmetic progression. All successive intervals formed in our 

example are superparticular and their ratios (therefore their perceived 

“sizes”) shrink as we go upwards. On the other hand, all pitches of the 

constituent note series bear a common tonal relationship to the bottom note, 

habitually called “the root”, so that we can say that the particular succession 

of fractions is “tonally orientated to the bottom”. By Fourier’s theorem, this 

is the only rigorous, theoretically sound and theory-bound subdivision of an 

interval. 

 

3.2.2. By the theorem we just proved here, an (upwards) harmonic 

subdivision of a superparticular reference interval produces the following 

ordered set of successive ascending fractions: 

1



kK

kK
, 

2

1





kK

kK
, 

3

2





kK

kK
 …… 

2

3





K

K
, 

2

1





kK

kK
, 

K

K 1
 

Again, all successive intervals formed are superparticular, but now their 

ratios expand as we go upwards. Let us see how this is done by a 

superparticular numerical example. The interval ratio of a fifth is 3/2, 

meaning e.g. that the frequency of a G is 1.5 times the frequency of a C. In 

order to split a fifth 3 ways arithmetically, we multiply both terms of the 

ratio by 3 and proceed as follows: 

 arithmetic trisection of 2 : 3 = arithmetic trisection of 6 : 9 = 6 : 7 : 8 : 9; 

 ascending arithmetic 3
rd

 parts: (6 : 7 =) 7/6, (7 : 8 =) 8/7, (8 : 9 =) 9/8; 

 the harmonic trisection is determined by the inverse sequence 9 : 8 : 7 : 6; 

 ascending (upwards) harmonic 3
rd

 parts of the fifth: 9/8, 8/7, 7/6.
4
 

                                                 
3
 This is only true of some classes of cases, superparticular being one of them. It is not true, 

for instance, of bounded arithmetic sequence segments [6, 6 + (√2/2), 6 + √2] or [3, 5, 7, 9], 

neither one of which is a segment of any complete harmonic series. For more details see 

footnotes 4 and 22. 
4
 The procedure is also known as catapycnosis. The resulting fractions may need to be 

simplified by cancellation of common factors. In the general rational case, R = (n + l) / n. 

Let D = GCD (k, l); then K is defined as kn/D, (K + k) is replaced by [k (n + l) / D] and, 
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This time all pitches of the constituent note sequence bear a common tonal 

relationship to the top note; so we can say that the particular succession of 

fractions is “tonally orientated to the top”. Given Fourier’s theorem, this is 

a theoretically unsound subdivision of an interval; it can be safely inferred 

that it has a direct provenance in theoretically ignorant / naïve musical 

practice and, whenever it is observed there, it has almost certainly sprung 

from easily conceived and executed equidistant borings of flutes and, 

perhaps later, fingerings / frets on strings, unless it be the result of some ad 

hoc “mathematical” computation or “principle”. Even then, structures 

developed in this way can clearly be seen as anti-theoretical and extending 

“upside down”.
5
 

 

3.2.3. Indeed, as anyone familiar with but the most rudimentary aspects of 

Acoustics can readily understand, if what matters is the vibrating part of the 

string or aerial column, measuring distances and defining their relations 

from the nut of a string or from the free far end of a flute, and then 

physically and mentally working on lengths thus obtained, is tantamount to 

illegitimately correlating silenced parts, thence to doing the job from the 

wrong end. 

However, it is a fact that actual musical systems have a habit of 

developing in this fashion, and the upwards harmonic subdivision has found 

its way into theoretical treatises once too often, especially on masses of 

“accurate theory” derived from studying music on lutes. Besides we all 

know that primitive and folk flutes –both in the temporal / prehistoric sense 

and in the controversial cultural context– exhibit a strong tendency to come 

out thus drilled and it is the author’s assessment that at least some of the 

most prominent and wide-spread musical systems in the world (see VI at 

end of paper) trace their origins in this very principle of scale- and mode-

generation. 

 

 

                                                                                                                                  
finally, instead of 1, the increment in the upcoming equations is l/D. But there is nothing in 

the theorem presupposing rationals, so the ideas expressed here apply perfectly well in any 

situation; irrational or transcendental interval quotients are also embraced. For instance, we 

could arithmetically trisect interval [1, ] a. by taking arithmetic subdivision points i. (2 + 

) / 3, ii. (1 + 2) / 3, b. by defining ratios determining the three consecutive arithmetic 

third parts, i.e. i. (2 + ) / 3, ii. (1 + 2) / (2 + ), iii. 3 / (1 + 2) and, finally, c. by 

reversing their order so as to obtain the three consecutive upwards harmonic third parts. 
5
 The only case where this principle is rigorously applicable is strict 2-part voicing, where 

symmetry between “upwards” and “downwards” is implicit. 
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3.3. Practicability of harmonic subdivisions 

The (upwards) harmonic subdivision of an interval is easy to conceive and 

quite straightforward to implement in the construction and playing of 

conventional musical instruments; but at the same time it has proved tricky 

and confusing in its computations. On the contrary, the arithmetic 

subdivision has shown itself to be impracticable in instrument-building and 

in music-making –in fact, probably few instruments in the world are drilled 

or fretted arithmetically–, but its theory is computationally elementary. By 

employing the present theorem, all one has to do is to perform an arithmetic 

subdivision and then simply reverse the order of the outcome. 

 

3.4. Generality of approach 

No loss of generality occurs due to measuring the entire effective rather 

than actual length for the lower point of our interval, or even due to failing 

to do so. It is just a matter of convention. The results hold for subdividing 

an intermediate segment too, if we consider and treat the root of our 

reference interval as a “temporary” “nut” or “far end of the flute”, a fact 

allowing study of broken flutes with at least three holes. For a complete 

study, one ought to substitute relevant effective for actual length at the 

flute’s farthest section.
6
 

 

3.5. The harmonic mean 

The leading application of the principle and procedure in question here has 

been one of bisecting a given interval, whence the choice of terminology in 

this paper. In this case, the simplest one of all, k = 2, and j as well as  can 

only take on intermediate extra value of unity. 

Greek theorists used to define three chief intervallic “midpoints”, which 

they used to call “arithmetic”, “geometric” and “harmonic” means. By the 

present theorem, the “harmonic mean” becomes one special instance of a 

general category of subdivisions that has been incompletely understood. 

Here, the adjective “harmonic” has been picked up directly from the Greek, 

and the optional qualifying adverb “upwards” has been applied for clearing 

out and constantly reminding its particular innate harmonic function with 

respect to the top note as determined above. 

                                                 
6
 What’s more, one can also take care of an occasional unequally sized finger-hole in 

appropriate cases, by applying familiar formulae of Musical Acoustics towards computing a 

virtual adjusted alternative / substitute positioning of an equivalent “virtual equally sized” 

finger-hole in lieu of an actual one. 
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Classical writers gave us the formula for the “harmonic mean”, without 

so much as once convincingly justifying why they would place the much 

more intricate algebraic expression 2ab / (a + b) in the same basket as the 

natural ordinary ones for arithmetic and geometric means, i.e. (a + b) / 2 

and (ab)
1/2 

respectively.
7
 There is a shortage of relevant comments in the 

literature; it is as if they either never realized the fact that here they were 

talking about something as conspicuous as “halving” by means of a 

midpoint fingering or bridge or fret or finger-hole –a practice with apparent 

historical origins in folk music since the very dawn of mankind– or had 

some reason to disregard or conceal it. Even the explanations they gave for 

it are at least farfetched. On the other hand, it seems that hosts of scholars 

commenting in later times have been tending to a. miss the musical nature 

and generative process of the “harmonic mean”, b. fail to perform the 

algebraic operations in the formula so as to relate it to some physical 

meaning, c. never ask themselves how and why such a curious or, say, 

intricate concept ever made its way amidst two other perfectly 

straightforward ones, occasionally driven to think that there may be a 

mystical significance behind it, or, much later, fascinated by the lovely 

mathematical properties and exciting applications of “harmonic sequences” 

and means in statistics and in modern mechanics. 

In fact, soon several of this mean’s features were perceived, as, for 

instance, i. that the product of arithmetic and harmonic mean equals the 

square of the geometric mean, ii. that the geometric mean of two numbers is 

the same as the geometric mean of their arithmetic and harmonic means, the 

combination of these two thus affording a very clever and quickly 

convergent way for calculating square roots.
8
 Yet other things have been 

long missed, such as the potential of defining classes of multiple harmonic 

subdivisions / sequences way beyond “halves”, or the plausible likelihood 

that the very idea had originated in musical practice tens of millennia into 

the past, quite possibly on Paleolithic flutes such as Cro-Magnon ones 

found in the Madeleine caves at Dordogne in France and dated between 1 

and 4 tens of millennia b.C. Slight variations of the same concept are 

visually conspicuous on a 9000-year-old batch of flutes unearthed in 

Central China not long ago. 

                                                 
7
 The term harmonicos is first mentioned in a surviving fragment by Archytas (5

th
 c. b.C.), 

as a synonym to (mesos) hypenantios (= subcontrary). There is an example of an involved 

and rather confusing explanation of its nature in Nicomachus Gerasenus’s (2
nd

 c. a.D.) 

Arithmētikē eisagōgē II.25; see bibl. 
8
 Some alternative equations: a. AMHM = GM

2
, b. HM = GM

2
/AM, c. GM = (AMHM)

1/2
. 

Iterations quickly narrow down the interval inside which the geometric mean sits. 
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4. Historical examples 

Harmonic subdivisions are to be found in the writings of several theorists in 

classical and medieval times. Two notable modern scholars are also cited. 

 

4.1. Plato 

The harmonic mean is a fundamental concept in the proportions of the 

(material) cosmic psyche in Plato’s (427?-347 b.C.) Timæus,
9
 a dialogue 

essentially laying out Pythagorean doctrine in contexts far surpassing plain 

arithmetic, music or geometry. 

 

4.2. Eratosthenes 

The chromatic pycnon of Eratosthenes (275-194 b.C.)
10

, 20/19 and 19/18 –a 

structure duplicated by ibn Sînâ or Avicenna (980-1037) in his own genus 

VIII (chromatic chroa 1)–
11

 is a harmonic bisection of a grave tone (10/9) 

into two half-tones; his enharmonic pycnon, 40/39 and 39/38, is a harmonic 

bisection of his lower half-tone. The two subdivisions put together can be 

said to form a partial / elliptical harmonic quadrisection of the grave tone, 

with the third point omitted (40/39, 39/38, 38/36). 

 

4.3. Didymus 

The diatonic ditone / just major third of Didymus (63 b.C.-10 a.D.) is 

harmonically bisected into grave and epogdoos tones, 10/9 and 9/8 –a 

practice adopted by ibn Sînâ (genus V, diatonic chroa 5) and, much later, 

also by Rameau (1683-1764)–;
12

 the enharmonic pycnon of the same 

theorist, 32/31 and 31/30, is a harmonic bisection of a just semitone 

(16/15); however ibn Sînâ in his own genus XII (enharmonic chroa 1) un-

reverses the order of the quarter-tones (31/30 and 32/31), establishing an 

arithmetic bisection. A Didymus-Rameau type of just diatonic “lydian” or 

“major” tetrachord [C, D-, E, F]
13

 is attainable by an elliptical harmonic 

quintisection: by equitably splitting the space of a fourth 5 ways and 

omitting the 1
st
 and 3

rd
 ordinal points (i.e. taking the 0

th
, 2

nd
, 4

th
 and 5

th
 

ones, cf. A.4.3 in App. A).
14

 

                                                 
9
 In Plato chapters Z (VII) and H (VIII). 

10
 For the ratios of Eratosthenes and of Didymus, further on, see Ptolemy’s Harmonics 

2.14, in Barker: 346-349. For Ptolemy’s chroæ see ibid: 1.14 and 1.15: 305 ff. 
11

 For this and all other citations of ibn Sînâ see his pp. 145 ff. See also Jedrzejewski. 
12

 Rameau, example I.7: 28. 
13

 Actually: the “relative major” / median mode of the just minor scale. 
14

 This is noted as “the birth of our major scale” in Schlesinger: 52; cf. footnote 2. Long 

folk flutes in the Balkans and in Anatolia constitute a special category (kaval et al.) drilled 
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4.4. Ptolemy 

Ptolemy’s (2
nd

 c. a.D.) most striking and celebrated chroa, the homalon 

diatonon (= smooth diatonic), is a genuine harmonic trisection of the 

perfect fourth (4/3) into 12/11, 11/10 and 10/9, extant from time 

immemorial (though we are never explicitly told so), also to be found in ibn 

Sînâ (genus VII, diatonic chroa 7). It should not be missed that this 

structure can be extended upwards as a quadrisection of the perfect fifth by 

just keeping the three intervals in place and topping with an extra 

(epogdoos) tone of 9/8 (cf. A.2.3 and A.3.2 in App. A). 
 

4.5. ibn Sînâ / Avicenna 

In addition to these, ibn Sînâ, in the “ditone” of his genus II (diatonic chroa 

2), furnishes an example of a supermajor third (9/7) harmonically bisected 

into 9/8 and 8/7 –tone and supertone.
15

 The structure goes [28/27, 9/8, 8/7] 

or [ , T, T ] and the corresponding notes from C are [C, D -, E , F].
16

 
 

4.6. Eccentric splits 

Ptolemy has also coined a particular brand of eccentric splits, which are in 

fact disguised elliptical trisections –with the 2
nd

 dividing point omitted. His 

chroæ are filled with arithmetic instances of this idea. Yet there is also a 

harmonic one in his unique soft “diatonic” [21/20, 10/9, 8/7] or [S , t, T ], 

where the two lower steps can be rewritten as 21/20, 20/18. The structure is 

duplicated by ibn Sînâ as his genus III (diatonic chroa 3) (notes from C: [C, 

D , E , F]). 
 

4.7. Just / Zarlino minor chords 

It should not be neglected that, as the above table shows, just minor triadic 

and tetradic chords (e.g. in Zarlino’s tuning, a.D. 1562) are a harmonic 

bisection of the perfect fifth and a harmonic trisection of the octave 

respectively, thus giving minor just harmony a character of harmonic 

subdivisions and showing just minor chords to be upwards-orientated and 

                                                                                                                                  
along this principle but in full chromatic catapycnosis, i.e. with all these six holes as in 

App. A: A.4.3 actually present (plus some more). 
15

 All in all, ibn Sînâ’s structures contain i. seven means (three arithmetic, one geometric 

and three harmonic), ii. one harmonic trisection. 
16

 It can also be viewed as an elliptical septisection: 28/27, 27/24, 24/21. Both Archytas and 

Ptolemy give a (tonic) diatonic structure of [28/27, 8/7, 9/8], [ , T , T], [C, D -, E -, F] 

instead, with the upper part halved arithmetically rather than harmonically. For Archytas’s 

ratios see Ptolemy’s Harm. 1.13 in Barker: 43-52. 
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thus, effectively, upside down. In contrast, the arithmetic trisection of the 

octave is a just major chord in second inversion (App. A: A.2.1). 

 

4.8. Prolemy’s homalon diatonon 

The property cited above at example 3, regarding Ptolemy’s homalon 

diatonon, is an instance of the fact that an (upwards) harmonic subdivision 

can be extended past either edge. The progressive expansion effect makes 

the products of the subdivision, i.e. its steps, differ greatly in width from 

end to end when the subdivided reference interval is wide, say of the order 

of the octave. 

 

4.9. Boethius 

Roman music theorist Boethius (480-524 a.D.) used a method based on 

string lengths quite extensively. Harmonic divisions come in abundance in 

his work, yielding series of ratios of whole numbers that can be deemed 

nothing short of peculiar. Here is an account of his method and results, as 

worked out and tabulated by Joe Monzo: 

 between E+ and “G ”: [512/499, 499/486, 486/473, 473/460]  

       (increment: 13); 

 between “G ” and “F ”: [460/459, 459/458]; 

 between “F ” and G: [458/445, 445/432] (increment: 13).
17

 

 

4.10. Fârâbî 

Fârâbî (878-951) has been the recipient of major influences from ibn Sînâ. 

In his famous treatise Kitâb al-mûsîqî al-kabir, this celebrated medieval 

scholar gives a list of 13 mathematically expressed “Greek” genera. In it he 

includes a number of Greek-based tetrachords that are all more or less 

mirrored (i.e. turned upside down), among some others which he himself 

has devised by way of mathematical considerations. All of them are put 

down as string lengths in the frettings of model lutes, thus spanning large 

portions of his integrated modal system. 

Fârâbî distinguishes his “Greek” genera into two categories: a. soft, 

ordered (meaning ones with pycnon, i.e. enharmonic and chromatic indi-

scriminately) and b. strong (i.e. diatonic). In the “Greek” tetrachords Fârâbî 

lists, as compared to the genuine ones, some (upwards) harmonic partitions 

turn out arithmetic and vice versa, though not all. Among the former, one 

finds five harmonic divisions; two of these are true (“continuous”) 

bisections, cited below in J.P.N. Land’s Latinized nomenclature –the other 

                                                 
17

 Boethius R.15.22 (944), folios 48v-65v. Also see Monzo. 
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three are along the line of Ptolemy’s (“discontinuous”) eccentric splits / 

elliptical trisections:
18

 

Genus molle, ordinatum / continuum :– 

a. laxum: [5/4, 32/31, 31/30], [III, q, Sp], [C, E, E q, F], a quasi-reversal 

of Didymus’s enharmonic; 

b. mediocre: [6/5, 20/19, 19/18], [iii, , S], [C, E , E, F], a quasi-

reversal of Eratosthenes’s chromatic.
19

 

From the scope of this paper, though, the most striking feature in Fârâbî’s 

writings is indeed his analysis of flutes and their finger-holes; his basic 

approach concentrates on an aliquot drilling and is essentially very close to 

ours.
20

 

 

4.11. Pachymeres 

Byzantine scholar Georgius Pachymeres (1242-c. 1310) repeats all of 

Ptolemy’s chroæ plus adds three other possibilities of dividing a tetrachord 

into three superparticular steps, but states that they are unused by 

musicians.
21

 Two of these, as they would be laid out in a sense “epi to oxy” 

(i.e. going up), both contain harmonic bisections: i. [16/15, 15/14, 7/6], [S, 

 , iii ], [C, D , D , F] and ii. [14/13, 13/12, 8/7], [T u, Tn, T ], [C, D u, 

E , F]; the former is a mirroring of al Fârâbî’s genus molle, ordinatum, a. 

continuum, acre, while both are similar to ibn Sînâ’s genera IV and V 

(diatonic chroæ 4 and 5), with harmonic bisections in lieu of arithmetic 

ones.
22

 

 

4.12. Schlesinger 

Kathleen Schlesinger (1862-1953) is a modern scholar meriting a special 

citation of some length. Her imaginative work is discredited by many. Her 

basic idea, largely inspired by the study of primitive flutes and of Ptolemy’s 

homalon diatonon, was that the Greek pitch system has its source in 

original equidistant and equal-sized prototypes of flute / aulos drillings, 

covering entire octave spans. This is not the place for a detailed critique of 

her theses, or for showing why her analytical results could not possibly be a 

                                                 
18

 In Helmholtz-Ellis app. xx, section K, II: table of non-harmonic scales: 514-515. 
19

 All in all, Fârâbî’s list contains i. eight means (three arithmetic, three geometric and two 

harmonic), ii. four eccentric splits / disguised elliptical trisections (one arithmetic, the rest 

harmonic), iii. one full arithmetic trisection. 
20

 al-Fârâbî: 261 ff. 
21

 Pachymeres folio 52v; see Tannery: 111. 
22

 al-Fârâbî ibid; also see Helmholtz-Ellis ibid: 515, tetrachord I.a.3 (#17); cf. section 4.4 

above, as well as footnotes 10 and 11. 
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fair actual account of what we know as the classical Greek musical system. 

For our purposes it is sufficient to start thus: Schlesinger was absolutely 

correct in her principle, but she lost perspective in applying it over the edge. 

More specifically, she was perfectly aware of the narrow results of the 

theorem in this paper. She focused not on string fingerings but on aulos 

drillings. She elaborated to the point of writing how an equidistant drilling 

is generated by a “natural instinct of man” (cf. 3.3 above) and how it 

produces the “reversal” of a segment of the harmonic series, which she 

called a “modal series”,
23

 much as this again is not true of all classes of 

cases.
24

 

The main pragmatic criticism exercised in the literature against her 

views is that her assumption about this system is contradicted by 

archaeological evidence of prehistoric and Greek flutes / auli found.
25

 This 

line of criticism can be dismissed, on account of 

a. the Cro-Magnon and many other prehistoric flutes, such as the nearly 

isometric batch from China; 

b. the fact that all heptatonic Greek and Roman flutes found so far are 

sophisticated products of city culture, their intonation having already 

undergone advanced Pythagoreanizing changes for conforming to 

official practice of the times; 

c. Aristoxenus’s assertion that, in Athens of his time, a parallel classical 

auletic school of music was teaching on the basis of a scale with 2 

intervals of ¾ of a tone and 1 of a tone at the bottom as seen on the 

drilling of auli,
26

 a structure rooted in the results at App. A: A.7.2 and 

directly pointing towards chapter 5 below. 

d. considerations mentioned or hinted at in this paper,
27

 broadening the 

scope by introducing more general concepts, such as virtual dividing 

points / elliptical spacing; for instance, such methodology is applicable 

to the age-old Islamic nay, or to unpublished neolithic flutes recently 

excavated in Western Macedonia Greece. 

Thus, despite lacking hard archaeological evidence of Greek auli with 

equally spaced holes, if we are to trust Aristoxenus as a creditable literary 

                                                 
23

 Schlesinger: 40 and 4. 
24

 It is not true if the corresponding arithmetic progression is not a segment of the harmonic 

series (cf. footnote 3) or –which is the same– if the increment is not 1. This would occur 

either because of an irrational interval subdivided, or of l being an integer multiple of D 

other than its own power (cf. footnote 4). 
25

 See for example West: 96-97. 
26

 Aristoxenus II.26 ff: 108. 
27

 Cf. footnote 2. 
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source of evidence at all, we probably must accept that such auli existed 

and were conceivably widespread, on the merit of this passage, much as he 

himself frowns on the idea. 

Schlesinger’s work never assumed the format of theorem, proof and 

study; thus a lot of important side issues stemming from mathematical 

formality and present in this paper never came up in her texts. On the other 

hand, regarding over-application in her derivation, computation and/or 

description of the Greek system, it is the author’s conviction that her logic 

works, as long as one confines oneself a. to the older auletic system, 

obviously parental to the (syntonic) Greek one, yet still extant in parallel to 

it throughout the classical era, b. to one-hand diatonic flutes and auli, 

spanning a range considerably smaller than an octave. 

Two relevant remarks are due. First, an one-hand flute can span an 

octave if it is short and the scale is pentatonic, thus her method could have 

been directly applicable there, were it not for the distortion cited above in 

4.8.
28

 Second, in heptatonic environments, an one-hand flute spans a fourth, 

a fifth or a sixth. Third, the generalized ambiguity of drillings and scales in 

the segment above the fifth, which stretches from an incomplete 

intermediate stage of hexatones to an uneasy variety of intervallic 

compositions observed in folk flutes, combined with the given conjunct – 

disjunct structure of the classical Greek, Byzantine and Islamic systems, 

shows that the un-ambiguity is restricted in the lower fifth and in its 

extensions downward, and suggests an independent stage of drilling above 

it. Therefore Schlesinger’s heptatonic approach ought to have narrowed 

itself down to a model nucleus of a fourth / fifth, rather than being stretched 

out to a heptatonic octave, an over-application that gave birth to her familiar 

controversial, contested and unrealistic results, exciting as they may be. 

Indeed, a criticism Schlesinger has repeatedly received is that her 

division of the octave is arbitrary and extravagant and that, being 

unsupported by evidence, it is a game of her mind and sounds wrong. The 

author is willing to partially accept this criticism, within the proper scope 

though. There is indeed truth in all such theoretical objections put forth, yet 

they only modify and correct parts of her analysis and her conclusions, 

without annulling her entire basic idea. Had she applied the exact same 

principle to the octave not in one but in two pieces –in a context amply 

                                                 
28

 She does indeed try to make up by omitting (/ “virtualizing”) one or more notes produced 

in most of her “modal series”. Apart from the fact that exceptions are mathematically 

unacceptable, her method relativizes and pulverizes her very basic assumption of applying 

aliquot drilling throughout the octave. 
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supported by ethnomusicological research and in the way this paper is 

doing in its next chapter (5) –, and had she refrained from speaking of the 

integral Greek system as it is known, her results would have been both 

credible and accredited by abundant evidence. 

 

4.13. Sachs 

The fact of the early emergence of musical systems by aliquot partitions of 

effectively 1-dimensional sound sources could not pass and indeed has not 

passed unnoticed by musicology. It is a staple approach in the pioneering 

work of Curt Sachs (1881-1959), who also ventured to investigate the said 

emergence from an “equipartition” of flutes and made express note of this 

particular property as found in Ptolemy’s homalon.
29

 

 

5. Historical prototypes of musical (ur-)scales 

To compensate for the distortion brought about by a large aliquot division 

(say an octave-wide one), as mentioned in section 4.8, a certain practice can 

be applied and has indeed been implemented in many cultures throughout 

history: the reference interval can be split into two conjunct pieces and then 

both can be subdivided separately. The most prominent and relevant 

practice is to carry out two harmonic subdivisions applied to a conjunct 

compilation of a perfect fourth on top of a perfect fifth (or the other way 

around). Apparently this practice, the only one in perfect compatibility with 

overblown flutes and with structures involving conjunct – disjunct 

tetrachords, has given mankind two historic scales / modes of conceivable 

great prominence. 

a. A fifth split three ways topped by a fourth split two ways:
30

 

[9/8, 8/7, 7/6] [8/7, 7/6] 

[T, T , iii ] [T , iii ] 

[tone, supertone, subminor third] [supertone, subminor third]  

[C, D, E , G, A , C΄], or [F, G, A , C΄, D ΄, F΄] 
 

This mode could have served as the archetypal scale for all primary 

pentatonic modes, as well as for something else: for an alternative viewing 

as a system of two identical conjunct elliptical tetrachords (trichords of a 

fourth) atop a proslambanomenos tone, with the tonal centre at the 

proslambanomenos, thus: 

[9/8 [8/7, 7/6]] [8/7, 7/6], or [T [T , iii ]] [T , iii ] 

                                                 
29

 Sachs: 75 and 213. 
30

 See A.2.2 and A.1.3 in Appendix A. 
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Our familiar anhemitonic pentatones seem to be octave species of a slight 

tonal modification thereof, a fact visually conspicuous on the drilling of a 

shakuhachi: 

[9/8 [9/8, 32/27]] [9/8, 32/27] 

[T [T, χ]] [T, χ] 

[[tone [tone, trihemitone]] [tone, trihemitone] 

[C, D, E+, G, A+, C΄], or [F, G, A+, C΄, D΄, F΄] 
 

b. A fifth split four ways topped by a fourth split three ways:
31

 

[12/11, 11/10, 10/9, 9/8] [12/11, 11/10, 10/9] 

[Tw, Tm, t, T] [Tw, Tm, t] 

tones: [[ephendecatos or “elassōn”, grave epidecatos or “elachistos”, 

epogdoos or “meizōn”] epogdoos or “meizōn”] [ephendecatos or 

“elassōn”, grave epidecatos or “elachistos”, epogdoos or “meizōn”] 

[D, Ew, F+, G, A+, Bw+, C+΄, D΄], or [C, Dw, E , F, G, Aw, B , C΄]  
 

This one has almost certainly served as the archetypal / prototypal scale for 

all primary heptatonic modes. It exhibits the interesting feature seen in 

section 4.4: its lower tetrachord also forms a perfect fourth split three ways, 

so the entire formation can be alternatively viewed and treated as a 

disjunction of two homalon diatonon tetrachords. It is found on hosts of 

primitive and folk heptatonic or semi-heptatonic flutes and reeds throughout 

the globe in its true form. A minute tonal modification thereof, also found 

on many folk flutes, especially round the Eastern Mediterranean, as well as 

on the Baroque recorder itself,
32

 seems to constitute the direct foundation of 

both Middle-Eastern and Byzantine musical tonal systems, and is literally 

cited as such by Zalzal (8
th

-9
th

 c.), Fârâbî and Chrysanthus of Madytus 

(1770?- 1846):
33

 

[[12/11, 88/81, 9/8] 9/8] [12/11, 88/81, 9/8] 

[[Tw, tm, T] T] [Tw, tm, T] 

                                                 
31

 See A.3.2 and A.2.3 in Appendix A. 
32

 This variation lowers just one of the homalon notes by a Didymean comma and is 

attained by drilling the corresponding equidistant hole a bit smaller. This fact does indicate 

that, in this particular instance, the story told by the positioning of holes may be different 

from that told by their sizes (i.e. original tuning vs. subsequent adjustments). Thus, multi-

parameter acoustical formulae can be applica-ble in stages. There are analytical accounts of 

this procedure in Lekkas 2003 and 2006. By the hard core of mathematical intuition, where 

there be one instance of something there shall be others. 
33

 See i. al-Fârâbî: 105 ff and tables at 254 ff, ii. Chrysanthus: 28. 



Harmonic Theorem 64 

tones: [[ephendecatos or “elasson”, grave epidecatos or “elachistos”, 

epogdoos or “meizon”] epogdoos or “meizon”] [ephendecatos or “elasson”, 

grave epidecatos or “elachistos”, epogdoos or “meizon”] 

[D, Ew, F, G, A+, Bw+, C΄, D΄], or [C, Dw, E -, F, G Aw, B -, C΄]  
This is the very historic scale affording a systemically accountable and 

faithful succession of step sizes very nearly of [¾, ¾, 1 // 1 // ¾, ¾, 1] tones 

(cf. 4.12.4 above). Here are, then, the names given precisely to the former 

set of musical notes, conventionally on root D, in the current nomenclature 

employed in Byzantine chant, constituting its basic nominal “soft” diatonic 

scale: 

[A, o, , I, KE, , ΄, A΄]34
 

 
Appendix A: Intervallic results of several key arithmetic and (upwards) harmonic 

subdivisions 

A.1. Bisections 

k = 2: arithmetic and (upwards) harmonic means 

 
A.1.1. the octave (VIII, R = 2/1, r = 1/2) 

arithmetic “halves”    (upwards) harmonic “halves” 

3/2, 4/3      4/3, 3/2 

V, IV      IV, V 

fifth, fourth     fourth, fifth 

C, G, C΄      C, F, C΄ 

A.1.2. the perfect fifth (V, R = 3/2, r = 1/3) 

arithmetic “halves”    (upwards) harmonic “halves” 

5/4, 6/5      6/5, 5/4 

III, iii      iii, III 

2 thirds: major, minor    2 thirds: minor, major 

C, E, G      C, E , G 

A.1.3. the perfect fourth (IV, R = 4/3, r = 1/4) 

arithmetic “halves”    (upwards) harmonic “halves” 

7/6, 8/7      8/7, 7/6 

iii , T       T , iii  

subminor third, supertone    supertone, subminor third 

C, E , F      C, D , F 

A.1.4. the major third (III, R = 5/4, r = 1/5) 

arithmetic “halves”    (upwards) harmonic “halves” 

9/8, 10/9      10/9, 9/8 

T, t      t, T 

2 tones: epogdoos and grave (epenatos)  2 tones: grave (epenatos) and 

epogdoos 

C, D, E      C, D-, E 

                                                 
34

 See Lekkas 2006. 
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A.1.5. the minor third (iii, R = 6/5, r = 1/6) 

arithmetic “halves”    (upwards) harmonic “halves” 

11/10, 12/11     12/11, 11/10 

Tm, Tw      Tw, Tm 

2 tones: epidecatos and ephendecatos  2 tones: ephendecatos and epidecatos 

C, Dm, E      C, Dw, E  

A.1.6. the supertone (or ephebdomos tone) (T , R = 8/7, r = 1/8) 

arithmetic “halves”    (upwards) harmonic “halves” 

15/14, 16/15     16/15, 15/14 

 , S      S,   
superdiesis, just semitone                                              just semitone, superdiesis 

C, C , D      C, D , D  

A.1.7. the (epogdoos) tone (T, R = 9/8, r = 1/9) 

arithmetic “halves”    (upwards) harmonic “halves” 

17/16, 18/17     18/17, 17/16 

S,       , S 

larger and smaller Quintilianian half-tones  smaller and larger Quintilianian half-

tones 

C, D , D     C, C , D 

A.1.8. the grave (or epenatos) tone (t, R = 10/9, r = 1/10) 

arithmetic “halves”    (upwards) harmonic “halves” 

19/18, 20/19     20/19, 19/18 

S,       , S 

larger and smaller Eratosthenic half-tones  smaller and larger Eratosthenic half-

tones 

C, D , D-     C, C , D- 

A.1.9. the just semitone (S, R = 16/15, r = 1/16) 

arithmetic “halves”    (upwards) harmonic “halves” 

31/30, 32/31     32/31, 31/30 

Sp, q      q, Sp 

larger and smaller Didymean quartertones  smaller and larger Didymean 

quartertones 

C, D p, D      C, C q, D  

 

A.2. Trisections 

k = 3: arithmetic and (upwards) harmonic “third parts” 

A.2.1. the octave (VIII, R = 2/1, r = 1/2) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

4/3, 5/4, 6/5     6/5, 5/4, 4/3 

IV, III, iii     iii, III, IV 

fourth, major and minor thirds   minor and major thirds, fourth 

C, F, A, C΄     C, E , G, C΄ 

A.2.2. the perfect fifth (V, R = 3/2, r = 1/3) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

7/6, 8/7, 9/8     9/8, 8/7, 7/6 

iii , T , T     T, T , iii  

subminor third, supertone, tone   tone, supertone, subminor third 
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C, E , F, G     C, D, E , G 

A.2.3. the perfect fourth (IV, R = 4/3, r = 1/4) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

10/9, 11/10, 12/11    12/11, 11/10, 10/9 

t, Tm, Tw     Tw, Tm, t 

3 tones: grave, epidecatos, ephendecatos  3 tones: ephendecatos, epidecatos, 

grave 

C, D-, Em, F     C, Dw, E , F 

A.2.4. the major third (III, R = 5/4, r = 1/5) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

13/12, 14/13, 15/14    15/14, 14/13, 13/12 

Tn, T u,        , T u, Tn 

2 Avicennean spondeia, superdiesis   superdiesis, 2 Avicennean spondeia 

C, Dn, E , E     C, C , D u, E 

A.2.5. the minor third (iii, R = 6/5, r = 1/6) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

16/15, 17/16, 18/17    18/17, 17/16, 16/15 

S, S,      , S, S 

just semitone, 2 Aristidean half-tones                           2 Aristidean half-tones, just semitone 

C, D , E , E      C, C , D, E  

A.2.6. the (epogdoos) tone (T, R = 9/8, r = 1/9) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

25/24, 26/25, 27/26    27/26, 26/25, 25/24 

, Sn, u     u, Sn,  

3 “chromatic dieses” (first one: just)  3 “chromatic dieses” (last one: just) 

C, C -, Dn, D     C, C u, D +, D 

A.2.7. the grave (or epenatos) tone (t, R = 10/9, r = 1/10) 

arithmetic “third parts”    (upwards) harmonic “third parts” 

28/27, 29/28, 30/29    30/29, 29/28, 28/27 

 , I , k     k, I ,   

sublimma, 2 “hemiolic dieses”   2 “hemiolic dieses”, sublimma 

C, D -, D -, D-     C, C k, C , D- 

 

A.3. Quadrisections 

k = 4: arithmetic and (upwards) harmonic “quarters” 

A.3.1. the octave (VIII, R = 2/1, r = 1/2) 

arithmetic “quarters”    (upwards) harmonic “quarters” 

5/4, 6/5, 7/6, 8/7     8/7, 7/6, 6/5, 5/4 

III, iii, iii , T      T , iii , iii, III 

maj., min. and submin. thirds, supertone  supertone, submin., min. and maj. 

thirds 

C, E, G, B , C΄     C, D , F, A , C΄ 

A.3.2. the perfect fifth (V, R = 3/2, r = 1/3) 

arithmetic “quarters”    (upwards) harmonic “quarters” 

9/8, 10/9, 11/10, 12/11    12/11, 11/10, 10/9, 9/8 

T, t, Tm, Tw     Tw, Tm, t, T 
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4 tones: epogd., grave, epidec., ephendec.  4 tones: ephendec., epidec., grave, 

epogd. 

C, D, E, F m, G     C, Dw, E , F, G 

A.3.3. the perfect fourth (IV, R = 4/3, r = 1/4) 

arithmetic “quarters”    (upwards) harmonic “quarters” 

13/12, 14/13, 15/14, 16/15    16/15, 15/14, 14/13, 13/12 

Tn, T u,  , S     S,  , T u, Tn 

2 Avic. spondeia, superdiesis, just semitone  just semitone, superdiesis, 2 Avic. 

spondeia 

C, Dn, E , E, F     C, D , D , Eu, F 

A.3.4. the (epogdoos) tone (T, R = 9/8, r = 1/9) 

arithmetic “quarters”    (upwards) harmonic “quarters” 

33/32, 34/33, 35/34, 36/35    36/35, 35/34, 34/33, 33/32 

Sm, Sw,  , I     I ,  , Sw, Sm 

4 quartertones: 3 Quintilianian, 1 Archytean  4 quartertones: 1 Archytean, 3 

Quintilianian 

C, D m, D , D , D    C, C , C , Dw, D 

 

A.4. Quintisections 

k = 5: arithmetic and (upwards) harmonic “fifth parts” 

A.4.1. the octave (VIII, R = 2/1, r = 1/2) 

arithmetic “fifth parts”    (upwards) harmonic “fifth parts” 

6/5, 7/6, 8/7, 9/8, 10/9    10/9, 9/8, 8/7, 7/6, 6/5 

iii, iii , T , T, t     t, T, T , iii , iii 

an assortment of thirds and tones   an assortment of tones and thirds 

C, E , G , A , B , C΄    C, D-, E, F , A, C΄ 

A.4.2. the perfect fifth (V, R = 3/2, r = 1/3) 

arithmetic “fifth parts”    (upwards) harmonic “fifth parts” 

11/10, 12/11, 13/12, 14/13, 15/14   15/14, 14/13, 13/12, 12/11, 11/10 

Tm, Tw, Tn, T u,       , T u, Tn, Tw, Tm 

an assortment of spondeia, superdiesis  superdiesis, an assortment of 

spondeia 

C, Dm, E , Fn, G , G    C, C , D u, E, F w, G 

A.4.3. the perfect fourth (IV, R = 4/3, r = 1/4) 

arithmetic “fifth parts”    (upwards) harmonic “fifth parts” 

16/15, 17/16, 18/17, 19/18, 20/19   20/19, 19/18, 18/17, 17/16, 16/15 

S, S, , S,      , S, , S, S 

5 miscellaneous half-tones    5 miscellaneous half-tones
35

 

C, D , E , E , F , F    C, C , D-, D , E, F 

 

Appendix B: Notes on terminology and notation employed 

Several of the intervallic notations and terms used in this paper have been worked out by 

the author for purposes of theoretical convenience and are not or may not be generally 

recognized. 
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 Cf. footnote 14. 
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 “+” (plus or acute) and “-” (minus or grave) have their habitual meaning of a Didymean 

comma (81/80, roughly 
1
∕9 of a tone) sharper and flatter than the corresponding pitches 

in a just scale, respectively (e.g. F+, D-); the usual natural pitches are meant in the 

context of Zarlino’s tuning; thus, “piano” A, E, D , E  and B  are annotated, 

respectively, A+, E+, D -, E - and B -. 

 “ ” (super) and “ ” (sub) are used for corresponding septimal pitches; in most cases 

they raise and lower the note, respectively, by roughly a quartertone; “ ” (about three 

quartertones sharp) and “ ” (about three quartertones flat) are meant to be called 

“supersharp” and “subflat”, respectively. 

 “m” and “w” are used as alteration signs for undecimal notes; in most cases they both 

flatten the note by about a quartertone; “ m” and “ w” are compound undecimal 

alterations, both typically raising the note by about a quartertone; “ m” and “ w” are 

two other compound undecimal alterations, both typically lowering the note by about 

three quartertones; 

 “n” and “u” are used as alteration signs for tridecimal notes in a way roughly similar to 

“m” and “w”, causing slightly different flattening effects; the case with 

novemvigintesimal “” and “k” and with untrentesimal “p” and “q” is also similar. 

 “”, “” and “”, “” are septendecimal and novemdecimal altering operators with 

nearly negligible pitch-shifting effects. 

 “” and “” are trevigintesimal altering operators with slight (comma-sized) sharpening 

and flattening effects respectively. 
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