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Abstract  

Over the past years, Artificial Neural Networks (ANN) have been successfully used 

for the modelling in a great number of geoscience applications. In this paper we dis-

cuss the architecture and the way ANN work, presenting a specific learning algo-

rithm which has been applied in the estimation of landslide susceptibility within a 

GIS environment.  

Key words: Landslide Susceptibility, Data Mining, Artificial Neural Networks, Geo-

graphic Information System. 

Περίληψη 

Τα τελευταία χρόνια, τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) έχουν επιτυχώς 

χρησιμοποιηθεί για την μοντελοποίηση και προσομοίωση γεωλογικών διεργασιών από 

ένα μεγάλο πλήθος γεω-επιστημόνων. Σε αυτή την εργασία γίνεται μια συνοπτική 

περιγραφή της αρχιτεκτονικής και του τρόπου λειτουργίας των ΤΝΔ, παρουσιάζοντας 

με περισσότερη λεπτομέρεια τον αλγόριθμο οπισθόδρομης μετάδοσης σφάλματος για 

την εκτίμηση της κατολίσθησης επιδεκτικότητας μέσω ενός συστήματος ΓΣΠ 

(Γεωγραφικού Συστήματος Πληροφοριών) 

Λέξεις κλειδιά: Κατολισθητική Επιδεκτικότητα, Εξόρυξη Δεδομένων, Τεχνητά 

Νευρωνικά Δίκτυα, Γεωγραφικά Συστήματα Πληροφοριών. 

 

1. Introduction  

The use of artificial neural networks (ANN) in problem solving has received considerable 

attention in recent years in various geo - engineering applications. This is mainly due to the 

capability of these networks to solve problems, in which the involved parameters are either large 

in number or are not fully understood. In the case of landslide hazard and susceptibility analysis, 

ANNs have been widely used for landslide susceptibility zonation (Lee et al., 2003, Lu & 

Rosenbaum, 2003, Lee et al., 2004, Ermini et al., 2005, Gomez & Kavzoglu, 2005). Different 

reasons of applying such methods are reported by many researchers; however their reports share a 

common belief that the prediction of future landslide events is based on complex, unknown, and 

non-linear relationships between mass movement distribution and conditioning factors (Aleotti & 

Chowdhury, 1999, Lee et al., 2003, Neaupane & Achet, 2004, Ferentinou & Sakellariou, 2007, 

Pradhan & Lee, 2010). Current research has proven that ANNs, especially multilayer perceptrons 

XLVII, No 3 - 1901

mailto:ptsag@metal.ntua.gr


(MLP), have several advantages when applied for landslide susceptibility mapping. A MLP can 

model non-linear relationships, extract useful relationships from imprecise data, and generate 

reasonable results even when some of the training inputs are flawed (Ermini et al., 2005, Kanungo 

et al., 2006). As many researchers have noted such abilities are not perfectly provided by 

multivariate statistical methods (Gomez & Kavzoglu, 2005, Vahidnia et al., 2010). The most 

widely used learning method in ANN is the back-propagation neural network, an abbreviation for 

"backward propagation of errors" (Rumelhart et al., 1986) and is the algorithm that will be 

described in this paper. The objective of the present paper is to discuss the main architecture 

features and the way ANN works and to present in more detail the back-propagation algorithm and 

how it is implemented in a landslide susceptibility analysis within a GIS environment.  

2. Artificial Neural Networks  

Artificial Neural Network (ANN) is considered as information – processing system capable of 

learning and generalizing from the "experience". Haykin (1999), described ANN as machines that 

are designed to model the way the human mind works when it performs a specific task. The 

operation of ANN is based on the following assumptions: The processing of the stimulus is carried 

out by a set of processing units, the neurons. Each neuron has the ability to receive and transmit a 

signal - the stimulus. Each signal - stimulus received or transmitted from one neuron to another in 

the neural network associated with a weight (synaptic weight) which indicates the strength of the 

connection between the respective neurons. The higher the value of the weighting factor, the more 

important is the contribution of the node. The sum of the received signals - stimuli, is aggregated 

through a function, the activation function to emit the final signal (Fausett, 1994). The most 

distinguished characteristic of an Artificial Neural Network is the ability to generalize (make 

prognosis) once trained. Thus, they are capable of "learning" from a set of data whose 

characteristics are known, even if the form of their relationships are unknown or their physical 

interpretation is difficult to be explained and after that, they can make predictions on a set of new 

input data. This property makes the ANNs to be more advanced against empirical and statistical 

methods, which require prior knowledge of the data distribution and also the nature of the 

relationship (linear, non – linear, etc.). 

2.1. The Learning Process Method 

The neural networks receive stimuli (information and knowledge) through an iterative learning 

process, as people do, and knowledge is stored in the network connections (Haykin, 1999). The 

ANN models tries to combine the thinking of the human brain with the abstract mathematical 

thinking, following parallel distributed processing (McClelland & Rumelhart, 1986). There are 

typically three types of learning, supervised, unsupervised and reinforcement learning. In 

supervised learning, learning is accomplished by presenting a set of training patterns each with an 

associated target output vector, while in unsupervised learning type, learning is accomplished by 

grouping a similar set of input patterns together without the use of training data to specify what a 

typical member of each group looks like or to which group each pattern belongs to (Fausett, 1994). 

Reinforcement learning is learning by interacting with an environment. A reinforcement learning 

model learns from the consequences of its actions, rather than from being explicitly taught. It 

selects its actions on the basis of its past experiences (exploitation) and also by new choices 

(exploration), which is essentially a trial and error learning process. The most typical ANN setting 

is the one that enables supervised training. During the training phase, the hidden and output layer 

neurons process their inputs by multiplying each input by a corresponding weight, summing the 

product, and then processing the sum using a non-linear transfer function to produce a result. An 

ANN learns by adjusting the weights between the neurons in response to the errors between the 

actual output values and the target output values. At the end of this training phase, the neural 

network provides a model that should be able to predict a target value from a given input value. In 

general the method used to estimate the values of the synaptic weights, trains the multilayered 

until some targeted minimal error is achieved between the desired and actual output values of the 
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network. Once the training is complete, the classification phase follows, where the network is used 

as a feed-forward structure to produce a classification for the entire data. 

2.2. The Basic Features of ANN Models 

As it is evident, each neural network is characterized by three basic features (Fausett, 1994, 

Benardos & Benardos, 2005): 

 The way in which the neurons are connected to each other, which is called the network 

architecture.  

 The method used to establish the values of the weights on the connections, called training or 

learning algorithm.  

 The type of activation function used. 

Defining the architecture of ANN is a critical process and requires on the part of the researcher, 

the fullest possible knowledge of the problem application (Benardos & Kaliampakos, 2004). 

Neural networks are often classified as single layer or multilayer, which are examples of feed-

forward networks in which the signals flow from the input units to the output units in a forward 

direction. In MLP networks, such as the one that is presented in this study, there is always an input 

layer, a hidden layer and an output layer (Figure 1). The first layer of the network, or input layer, 

contains a node for each of the input variables. The input variables are analogous to the 

independent variables in multiple regression techniques. The second layer, the hidden layer, 

consists of nodes that allow complexities to develop among input nodes. The last layer of the 

network, or output layer, contains t nodes, one for each output type. 

 

Figure 1 – The feed – forward multi-layer artificial neural network. 

2.3. The Back – Propagation Algorithm 

The training of an ANN by back-propagation learning algorithm involves three stages: the feed-

forward of the input training pattern, the calculation and back-propagation of the associated error 

and the adjustment of the weights. After the training phase, application of the model involves only 

the computations of feed-forward phase. In the first stage, each input unit receives an input signal 

and transmits this signal to each of the hidden units.  Each hidden unit then calculates its activation 

and transmits its signal to each output unit, by applying a function: 

Equation 1 – the output signal of the net  
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Each output unit computes its activation to form the response of the net for the given input pattern 

by applying the following formula: 

Equation 2 – the response of the net  

      tnetfty l
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j    

Each neuron in the network may employ a nonlinear activation function at the output end, 

producing smooth signals to other neurons. One of most commonly used activation functions is the 

binary sigmoid transfer function which has range of (0, 1) and is defined as (Hagan et al., 1996): 

Equation 3 – the sigmoid function  
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Each output unit compares it’s activation with its target value to determine the associated error for 

that pattern with that unit.   

Equation 4 – the associated error 

     tatcte jjj   

Based on this error, a δ factor, is computed which is used to distribute the error at output unit back 

to all units in the hidden and input layer.  

Equation 5 – the δ factor for the output layer 
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Equation 6 - the δ factor for the hidden layer 
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After the entire δ factors have been calculated, the weights for all layers are adjusted 

simultaneously, according to the generalized Least – Square - Mean rue (Hagan et al., 1996): 

Equation 7 – the formula for the weight estimation  
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where η is the learning rate, and α is the momentum rate for speeding up learning without running 

into the risk of oscillation.  

There are several aspects that need to be taken into account during the construction and 

implementation of the back-propagation algorithm that are related to the non - deterministic nature 

of this method. Specifically there are several learning performance indices or cost functions that 

should be selected according to the related problem and they are mainly based on distance 

functions. Furthermore, the initial weight of the multilayer feed-forward neural network strongly 
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influences the convergence of the back - propagation learning algorithm and so does the learning 

rate η. A large learning rate value speeds up the convergence but the weights may then oscillate, 

while a low learning rate results in slow learning. An alternative way in coping with this problem 

is by introducing a momentum term to the gradient – descent method, giving to each weight some 

inertia (momentum) is such a way that it tends to maintain its direction. Some other issues that are 

not always clear are firstly, the choice on the number of the hidden layers and nodes required 

solving a learning problem and secondly the choice on the number of the training samples required 

(Grima, 2000).  

3. Artificial Neural Network and Landslide Susceptibility Analysis  

In the literature there are numerous studies that present various kinds of physical (process-based), 

statistical, or combined approaches for dealing with the landslide hazard and susceptibility 

zonation mapping (Glade et al., 2005). Landslide susceptibility is the likelihood of a landslide 

occurring in an area on the basis of local terrain conditions (Brabb, 1984). It is the degree to which 

a terrain can be affected by slope movements, an estimate of “where” landslides are likely to 

occur. As reviewed through the literature, there is no agreement on the methods for susceptibility 

maps production as several qualitative and quantitative methods have been proposed for landslide 

susceptibility evaluation (Carrara et al., 1995, Aleotti & Chodwdhury, 1999, Guzzetti et al., 1999, 

Dai et al., 2002, Glade et al., 2005).  

Most of these methods share a common limitation that has to do with the difficultly to objectively 

handle the non-linear multivariate characteristics of the landslide phenomena that is assumed to be 

due to the spatial and temporal variability, scale dependency, and complicated interrelationship of 

the factors affecting landslide manifestation. Statistical models, such as multiple regression and 

discriminate function techniques, are primarily designed to deal with linear problems and 

therefore, may be inappropriate for assessing complex non-linear problems. The physical models 

require detailed spatial information about the geomechanical features of the geological and 

hydrological materials that are involved in a landslide susceptibility or hazard assessment. These 

parameters show high spatial variability and in fact are very difficult to be presented in a large 

scale (van Westen et al., 2006).  

During the last two decades, Artificial intelligence and Data Mining techniques have been 

introduced as efficient tools in susceptibility and hazard analysis (Flentje et al., 2007, Kawabata et 

al., 2009, Tsangaratos et al., 2011). These techniques can deal with non-linear problems and, at the 

same time, minimizing subjectivity. One of the most promising methods is the one that use the 

artificial neural networks techniques. Elias & Bandis (2000) proposed a neuro-fuzzy approach for 

Landslide Susceptibility Zonation mapping. The authors used Fuzzy linguistic rules to assign 

fuzzy membership values to different classes of thematic data layers. The fuzzy membership 

values were used to provide data to the input neurons of a Back Propagation neural network 

model.  A single output neuron with values from 0 to 1 was considered to represent the degree of 

landslide susceptibility based on actual landslide data. Lee et al. (2001) applied ANN in the 

Yongin in Korea to obtain a landslide hazard zonation map. The authors introduced a back-

propagation algorithm twice, firstly to produce a landslide inventory map and secondly to 

determine the weight coefficients of each input landslide related parameter. The verification 

results between the calculated landslide susceptibility index and the existing landslide location 

data showed a good agreement and satisfactory output results. Ermini et al. (2005) applied 

Probabilistic Neural Network (PNN) and Multi Layered Preception (MLP) to create a landslide 

hazard map in Riomaggiore Italy. The researches converted the input factors to binary variables 

and used these variables as input data of the developed ANN model. Ferentinou & Sakellariou 

(2007) applied several computational intelligence tools in slope performance prediction both in 

static and dynamic conditions. Specifically, the used the back-propagation algorithm, the theory of 

Bayesian neural networks and the Kohonen self-organizing maps, for estimating the slope stability 

controlling variables by combining these computational intelligence tools with generic interaction 
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matrix theory. Their study, focused on the prediction and estimation of slope stability, coefficient 

of critical acceleration, earthquake induced displacements, unsaturated soil classification, and the 

classification according to the status of stability and failure mechanism for dry and wet slopes. 

Caniani et al. (2008) applied the back-propagation learning algorithm within a three layered 

model, input, hidden and output layer, in a research area at Potenza, Italy. The authors concluded 

that the neural networks model that they used constituted a relatively simple solution to complex 

problems, such as those concerning the estimation of landslide susceptibility. However, they also 

reported that the knowledge acquired by the network is expressed through a set of weights and 

hence not in an immediately comprehensible format. They finally noted that a neural network can 

be progressively improved with the availability of additional information by refining the details of 

the input maps that are found to be the most important, according to the assessed ANN weights. 

Melchiorre et al. (2008) introduced an integrated use of supervised and unsupervised techniques to 

improve the results of neural classifiers during a landslide susceptibility analysis. The use of 

Cluster analysis methods and the possibility of choosing the distance measure make it possible to 

introduce expert knowledge to the process of landslide susceptibility analysis. Marjanovic et al. 

(2009) used support vector machine (SVM), neighbor k-NN algorithms and Analytical Hierarchy 

Process (AHP) for weighting influences of different landslide related input parameters. Authors 

combined multi-criteria analysis and machine learning techniques to capture the different 

importance of several inputs parameters and give a single outcome of the modeled landslide 

phenomenon. Oh & Pradhan (2011) applied the Adaptive Neuron – Fuzzy Inference System 

(ANFIS) for landslide susceptibility mapping in Penang Island, which is based on both expert 

knowledge using fuzzy inference system (FIS) and supervised learning (ANN). Landslide-

susceptible areas were analyzed by the ANFIS approach and mapped using landslide-conditioning 

factors. The applied ANFIS model learns the “if–then” rules between landslide-related 

conditioning factors and landslide location, for generalization and prediction. The authors used 

various membership functions (MFs) for the landslide-susceptibility mapping and their results 

were compared with the field-verified landslide locations.    

3.1. The Process of Landslide Susceptibility Analysis Through ANN Models in a 

GIS Environment 

In recent years, GIS has become a very important tool for landslide susceptibility and hazard as-

sessment (Carrara et al., 1995, David & Douglas 1998, Guzzetti et al., 1999, Dhakal et al., 2000, 

Lee et al., 2003, Glade et al., 2005). GIS is a computer-based technology designed to capture, 

store, manipulate, analyze, and display diverse sets of spatial data. In general there are four phases 

involved in the process of manipulating landslide related data through ANN in a GIS environment: 

the data preparation phase, the training phase, the classification phase and landslide susceptibility 

mapping phase, and the validation phase. The first phase consists in constructing the GIS spatial 

database that will be used during the landslide susceptibility and hazard analysis. The advance of 

GIS is that it may accept different types of variables (e.g., class, ordinal, continuous, and categori-

cal) as input values and that it can also handle imperfect or incomplete data. The thematic data 

layer that refers to each factor depicts the categories of each factor (Figure 2). Each category is 

assigned an attribute value subjectively (expert knowledge), depending upon its relative signifi-

cance in causing landslides. These attribute values must be normalized with regard to the highest 

attribute within the corresponding causative factor and form the input data for the ANN model. 

During the data preparation phase the GIS spatial database must be converted to the format of in-

put for the artificial neural, in most cases in ASCII data format. Also, in the preparation phase the 

spatial data are partitioned into two subsets, the training and testing dataset. The first subset, subset 

of the training data, includes all the data belonging to the problem domain and is used in the phase 

of training that follows. 
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Figure 2 – Applying ANN in a GIS environment. 

The training process begins by assigning randomly initial connection weights to the input nodes 

which are constantly updated until an acceptable training accuracy is reached. The adjusted 

weights obtained from the trained network have been subsequently used to process the testing data 

in order to evaluate the generalization capability and accuracy of the network. The output layer of 

ANN contains a single neuron that represents the presence or absence of existing landslide loca-

tions (i.e., a target output of 0.9 denotes presence and 0.1 denotes absence). The next phase in-

volves the production of the landslide susceptibility map. The artificial neural network output data 

must be converted to the appropriate format for the GIS spatial database. The categorization of a 

terrain into ordinal zones of landslide susceptibility has been regarded as a pure classification 

problem. The outputs of any model that adopts the ANN technique could be considered as the de-

gree of the membership of each terrain unit with regard to the occurrence of landslide (Ermini et 

al., 2005). The higher the membership value, the more susceptible is the terrain unit to the occur-

rence of landslide and vice versa (Equation 8).  

Equation 8 – Landslide susceptibility Index 
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where, u is the m x 1 input vector layer, y the output vector layer, n the number of neurons in the 

hidden layer, v and w are the weight factors, and br and cy the bias values of the neurons in the 

hidden and output layer, respectively.  

The final phase is the validation phase. In general, models for landslide susceptibility are predic-

tions of the spatial occurrence of landslides, and their performance should be evaluated (Guzzetti 

et al., 2005). A landslide susceptibility assessment should be evaluated against the information 

used to prepare the prediction, in a way evaluate the “goodness of fit” of the produced model. 

Measures of goodness of fit are obtained by preparing contingency tables showing the number of 

incidence correctly classified and by comparing them against the cases that were misclassified by 

the model. To visualize the results of the verification a graph showing the model success rates is 

considered as appropriate (Chung & Fabbri, 1999, Guzzetti et al., 2005). The graph is formed by 

taking account the percentage of the study area against the cumulative distribution function of 

landslide area in each predicted susceptibility class. A rapid deviation of the success rate curve 

from the diagonal line indicates a model with high performance. 
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An example of the landslide susceptibility map that can be produced from the feed forward back 

propagation learning algorithm is seen in Figure 3 (Tsangaratos, 2012). The model had eight neu-

rons in the input layer one hidden layer, with seven hidden neurons and one output layer. The eight 

neurons in the input layer correspond to the landslide related factors (geology, geological bounda-

ries, elevation, slope inclination, slope orientation, tectonic features, hydrographic features, road 

network) that had been identified as causative factors in an area of high landslide manifestation in 

Xanthi prefecture, Greece. The model was trained using the training database that included 260 

locations of landslide and non-landslide sites. A number of trials were performed using different 

learning rate ranging from 0.6 to 0.9. From these trials, the learning rate of 0.88 was found to be 

stable. When a momentum rate of 0.05 was added to the network, the convergence of the model 

took longer, it reached 18000 epochs, but the error was minimized. The weight for each factor that 

has been calculated during the training phase is then assigned to the each factor in order to 

estimate the landslide susceptibility index according to equation 8. The final product of which is 

the landslide susceptibility map, with five classes of susceptibility, namely: Very Low 

Susceptibility, Low Susceptibility, Medium Susceptibility, High Susceptibility and Very High 

Susceptibility.      

 

Figure 3 – The landslide susceptibility map from the feed forward back propagation neural 

network. 

According to the methodology to validate the model, data that are not used during the training 

phase should be introduced to the model. By superimposing the data that formed the testing data-

base over the landslide susceptibility map a simple validation measure of accuracy was obtained. 

The accuracy index, an index that corresponds to the degree of closeness of measurements of a 

quantity to that quantity's actual (true) value, reached 95.45%.  

4. Discussion and Conclusion 

In problem solving process the lack of understanding for complicated physical behaviour is easily 

supplemented by either over-simplifying the problem or incorporating several assumptions into the 

model. Consequently, many mathematical models may fail to simulate the complex behaviour of 

geotechnical problems. One a most promising alternatives in problem solution techniques are the 

XLVII, No 3 - 1908



non-parametric techniques that artificial intelligence and data mining domain. ANNs use learning 

algorithms to model knowledge and save this knowledge in weighted connections, mimicking the 

function of a human brain (Pradhan & Lee, 2010). They are considered as heuristic algorithms in 

the sense that they can learn from experience via samples and are subsequently applied to 

recognize new unseen data (Kavzoglu & Mather, 2000). The parallel distribution of information 

within the ANNs provides the capacity to model complicated, non-linear and interrelated 

processes. This ultimately allows ANNs to model environmental systems without prior 

specification of the algebraic relationships between variables (Lek et al., 1999). The most impor-

tant advantage of the ANN method is that it is independent from the statistical distribution of the 

spatial data and there is no need for use of specific statistical variables (Lee et al., 2004). Com-

pared with statistical methods, the ANN methods allow the target classes to be defined, taking into 

account their distribution in the corresponding domain of each data source (Lee et al., 2003, 2004, 

Zhou, 1999). Another major advantage for developing ANN process models is that they do not 

depend on simplified assumptions such as linear behavior or production heuristics. Neural 

networks possess a number of attractive properties for modeling a complex mechanical behavior 

or a system: universal function approximation capability, resistance to noisy or missing data, 

accommodation of multiple nonlinear variables for unknown interactions, and good generalization 

capability. Despite its simplicity and popularity, back – propagation algorithm present several 

problematic aspects. It may be slow and may need a considerable number of iterations to train the 

network. It may also be trapped easily in a local minimum and thus the learning algorithm may fail 

to solve the problem, independent on the network configuration. The initial weights cannot be 

large, otherwise the activation function becomes saturated from the very beginning and the 

solution will be trapped in a local minimum or a very flat plateau close to the starting point. 

However several researchers have proposed efficient methods that deal in an efficient way with the 

above mentioned aspects (Neguyen & Widrow, 1990, Nefeslioglu et al., 2010). Combining ANN 

techniques with GIS in a landslide analysis system can further extend the functionality of the ANN 

models and, at the same time, increase the set of possible applications of GIS. The major advan-

tages of using an ANN system within a GIS environment for landslide susceptibility and hazard 

analysis are as follows: The collection, manipulation, and analysis of the landslide related data can 

be accomplished much more efficiently and cost effectively. The outcomes of the overlay func-

tions and spatial analysis performed by a GIS can be used as the input and training conditions of a 

neural network and, while the results of the neural network may be manipulated by a GIS to pro-

duce a geospatial product. Each spatial input data and outcome of the neural network can be easily 

compiled, normalized, rescaled, re-projected and overlaid. It may accept different types of parame-

ters (e.g., class, ordinal, continuous, and categorical) as input or output values and can handle im-

perfect or incomplete data. The system is extremely flexible and self-adaptive, capable of incorpo-

rating any improved new data set.   
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