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Abstract 

Aegean extension is a process driven by slab rollback that, since 45 Ma, shows a two-

stage evolution. From Middle Eocene to Middle Miocene it is accommodated by 

localized deformation leading to i) the exhumation of high-pressure metamorphic 

rocks from mantle to crustal depths, ii) the exhumation of high-temperature rocks in 

core complexes and iii) the deposition of Paleogene sedimentary basins. Since Middle 

Miocene, extension is distributed over the whole Aegean domain giving a widespread 

development of onshore and offshore Neogene sedimentary basins. We reconstructed 

this two-stage evolution in 3D at Aegean scale by using available ages of 

metamorphic and sedimentary processes, geometry and kinematics of ductile 

deformation, paleomagnetic data and available tomographic models. The restoration 

model shows that the rate of trench retreat was around 0.6 cm/y during the first 30 

My and then accelerated up to 3.2 cm/y during the last 15 My. The sharp transition 

observed in the mode of extension, localized versus distributed, which occurred in 

Middle Miocene correlates with the acceleration of trench retreat and is more likely 

a consequence of the Hellenic slab tearing documented by mantle tomography. The 

development of large dextral NE-SW strike-slip faults during the second stage of 

Aegean extension, since Middle Miocene, is illustrated by the 450 Km-long fault, 

recently put in evidence, offshore from Myrthes to Ikaria and onshore from Izmir to 

Balikeshir, in western Anatolia. Therefore, the interaction between the Hellenic 

trench retreat and the westward displacement of Anatolia started in Middle Miocene, 
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almost 10 Ma before the propagation of the North Anatolian Fault in the North 

Aegean. This raises a fundamental issue concerning the dynamic relationship between 

slab tearing and Anatolia displacement. 

Keywords: Blueschists, core-complexes, basins. 

1. Introduction 

The Aegean Tertiary tectonic history, from a dynamic point of view, corresponds to back-arc 

extension driven by slab rollback (Royden, 1993; Jolivet and Faccenna, 2000; Faccenna et al., 2003, 

2014; Brun and Faccenna, 2008). Extension started around 45 Ma ago (Brun and Sokoutis, 2010) 

and accommodated up to 600 km of trench retreat (Jolivet and Brun, 2010; Jolivet et al., 2013). 

Extension followed the closure of the two oceanic domains of Vardar and Pindos in Cretaceous-

Eocene (Dercourt et al., 1993; Channell and Kozur, 1997; Robertson, 2004) leading to the stacking 

of three continental blocks that from top to base are: Rhodopia, Pelagonia and Adria (Fig. 1). 

 

Figure 1 - The three main continental blocks of Aegean: Rhodopia, Pelagonia and Adria. 

Tomographic models of the underlying mantle image a single slab (e.g. Wortel and Spakman, 2000; 

Piromallo and Morelli, 2003; Widiyantoro et al., 2004) indicating that the convergence of 

continental blocks, now separated by two suture zones, has been accommodated by a single 

subduction. During subduction rollback, the Pelagonia and Adria crust panels were fully detached 
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from the downgoing lithospheric mantle and moved back to surface, resting directly on top of 

asthenosphere (Brun and Faccenna, 2008; Tirel et al., 2013). 

In the present study we show that Aegean extension occurred in two main stages, from Middle 

Eocene to Middle Miocene and since Middle Miocene. The significant large-scale features that 

characterized these two stages of extension are defined in terms of sedimentation, deformation and 

metamorphism. It is argued i) that the major dynamic change that occurred in Middle Miocene, 

resulted from an acceleration of trench retreat that is more probably responsible for the observed 

transition between localized and distributed modes of extension and ii) that the likely cause of this 

acceleration due to slab tearing coeval with the onset of Anatolia westward displacement. 

2. The two main stages of Aegean extension 

The first plate kinematic models of eastern Mediterranean (McKenzie, 1972, 1978; Le Pichon and 

Angelier, 1981) and the present-day displacement field from satellite geodesy (McClusky et al., 

2000; Hollenstein et al., 2008; Müller et al., 2013) show that the active Aegean extension results 

from the combined effects of the southwestward retreat of the Hellenic trench and the westward 

displacement of Anatolia along the North Anatolian Fault (NAF).  

The geological record shows that this interaction between two strongly oblique components of 

boundary displacement started in Middle Miocene (Dewey and Şengör, 1979; Şengör et al., 2005; 

Philippon et al., 2014), around 10 My before the NAF reached the Aegean (Armijo et al., 1999; 

Hubert-Ferrari et al., 2003; Şengör et al., 2005). On the other hand, the coeval extensional 

exhumation of high-pressure metamorphic rocks in the Southern Hellenides and high-temperature 

metamorphic rocks in the Rhodope (Brun and Sokoutis, 2007; Brun and Faccenna, 2008) started in 

Middle Eocene (see review of data in Jolivet and Brun, 2010 and Philippon et al., 2012). This brief 

summary of the Aegean extension history during a large part of the Tertiary indicates a process that 

has not been continuous, neither in time nor in space. This is illustrated by a striking difference in 

the distribution of Paleogene and Neogene sedimentary basins at Aegean scale (Fig. 2) suggesting 

that a major change in the dynamics of Aegean extension occurred in Middle Miocene, more 30 My 

after its onset. 

2.1. Stage 1: Paleogene basins and ductile exhumation of metamorphic rocks 

Paleogene basins (Fig. 2a) that mostly contain Middle Eocene and/or Oligocene sediments are located 

i) on top of the Rhodopia block (Trace Basin: Görür and Okay, 1996; Siyako and Huvaz, 2007; Kilias 

et al., 2013); Vardar-Thermaikos Basin: Roussos, 1994; Carras and Georgala, 1998) and ii) on top of 

Pelagonia (Mesohellenic Trough: Doutsos et al., 1994; Ferrière et al., 2004) (Fig. 2a). 

The exhumation of core complexes (high-temperature metamorphism) and blueschists (high-

pressure metamorphism) (Figs. 3 and 4) resulted from significantly different mechanisms of 

development, primarily controlled by temperature-dependent rheology of the crustal units. 
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Figure 2 - Distribution of Paleogene (a) and Neogene (b) basins in the Aegean domain. 

The location of core complexes and high pressure belts in the Aegean, as well as their relative timing 

of exhumation, has important dynamic implications: 

 The Southern Rhodope Core Complex (SRCC) (Brun and Sokoutis, 2007) started to develop 

in Middle-Late Eocene in North Aegean when the Cycladic Blueschist Unit (CBU) started to 

exhume in central Aegean (Jolivet and Brun, 2010; Philippon et al., 2012). 

 The Central Cyclades Core Complex (CCCC) (Philippon et al., 2012) developed in central 

Aegean almost synchronous with the exhumation onset of HP-LT Phyllite–Quartzite Nappe 

(PQN) in Peloponnese and Crete (Jolivet et al., 2010). 

 The sense of shear and detachment dip, in core complexes, and sense of shear, in high-

pressure rocks, is top to SW in North Aegean (SRCC) (Brun and Sokoutis, 2007), to NE in 

central Aegean (CBU and CCCC) (Philippon et al., 2012) and to E and N in South Aegean 

(HP-LT PQN) (Jolivet et al., 2010). 

 The part of exhumation synchronous with ductile deformation ended in Middle Miocene in 

all types of metamorphic rocks, either high-temperature (SRCC and CCCC) or high pressure 

(CBU and HP-LT PQN) and whatever age of onset. 
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Figure 3 - The two core complexes (HT metamorphism) of the Aegean domain with 

corresponding PTt diagrams and related senses of shear. 

2.2. Stage 2: Neogene basins and dextral transtensional faulting 

The Neogene basins (Fig. 2b) whose deposition started in Middle Miocene constitute one of the 

most striking geological features of the Aegean domain, both onshore and offshore. They emplaced 

on all types of rock units (Paleogene basins, high-temperature or high-pressure metamorphic units, 

plutonic massives and volcanic buildups) of Rhodopia, Pelagonia and Adria and over around 1000 

km from Crete to Rhodope. The earlier deposits are Langhian-Serravalian in some basins but 

Tortonian sediments are present in most of them. Where structural data are available, field 

measurements or seismics, tectonic setting of most basins is extensional or transtensional (e.g. 

Mercier et al., 1987, 1989; Lyberis, 1984; Mascle and Martin, 1990; Koukouvelas and Aydin, 2002; 

Sakellariou et al., 2013). 

Low-temperature thermochronology ages, obtained by various methods (apatite and zircon fission-

track and U-Th/He on apatite and zircon) in high-temperature and high-pressure metamorphic units, 

which were exhumed during the first stage of extension, are dominantly Serravalian-Tortonian, over 

the whole Aegean (Brix et al., 2002; Wuthrich, 2009; Philippon et al., 2012; Marsellos et al., 2014). 

This indicates that metamorphic rocks of the SRCC, the CBU-CCCC and Peloponnese-Crete, whose 

onsets of exhumation were different, were reaching the surface in Middle-Late Miocene. 

The mode of extension during this second stage of Aegean extension is in strong contrast with the 

one that characterizes the first stage. Extension passed in Middle Miocene from the core complex 

mode to the wide rift mode (Buck, 1991; Brun, 1999), as demonstrated by the deposition of 

extensional or transtensional Neogene basins across the whole Aegean, offshore as well as onshore. 

The interruption of ductile exhumation in Middle Miocene, in all types of metamorphic rocks (HT 

as well as HP) whatever their age of onset, as well as the segmentation of the metamorphic units and 

the deposition of Neogene basins on top of them suggest that the transition between the two modes 

of extension was not progressive and likely occurred in a rather short delay. 
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Figure 3 - The HP metamorphic domain of Adria and Pelagonia blocks with corresponding 

PTt diagrams and related senses of shear. 

 

Fig. 4 - Major strike-slip faults and Neogene sedimentary basins in the Aegean Sea, as 

displayed by Aegean Sea bathymetry. 
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The Myrthes-Ikaria fault (MIF) (Philippon et al., 2012) that cut trough the whole Cyclades domain is 

the offshore extend of the onshore Ismir-Balikeshir transfer zone (IBTZ) (Sozbilir et al., 2010; Ersoy 

et al., 2012; Uzel et al., 2013) (Fig. 4). Lower (?)-Late Miocene sedimentary-volcanic basins were 

deposited in this transtensional corridor, located at the northwestern border of the Menderes Massif 

(Ersoy et al., 2012). Simultaneously, grabens developed in the Menderes, accommodating a NE-SW 

direction of stretching. Over 450 km, from Myrthes Basin to Balikeshir, this dextral strike-slip fault 

zone was active since Middle Miocene –i.e. around 10 My before the arrival of the NAT in the North 

Aegean. Whereas there is no direct evidence to identify when displacements ceased on this fault zone, 

it can be hypothesized that this occurred around 5 Ma when the NAF fully localized (Şengör et al., 

2005), in agreement with the youngest ages of exhumation recorded by low-temperature 

thermochronology in the Cyclades (Philippon et al., 2014). 

3. Discussion-Conclusion: Acceleration of slab rollback 

The restoration of displacements using the numerous data sets available (paleomagnetism, kinematic 

indicators and geochronology) (Brun and Sokoutis, 2010 and re-evaluation by Brun et al., 2012) 

shows that an acceleration of trench retreat started in Middle Miocene (Fig.5). The rate of trench 

retreat that was rather low, around 0.6 cm.y-1, during the first stage of extension increased to around 

1.7 cm.y-1 between Middle Miocene and Pliocene, reaching 3.2 cm.y-1 during the last 5 Ma. 

This acceleration of trench retreat (i.e. extensional boundary displacement), first by a factor 2 after 

Middle Miocene and then by a factor 5 after Pliocene, was more likely responsible for the observed 

change in the mode of extension, from localized to distributed - i.e. from core complex to wide rift 

(Buck, 1991; Brun, 1999; Tirel et al., 2006, 2008; Kydonakis et al., 2015). 

 

Fig. 5 - Modes of extension as a function of the rate of trench retreat. 

The acceleration of trench retreat is more likely related to the Hellenic slab tearing whose rather 

complex geometry was recently evidenced by S-wave tomography (Salaün et al., 2012). Whereas 

the exact timing of slab tearing is difficult to constrain, the sudden change in the mode of extension, 

which is associated with the acceleration of slab retreat, strongly supports that slab tearing should 

have started to develop earlier, possibly in Early Miocene, to become fully efficient from 15 Ma 

onward. 

The transtensional deformation pattern (Fig. 4) that results from the interaction between Hellenic 

trench retreat and Anatolia westward displacement and that is still active in the Aegean took place 

in Middle Miocene, as previously argued by Dewey and Şengör (1979) and Şengör et al. (2005). 

Consequently, the westward displacement of Anatolia was coeval with the acceleration of trench 

retreat. Whereas the North Anatolian Fault plays a major role in the present-day kinematic pattern, 

the 450 km-long Myrthes-Ikaria Fault-IBTF (Fig. 4) was the first large dextral strike-slip fault zone 
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to develop. Its location close to the Izmir-Ankara suture zone and parallel to it strongly suggests that 

the suture zone was acting as weak zone able to localize displacements at the onset of Anatolia 

westward displacement; as illustrated by the laboratory experiments of Philippon et al. (2014). 

However, this interaction between two plate boundary displacements raises a fundamental issue: 

What is the dynamic relationship between slab tearing and Anatolia displacement? Which one 

controlled the development of the other? 
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