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Abstract

Semi-Markov chains are used for studying the evolution of seismicity in the
Northern Aegean Sea (Greece). Their main difference from the Markov chains is
that they allow the sojourn times (i.e. the time between successive earthquakes), to
follow any arbitrary distribution. It is assumed that the time series of earthquakes
that occurred in Northern Aegean Sea form a discrete semi-Markov chain. The
probability law of the sojourn times, is considered to be the geometric distribution
or the discrete Weibull distribution. Firstly, the data are classified into two
categories that is, state 1: Magnitude 6.5-7 and state 2 Magnitude>7, and secondly
into three categories, that is state 1: Magnitude 6.5-6.7, state 2: Magnitude 6.8-7.1
and state 3: Magnitude 7.2-7.4. This methodology is followed in order to obtain
more accurate results and find out whether there exists an impact of the different
classification on the results. The parameters of the probability laws of the sojourn
times are estimated and the semi-Markov kernels are evaluated for all the above
cases. The semi-Markov kernels are compared and the conclusions are drawn
relatively to future seismic hazard in the area under study.

Key words: semi-Markov chains, Markov chains, transition probability matrix,
sojourn time distribution function

Mepidnyn

O nuu-Moprofiovég alooides ypnoyiomoiodvrar yio w) UeLETH THE TEIOUIKOTHTOS OTO
Bopeio Aryaio. H Paoiki tovg diopopd amo tic Mopkrofiovés alvoides eivar ot
EMTPETOVY 10, OTOI0ONTOTE OWOAIPETY KOTOVOUI] YIO. TOVG XPOVOUS TOPOLUOVAS
(xpovor petald drodoyikwv oelouwv). Yrobertovue ot n ypovooepa TV GELGUOV TOD
gyovv yiver oto Bopeio Aryoio amotelel o owoxpiryy nui-Moprofiovi alvaida.
Ocwpeital 0tL 01 Ypovor ToPOUOVRHS 0KOAODOODY YeWUETPIKES 1] OLOKPITES KOTOVOUES
Weibull. Ilpwta tolvounbnray ta dedouéva ae 0vo katnyopies, Omov kotaotaoy 1:
MéyeQog 6.5-7 kou xaraotaon 2 Méyeoc>7, ko1 oty oOVEXEIQ T8 TPEIS KATHYOPIES,
omov kotaoraoy 1: MéyeOog 6.5-6.7, katdotaon 2 : MéyeQog 6.8-7.1 ki kataotaon 3
: MéyeOog 7.2-7.4. ExtyunOnkoyv o1 mopoueTpor twv oovoptioewy mlhovotytog twv
XPOVOV TOPOUOVIS KoL DIOLOYIoTNKAY 01 TivokeS mopnves e nui-Moaprofiovig
0AVGIOOGS Y10 OAES TIC TOPATOV®D TEPITTWOELS. EYyive aOyKpLon TV TIVAKWV TOPHVOY
KOl TPOEKDWOV GOUTEPCOUOTO, IO, TH UEAAOVTIKY GEIOUIKY ETIKIVODVOTHTO. 0TV UTO
HeAETH mepLoyy).

AéEers  wlewdid: nu-Mopxofiovés  alvoides, Moprofiovés  aivoides, mivarag
mBovotitwy uetafoons, oovaptnon mhavoTnTog YpovmY TOPOUOVHG
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1. Introduction

Stochastic models are widely used to obtain results concerning the seismic hazard assessment. In
Patw-ardhan et al. (1980) a semi-Markov model is developed to estimate the likelihoods of
occurrences of great earthquakes (M=7.8). Fujinawa (1991) studied the earthquake occurrence via
a Markov chain and data from China, whereas Al-Hajjar and Blanpain (1997) used a semi-Markov
model in a swarm sequence and obtained the optimal value for the total duration of the sequence.
Altinok and Kolcak (1999) estimated the earthquake occurrence probabilities by a semi-Markov
model and studied the inte-rval transition probabilities. Nava et al. (2005) evaluated the seismic
hazard of the Japan area via a Ma-rkov chain and Sadeghian (2010) applied a semi-Markov model
to forecast the triad dimensions of ear- thquakes. Votsi et al. (2010a, b, 2012a, b) applied hidden
Markov and hidden semi-Markov modeling for the description of seismicity patterns.

In this paper a discrete semi-Markov model is proposed for the area under study, which is the
Northern Aegean Sea (Greece). This model can be successfully applied in Seismology,
considering the earthqua-kes as discrete events of the chain. It allows the interevent times (sojourn
times) between two earthqua-kes, to follow any arbitrary distribution, which makes the semi-
Markov chains a generalization of Mar-kov chains (Kemeny and Snell, 1976). Using this model,
important quantities can be estimated, such as the mean value of the first hitting times (the mean
time that an earthquake of state j will occur for the first time given that the previous earthquake
was of state i, (Howard, 2007).

The data are obtained by a complete, homogeneous and accurate catalogue from the Geophysics
Depar-tment of the Aristotle University of Thessaloniki and cover the period 1845-2008.

In this paper the quantity that is studied, is the discrete semi-Markov kernel, which gives the
probabili- ty that an earthquake of state j will occur after k time units, given that the previous
earthquake was of state i. It is assumed that the probability law of the sojourn times is either the
geometric or the discrete Weibull distribution and the results are compared.

2. Semi-Markov Kernel for the two Dimensional State Space

The state space is firstly assumed to be two dimensional by classifying the data into two
categories, ac-cording to the range of magnitudes (smaller and larger earthquakes). The sojourn
times are supposed to follow geometric or discrete Weibull distributions, in order to examine the
differences of the probabili- ties related to the aforementioned distributions.

2.1 Geometric Sojourn Times

In this section, it is assumed that the sojourn time distribution law is the geometric which is a
common distribution law and it can be well adapted in the area under study (Pertsinidou, 2012).
The probability mass function of the geometric distribution is the following:

Definition 1-Geometric distribution
PEX=k=(1—-p)*'p k=12..
In the sequel we give some definitions concerning the semi-Markov chains which are necessary

for what follows (Barbu and Limnios, 2008).

Let E={1,...,s} be a finite state space, whose evolution in time is governed by a stochastic process
Z = (Zp)zen. Let us also denote by & = (5, ey the successive time points when state changes in
(£ Inew occur and by | = (i, )uen the chain which records the visited states at these time points.
Let X =(X;)yzy be the successive sojourn times in the visited states. Thus,
X, =5,—-5,_,, neN", and, by convention, we set X=5=0. If FP(Jy.1=17],
Snet =50 = k| Jowi niSo s Sn) = PUnar = o Spey = Sa=Kk|Jp), then Z= (Zplney s
called a semi-Markov chain and the couple ([, 5y) is call- ed a Markov renewal chain. The
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visited-state chain ([ Jney is called the embedded Markov chain. We denote by pg; the transition
probabilities, that is:

Definition 2 — Transition probabilities

p; = P =jlln=iijeEneN.

The matrix P = (p;;] is called the transition probability matrix. The distribution function of the
sojourn times is defined as follows:

Definition 3 — Sojourn time distribution function

fi ) = PUy s =kl = i Jpey = ).

The semi-Markov kernel probabilities that we study throughout this paper are defined as follows:

Definition 4 — Discrete-time semi-Markov kernel probabilities q;; (k)
':i'[j'{k:] = P{_Irr!+1 =X = kl.liri’! =) = Fij fL_. (k).

Then the semi-Markov kernel is the matrix @(k) = (g;; ()} and constitutes the essential quantity
which defines a semi-Markov chain.

The data concerning earthquakes that occurred in Northern Aegean Sea from 1845-2008 are
classified, according to their magnitude, into two categories which are state 1: Magnitude 6.5-7
and state 2: Magnitude>7. In order to study the semi-Markov kernel probabilities, we need first to

estimate the transition probabilities. The estimators of the transition probabilities are (Barbu and
Limnios, 2008):

Definition 5 — Estimators of the transition probabilities
Bij (M) = Ny (M) /N (M), if N; (M) = 0,

where N;(M7 is the number of transitions of the embedded Markov chain to state i, until time M,
and N;; (M}, is the number of transitions of the embedded Markov chain from state i to state /, until
time M. If N;(M) = 0 we set #;; (M) = 0 for all M and if N;;(M) = 0 we set ff; (M) = 0 for all M.
The time unit is considered to be the year and the transition matrix for our data is found to be

_ 0.71 0.29
P~(og21 0.1570)

If we assume that the sojourn times follow geometric distributions, the maximum likelihood
estimators of these geometric distributions are found to be (Pertsinidou, 2012):

7o [ 7p L z oyt g foyh-t 3 1yt
() = 3G) e (G o ameiG)
Then the kernel of the semi-Markov chain becomes

[ 27.69 = 70°1*" £ 10870 (.58 =3°"
Q(m) (ﬁ.?+ £ QIR 7T 0.47 » 470

The corresponding graphs, in which the decay of the kernel probabilities as time passes can be
observed, are the following:

Ln-123,...
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the geometric distribution. the geometric distribution .

It is evident from Figure 1, that there is a higher probability for an earthquake of state 1 to be
followed by an earthquake of state 1 during the next year (0.254). There is also a still high
probability that such an earthquake will occur after two or three years, while these probabilities
decay quickly from three years on. In Figure 2, given that the previous earthquake was of state 1,
there is a high probability that the next earthquake of state 2 will occur in the next year. The
probabilities g2 {71} decay very quickly and, as we can also observe by the values given in Table 1
below, they become nearly 0 for n>5. Figure 3 shows that if the previous earthquake was of state
2, then it is very probable that the next earthquake of state 1 will occur in the next four years and
for n>4 the probabilities become considerably smaller. Figure 4 shows that if the previous
earthquake was of state 2 then there is a small probability that the next earthquake will also be of
state 2, but if so, this is to be expected in the next four years. For n>4 the probabilities become
zero. The aforementioned probabilities are given analytically below (for n€[1,20]).

Thus, the probability that an earthquake of state 1, will be followed within three years by an
earthquake of state 1, is high and from the third year on the probabilities decay quickly. If the next
earthquake is of state 2, given that the last earthquake was of state 1, then this is expected to occur
in the first five years. An earthquake of state 2, is more probable to be followed by an earthquake
of state 1 in the next three years. Finally, if we assume that the an earthquake of state 2, will be
followed by an earthquake of state 2, then this is more likely to happen within the next two years.
As already mentioned, the probabilities g4 (7} and gs2({n} decay very quickly, which means that
visiting state 2 (M>7) is less probable as the sojourn time increases.

2.2 Discrete Weibull Distributions for the Sojourn Times

It is now assumed that the transition probability matrix is the same as previously, but the sojourn
time distribution function is the discrete Weibull of equation 2 that follows. This distribution
allows the sojourn times to obtain greater values than the geometric, thus the time between two
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Table 1 - Semi-Markov kernel probabilities of the geometric distribution (two dimensional

case).

n

qu®m) | qu®) | qun) | guin)
1 0.254 0.193 0.396 0.118
2 0.163 0.064 0.209 0.029
3 0.104 0.021 0.111 0.007
4 0.067 0.007 0.059 0.002
5 0.043 0.002 0.031 0.000
6 0.027 0.000 0.016
7 0.018 0.009
8 0.011 0.005
9 0.007 0.002
10 0.005 0.001
11 0.003 0.000
12 0.002
13 0.001
14 0.000
20 0.000 0.000 0.000 0.000

successive earthquakes can now be greater. In the sequel the probability mass function of the
discrete Weibull distribution is cited, where x stands for the sojourn time and q and b are positive
parameters.

Equation 2 — Discrete Weibull
fin)= g™ — g™ p=12,...., 0<g<1 and b>0.

The parameters of the discrete Weibull distribution can not be estimated via the maximum
likelihood method. There exists an empirical estimation effort (Kulasekera, 1994) which can not
be used in our dataset, because of the small sample size of the sojourn times. Therefore, the
parameters are estimated numerically and the distribution functions derived are (Pertsinidou,
2012):

fir(n) =059 ®-0°" _ 0507° " £.n) = 0.53 -

r.llllih'. D94

0.53"
f21(n) _ 0,37 (-1 nEE 0.37 ™ o EE,fzz(n) — a1 nez 0.4" 052

Then the kernel matrix turns out to be

0.71 = (0.6 06" ) 0,20« (0.250-1+m° 7 _ g.257" ™ ]

n)= . - 4 4
Otm) (0.8421 « (0.5 _ 050"y 01579 « (0,341 _ 0,347

The corresponding graphs of the discrete semi-Markov kernel functions are:

XLVII, No3-1421




04

03

= = [ ]
20z = 0z
L ]
01 . 0.1
h L [ ]
00 .....--------- U_g_‘_._.._._-_-_-_-_._n_-_-_-_-_-_._-_n_n_-
5 10 15 0 1} 5 10 15 0
time [years) titme (years)
Figure 5 - Kernel probabilities 11 (12}, of Figure 6 - Kernel probabilities g4 (1), of
the discrete Weibull distribution. the discrete Weibull.
0s
04 |
_ 03
§ 0z .
01 L ]
[ ]
an .....-----------

0 5 juj 15 0

time (years)

Figure 7 - Kernel probabilities gz (1), of

Figure 8 - Kernel probabilities 922 (), of
the discrete Weibull distribution.

the discrete Weibull distribution.

Comparing the above figures and also the values of the semi-Markov kernel probabilities given
below, with the corresponding figures and values of the geometric distribution presented in the
previous section, it can be seen that the results are similar, though we would expect the discrete
Weibull kernel probabilities to decay much slower, than they do. This reinforces the previous

conclusions concerning the expected seismicity. The values are given analytically (for comparison
reasons) in the following Table 2.

3. Semi-Markov Kernel for the three Dimensional Transition Matrix

It is useful to classify the data into more than two categories, in order to observe if there are any
differ- rences in the results. Now the data will be classified into three categories (we notice that
more than three categories would lead to estimation problems due to the already small size of the
dataset.) It is again firstly assumed that the times between two successive earthquakes follow the
geometric distribu- tion and secondly the discrete Weibull distribution.

3.1 Geometric Sojourn Times

The data, concerning earthquakes that occurred in Northern Aegean Sea, are now classified into
three categories, i.e. state 1: 6.5-6.7, state 2 : Magnitude 6.8-7.1, state 3 : Magnitude 7.2-7.4. The
number N;(M} of visits in each state i and the transitions N;;(M7} from state i to state j, until time
M are found to be
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Table 2 -. Semi-Markov kernel probabilities of the discrete Weibull distribution (two
dimensional case)

Tn
qu®) | quzn) | gun) | gnn)

1 0.284 0.217 0.421 0.104
2 0.147 0.035 0.188 0.045
3 0.091 0.015 0.099 0.008
4 0.059 0.008 0.055 0.000
5 0.039 0.005 0.032

6 0.027 0.003 0.018

7 0.018 0.002 0.011

8 0.019 0.001 0.006

9 0.009 0.000 0.004

10 0.006 0.002

11 0.004 0.001

12 0.003 0.000

13 0.002

14 0.001

15 0.001

16 0.000
20 0.000 0.000 0.000 0.000

Ny (M)=29, No(M)=33, N3(M)=12, Niu(M)=11, Nio(M)=14, Ni3(M)=5, Na(M)=15, Nn(M)=12,
N23(]W):5, N3|(M)=3, N32(M)=7, N33(M)=2.

The transition matrix is
0.37 048 015

P=| 0.45 0.36 U.lg).
0.25 058 017

Using the maximum likelihood function (Pertsinidou, 2012) we obtain the sojourn time
distributions:

14 ! n-1

o2& 2@ m-20)

A2 ) =0T a2 ()T

1 n—-1 n—1
fln)=7 (i_s) , fa(n)= %G) ,/33(1)= 1, and f33(n)= 0 for n>1.

The transitions from state 3 to state 3 found in the data are only two, which explains the fact that
(1) =1, and f33(n) = 0 for n>1.
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The kernel matrix is
4,07+ 147147 425" (0,06 « 314N 570 (75 =2 14N, 71

O(n)=| 2,25 «7-1+" % 12°7 0.36 =277 095 2 4. 77 | n=123,..
0.75 = 10~1+1 4 137 0.58 = 2" 0

The only difference is that the probabilities now decay faster, compared with the two dimensional
case, in most of the cases. We cite as an example only the first graph.
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Figure 9 - Kernel probabilities g11 (11}, of the geometric distribution.
The kernel probabilities are the following (n€[1,20]):

Table 3 - Semi-Markov kernel probabilities of the geometric distribution (three dimensional

case).

n

qu) | gquz(n) | gua(n) | gun) [ gun) | guz(n) | gzaa(n) | gaz(n)
1 0.163 0.192 0.107 0.187 0.18 0.138 0.057 0.29
2 0.091 0.115 0.031 0.109 0.09 0.039 0.044 0.145
3 0.051 0.069 0.009 0.064 0.045 0.011 0.034 0.073
4 0.028 0.041 0.002 0.037 0.022 0.003 0.026 0.036
5 0.016 0.025 0.000 0.022 0.011 0.000 0.02 0.018
6 0.009 0.015 0.013 0.005 0.015 0.009
7 0.005 0.009 0.007 0.003 0.012 0.005
8 0.003 0.005 0.004 0.001 0.009 0.002
9 0.002 0.003 0.002 0.000 0.007 0.001
10 0.000 0.002 0.001 0.005 0.000
11 0.001 0.000 0.004
12 0.000 0.003
13 0.002
14 0.002
15 0.001
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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We recall that g2z (1) = ps3 and g2z (n)=0 for n>1. We remind that in the two dimensional case it
was gy1(1)=0.254. The corresponding probabilities appear to be smaller due to the different
classification. We now expect fewer events of state 1, (6.5-6.7) given that the previous state was 1,
which is reasonable since the class is smaller. From the values of Table 3, we realize that if the
previous earthquake was of state 1, and the next one of state 2, then this is more probable to occur
in the next 5 years. From the fifth year on, the probabilities decay and they become nearly zero for
n>11 years. Furthermore, it is more likely for an earthquake of state 3 to be followed by an
earthquake of state 1 in the next year and the probability that this transition will occur for n>4
years is almost zero. However, if the previous earthquake was of state 1, it is difficult to determine
which one earthquake of the three classes is more likely to happen in the following year, because
the related probabilities are found to be very close. We can also realize that if the last earthquake
was of state 2, an earthquake of state 1 is more likely to happen after one or two years. For n>2 the
probabilities are smaller and for n>10 they tend to zero. Also, given that the last earthquake was of
state 2, an earthquake of state 2 is more likely to occur in the next five years, and for n>8 these
probabilities become almost zero. If the previous earthquake was of state 2 and we assume that
next one will be of state 3, then this is more likely to happen after one year, and the probability
decays very quickly since for n>4 it is almost zero. Finally, comparing the values of gz; (1) with
gz2(n) we find out that if the previous earthquake was of state 3, then an earthquake of state 2 is
more likely to happen than an earthquake of state 1, in the next four years.

3.2 Discrete Weibull Distributions for the Sojourn Times

It is now assumed that the transition matrix is three dimensional, as estimated in the previous
section, while the sojourn times follow discrete Weibull distributions. The parameters are
estimated numerical- ly (Pertsinidou, 2012):

fir(n)=0.54 P07 _ 547" f.n)= 0,51 07T _ g517

0.7

fis(m)= 041 04m " £im)= 047 50T 047t

1:|I]53 :|I]3_ 0.2

fo(n)= 0510~ — 0517 " ()= 0.2 (2 0.27

fulny= 082 @87 _ 0.8en ™ £y 052 -0 T g5zt

Then the kernel functions are found to be:

gu(m)=0.37 = (0.54m" 7 _ 0,547 4,,(n)=0.48 = (0.51- 2+ 7 _ 05177
qus(n)= 0,15 = (0.4 _ 0,47 g)1(n)= 0,45 = (0,477 0,477 Ty
gu(n)=10.36 = (0,51 _ 05175 (n)=0.19 = (0.202+m°7 _ g, 27"y
gn(m)=10.25 = (0.89 1M _ 0,897 %Y, 43,(m)=0.58 = (0.520-1+M"F _ g,527" %
q33(n)=0

We will cite, indicatively, only the graph of gz; (n)} which seems to differ from the others, which
decay in a similar way to the already presented graphs in page 5.
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Figure 10 - Kernel probabilities g33 (1), of the discrete Weibull distribution.

From the above graph we observe that the probabilities exhibit an increase for n=2,3. The values
are shown in the following table.

Table 4 - Semi-Markov kernel probabilities of the discrete Weibull distribution (three
dimensional case).

n

qun) | qz(n) | gz} | gu(n) | guz(n) | gzz(n) | gun) | g3z (n)
1 0.170 0.235 0.09 0.238 0.176 0.152 0.027 0.278
2 0.090 0.062 0.047 0.089 0.075 0.011 0.039 0.198
3 0.049 0.037 0.011 0.047 0.041 0.005 0.038 0.075
4 0.027 0.025 0.002 0.027 0.024 0.003 0.028 0.021
5 0.015 0.018 0.000 0.016 0.015 0.002 0.023 0.005
6 0.008 0.014 0.010 0.009 0.002 0.017 0.000
7 0.005 0.011 0.006 0.006 0.001 0.009
8 0.003 0.009 0.004 0.004 0.001 0.006
9 0.001 0.008 0.003 0.007 0.000 0.005
10 0.000 0.006 0.002 0.002 . 0.003
11 0.005 0.001 0.001 0.002
12 0.005 0.000 0.000 0.001
13 0.004 0.000
14 0.004
15 0.003
16 0.003
17 0.002
18 0.001
19 0.001
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

From the above table we realize, that it is more probable for an earthquake of state 1, to be
followed by an earthquake of state 2 or of state 1, and less probable of state 3, if the earthquake
occurs during the next year. The probability of having a transition from state 2 to state 1 is more
probable to happen after one year. The same holds for the probabilities g2 (71} and gz2{n}. Also,
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given the fact that an earthquake was of state 3, the probability that the next will be of state 1 is
more likely to happen between 2-4 years, as we mentioned before in the graph of gz (7). Finally if
an earthquake of state 3, will be followed by an earthquake of state 2, we expect this to happen in
the next five years, since for n>5 g2 (1) =0.

4. Conclusions

The use of semi-Markov chains is a useful tool that provides the probabilities that the chain will
visit a state after a certain time given the previous state. In our case this means, that knowing the
previous ear-thquake we can evaluate the probability that the next earthquake will occur after n
time units and will be of state j. Classifying the states to earthquake clusters, allows us to obtain
results concerning the sei-smic hazard. The discrete semi-Markov kernel, is studied in the
Northern Aegean Sea. The kernel pro- babilities derived under the assumption that the sojourn
times follow geometric or discrete Weibull di- stributions, in the two dimensional case, are very
similar in most of the cases. Concerning the three di-mensional case we observe a mixed behavior
for small number of steps, but as time increases the geo-metric probabilities decay faster than the
discrete Weibull probabilities. A remarkable observation is that the g3i(n) probabilities of the
discrete Weibull distribution, are higher for n=2,3,4. This means that the occurrence of an
earthquake of state 1, given that the previous earthquake was of state 3, is more li-kely to happen
for n=2,3,4. We notice here that the mean hitting times of the various states for the mo-dels we
studied in the present paper are also of main interest concerning seismic hazard assessment and
have already being studied in Pertsinidou and Tsaklidis (2012).
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