
XLIII, No 4 – 2200

SEMI-MARKOV MODELS FOR SEISMIC HAZARD ASSESSMENT IN
CERTAIN AREAS OF GREECE

Votsi I.1, Limnios N.2, Tsaklidis G.1 and Papadimitriou E.3
1 Aristotle University of Thessaloniki, Department of Mathematics, 54124 Thessaloniki, Greece,

evotsi@math.auth.gr, tsaklidi@math.auth.gr
2 Université de Technologie de Compiègne, Laboratoire de Mathématiques Appliquées,

60206 Compiègne, France, nikolaos.limnios@utc.fr
3 Aristotle University of Thessaloniki, Department of Geology, 54124 Thessaloniki, Greece.

ritsa@geo.auth.gr

Abstract 

The long-term probabilistic seismic hazard is studied through the application of semi-Markov
model. In this model a sequence of earthquakes is considered as a Markov process and the
waiting time distributions depend only on the type of the last and the next event. The principal
hypothesis of the model is the property of one-step memory, according to which the probabil-
ity of moving to any future state depends only on the present state. The model under consider-
ation defines a continuous-time, discrete-state stationary process in which successive state
occupancies are governed by the transition probabilities of the Markov process. The space of
states is considered to be finite and the process started far in the past has achieved stationar-
ity. Firstly, a non-parametric method is applied in order to determine the waiting times. Then,
the waiting times derived by means of the exponential and Weibull distributions will be com-
pared to each other, as well as with the actual waiting times. Thus, the probability of occurrence
of the anticipated earthquakes of a specific magnitude scale is calculated. The models are ap-
plied to an historical catalogue for Northern Aegean Sea.

Key words: Semi-Markov process, semi-Markov kernel, sojourn times, earthquakes.

1. Introduction 

Several analytical models have been proposed to represent the process of earthquake occur-
rence. Some of them are based on empirical observations of precursory phenomena, others on
physical modelling of the earthquake process, and a third class on statistical analysis of patterns
of seismicity.

Renewal models have been used for a quarter century to forecast the time of the next large
earthquake on a specific fault segment, where large shocks occur repeatedly at approximately
regular time intervals. The most common is the Poisson model, which assumes spatial and tem-
poral independence of all earthquakes, including the maximum earthquake associated with a
fault or within a region. In this model, it is assumed that the occurrence of one earthquake does
not affect the probability of an occurrence of another earthquake in the same magnitude scale
at the same location in the next unit of time. The time-independence feature characterizing the
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homogeneous Poisson model, demonstrates that earthquakes are implicitly random events;
however, this feature is not appealing, because almost all of our seismological instincts favour
earthquake cycle models, in which strain, and hence hazard, builds up slowly from one major
earthquake to the next. In this case, the probability of a large earthquake occurrence should be
small immediately after a large earthquake, and then grows with time. Thus there is a need for
a time-dependent “forecasting” approach to hazard assessment. The simplest time-dependent
model is the non-homogeneous Poisson model. This model is not appropriate for the estima-
tion of seismic hazard in long time intervals, because the hazard should be updated when a new
earthquake occurs.

A number of statistical models that are based on other distributions have been used including
Gaussian (Rikitake, 1974), Weibull (Hagiwara, 1974; Utsu, 1984; Rikitake, 1999), gamma
(Udias and Rice, 1975; Utsu, 1984), double exponential (Utsu, 1972) and lognormal (Nishenko
and Bouland, 1987) distributions. All these distributions have two parameters and represent
the distribution of time intervals fairly well, but none of them is more consistent with the un-
derlying process of earthquake generation. The disadvantage of these models is their lack of
seismological basis. They are inadequate to characterize the occurrence of moderate to large
earthquakes on a fault at specific locations. It has been noted that the occurrence of moderate
to large earthquakes on a fault is non-random in space and time (Sykes, 1971 for earthquakes
in subduction zones). Other stochastic models used to represent the sequences of events and
probabilities of earthquake occurrence include double Poisson (Kameda and Ozaki, 1979),
Markov (Veneziano and Cornell, 1974), semi-Markov (Cluff et al., 1980) and regenerative
point processes (Vere-Jones and Ozaki, 1982). A model that considers the non-random charac-
ter of earthquake size and recurrence time is the semi-Markov model proposed by Cluff et al.
(1980). In this model a parametric method was applied for the estimates of the recurrence in-
tervals. 

However the characterisation of future earthquake occurrence is difficult because of the lack of
a sufficient number of data. The application of parametric methods provides estimators with
several attractive asymptotic properties but these estimators present inconvenience when the
censored time or the sample size is small. Since applications of parametric methods presuppose
certain conditions with respect to the sample size, non-parametric methods will be used in order
overcome this difficulty and apply semi-Markov models with reliable results.

The problem of statistical inference for semi-Markov processes is of increasing interest in re-
cent literature. There is a growing literature concerning inference problems for continuous-
time semi-Markov processes. For instance, Moore and Pyke (1968) studied empirical and
maximum likelihood estimators for semi-Markov kernel; Lagakos et al. (1978) obtained the
non-parametric maximum likelihood estimator for the kernel of a finite state semi-Markov
process with some absorbing states; Gill (1980) constructed an estimator for the kernel of a fi-
nite state semi-Markov kernel, using counting processes; Akritas and Roussas (1979) studied
the asymptotic local normality; Ouhbi and Limnios (1999, 2001) studied empirical estimators
for non-linear functionals of finite semi-Markov kernels. 

2. Geological setting

The Aegean (Greece) and the surrounding lands, form a region of intense crustal deformation.
The kinematic of the deformation is controlled by the southwestward motion of southern
Aegean relative to Europe, the active Hellenic subduction in the south, the westward motion of
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Anatolia in the east and the continental collision between northwestern Greece and the Apulian
platform in the west. The area of northern Aegean Sea has experienced many destructive earth-
quakes as indicated by both instrumental data and historic information. It constitutes the north-
ern boundary of the south Aegean plate (Papazachos et al. 1998) and is a continuation of the
western part of the North Anatolian fault. Strike-slip dextral faulting dominates this region as
the North Anatolian fault prolongs into the north Aegean area, where it bifurcates into two main
branches of NE-SW trend. Parallel secondary faults are also recognized from seismicity and
fault-plane solutions of recent strong earthquakes.

This area has frequently experienced large (M>=7.0) earthquakes, some of them occurring very
close in time. The exact locations and magnitudes are of low precision before 1950, so inclu-
sion of the events after this year is chosen. The region is bounded by latitudes 23.5 °E and
26.7ºE, longitudes 38.3°E and 40.6ºE, and the catalogue concerns earthquakes with magnitude
M5.50 over the period 1950-2007. This catalogue is characterized by the desirable features of
completeness, homogeneity and accuracy (Fig. 1).

Because it is implicit in the formulation that earthquakes lower the regional stress, and hence re-
duce the probability of immediately subsequent events, the model refers to main-sequence events
only. For this reason aftershocks must be carefully identified and removed from the data before nu-
merical fitting begins, by means of Reasenberg’s (1985) declustering algorithm. The events of the
catalogue are divided into three states. State 1 includes the events with magnitude 5.5 ≤ M ≤ 5.6;
State 2 includes events with magnitude 5.7 ≤ M ≤ 6 and State 3 includes events with magnitude .

3. Methods of Estimation

3.1. Non-Parametric Method

In this section we briefly summarize the main definitions from the theory of semi-Markov
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Fig.1 : Spatial distribution of Epicenters for the Earthquake Catalogue.



processes which are directly useful for our purposes. Let us consider a Markov renewal process
(MRP), (J,S) = (Jn, Sn)n≥0 defined on a probability complete space, where (Jn)n≥0 is a Markov
chain with values state space E = {1, 2, …, s}, (Sn)n≥0 are the jump times which take values in
R+, J0, J1, …, Jn, are the consecutive states to be visited by the MRP and X0= 0, X1, X2,… de-
fined by Xn = Sn - Sn-1 for n ≥ 1, are the sojourn times in these states. The stochastic behaviour
of the MRP is determined completely by its initial law and its semi-Markov kernel defined re-
spectively by P(J0 = k) = p(k) and P(Jn+1 = j, Xn+1 ≤ x / J0, J1, …, Jn, X1, X2,…, Xn) = Qij (x) on

the event {Jn = i}, for all x ∈ S and j ∈ E. The probabilities are the tran-
sition probabilities of the Markov process (Jn)n≥0

Let us now consider the distribution function associated with the sojourn time in state i before

going to state j and defined as

Let Ni (t) be the number of visits of (Jn)n≥0 to state j ∈ E up to time t, and Nij (t) be the number
of transitions from state i to state j up to time t, that is

and

Let us also define the distribution function and its mean value mi, which is the

mean sojourn time of Z in state i.

3.1.1. Empirical Estimator of the Semi-Markov Kernel

The observation of a sample path of a semi-Markov process in the time interval [0, t]is de-
scribed as Ht = {J0, J1, …, JN(t), X1, X2,…, XN(t)).

In order to estimate the semi-Markov kernel of a finite state space semi-Markov process by
observing one or several sample paths in the time interval under consideration, let as define the
following empirical estimator of the semi-Markov kernel:

Then can be written as where

,

and
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Fig. 2: Empirical Estimator for Semi-Markov Kernel from State 1 to State j, j=1, 2, 3.

Fig. 3: Empirical Estimator for Semi-Markov Kernel from State 2 to State j, j=1, 2, 3.



are the estimators of the transition probabilities and state transition functions.

In the case of two states 

State 1: includes events with magnitude 5.5 ≤ M ≤ 5.7

State 2: includes events with magnitude, M ≥ 5.8

The point estimates and the 95% confidence intervals for the transition probabilities are
presented in Table 1:

3.1.2. Empirical Estimator of Stationary Distribution for the Semi-Markov Process

Here we will assume that the embedded Markov chain (Jn) irreducible with invariant distribu-
tion νi and that mi < ∞ for all i ∈ E, where mi is the mean sojourn time in state i. The empirical
estimator for the stationary distribution of the semi-Markov process is: 

,
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Table 1. 

Transitions 95% Confidence intervals for the tran-
sition probabilities 

Point estimates for the 
transition probabilities 

1 → 1 (0.3405, 0.7559) 0.56

1 → 2 (0.2439, 0.6593) 0.44

2 → 1 (0.3249, 0.7938) 0.57

2 → 2 (0.2060, 0.6749) 0.43

Fig. 4: Empirical Estimator for Semi-Markov Kernel from State 3 to State j, j=1, 2, 3.
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Table 2. 

State vi (T) mi (T) πi (T)

State 1 0.4848 12.3750 0.3084

State 2 0.2727 40.4444 0.5670

State 3 0.2425 10.0000 0.1246

̭ ̭ ̭

where is an estimator of the stationary distribution of the embedded Markov chain and

is an estimator of the mean sojourn time in state i. The mean sojourn time in state i is

. We will use the empirical estimator of the stationary distribution of the

embedded Markov chain, defined as 

In Table 2 empirical estimators of the stationary distribution for the embedded Markov chain, the
mean sojourn time and the stationary distribution for the semi-Markov process are presented.

3.2. Parametric Method

In order to use a parametric method of estimation and due to the small sample size, we define
only two different states:
State 1: includes events with magnitude 5.5 ≤ M ≤ 5.7 
State 2: includes events with magnitude  M ≤ 5.8.

We present below the numbers of observed transitions in the dataset, and the mean sojourn
times in between, in months (rounded):

Number of transitions: Means of sojourn times:
.

Let us suppose that the sojourn times follow exponential distributions, namely their probabil-
ity density functions are of the form

The parameters’estimation is achieved through the maximum likelihood estimation method as follows.

Table 3. 

Parameters λij 

1 → 1 30.0867

1 → 2 10.6667

2 → 1 14.0208

2 → 2 28.5722
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Supposing that the sojourn times follow Weibull distributions, their probability density func-
tions are given by 

The Weibull distribution is desirable because the associated hazard rate increases in time if λij
> 1. Actually the longer is the waiting time for transition from one state to another the higher
is the probability that the transition happens. In order to estimate the parameters of the above
distributions the maximum likelihood estimation method is used. 

In figure 5 we present the empirical cumulative distribution and the theoretical cumulative dis-
tribution F11(t) of the sojourn time in state 1 before a new earthquake of the first class (i.e. state
1) occurs. Similar diagrams can be derived also for the functions F12(t), F21(t) and F22(t).

Assuming Weibull distributed sojourn times, the probabilities of successive earthquake occur-
rences in any time interval (0, t), t>0, can be estimated using the cumulative distributions Fij
(t).Taking into account the hazard rate functions (for the case of Weibull distribution) 

Table 4. 

Transitions Parameters aij Parameters λij 

1 → 1 31.2758 1.0947

1 → 2 9.5418 1.0000

2 → 1 12.6088 1.0000

2 → 2 29.0511 1.0488

Fig. 5: Weibull Cumulative Distribution and Empirical Cumulative Distribution for Transitions from State
1 to State 1.



we get that

for Δ(t) sufficiently small. So, the conditional probability of occurrence of an earthquake of
magnitude class j, after 1 month and 6 months from the last event of magnitude class i, is given
in the following tables:

Table 5. 

Table 6. 
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