APPLICATION OF OSL METHOD IN DATING PAST EARTHQUAKES

Tsodoulos I. University of Ioannina, Department of Physics
Stamoulis K.C. Archaeometry Center, University of Ioannina
Papachristodoulou C. University of Ioannina, Department of Physics
Pavlides PS. Aristotle University of Thessaloniki, Department of Geology
Ioannides K.G. University of Ioannina, Department of Physics

https://doi.org/10.12681/bgsg.11740

To cite this article:

APPLICATION OF OSL METHOD IN DATING PAST EARTHQUAKES

Tsodoulos I.1, Stamoulis K.C.1,2, Papachristodoulou C.1, Pavlides S.3 and Ioannides K.G.1,2
1University of Ioannina, Department of Physics, 45110, Ioannina, Greece, itsodoul@cc.uoi.gr, kstamoul@cc.uoi.gr, xpapaxri@cc.uoi.gr, kioannid@cc.uoi.gr
2Archaeometry Center, University of Ioannina, 45110, Ioannina, Greece, kstamoul@cc.uoi.gr
3Aristotle University of Thessaloniki, Department of Geology, 54124, Thessaloniki, Greece, pavlides@geo.auth.gr

Abstract
The aim of this study was to establish a chronological frame of paleoseismic events of Gyrtoni Fault, (Thessaly, Central Greece), with the use of OSL dating method. The Gyrtoni Fault, defines the north-eastern boundary of the Middle-Late Quaternary Tyrnavos Basin, and was previously investigated with geological methods. Twenty five fluvial-colluvial sediment and pottery samples were collected from two paleoseismological trenches, excavated along the Gyrtoni Fault, from both the upthrown and the downthrown fault blocks. Optically Stimulated Luminescence (OSL) dating was applied to coarse grain quartz using the single-aliquot regenerative-dose (SAR) protocol. Investigations of luminescence characteristics using various tests confirmed the suitability of the material for OSL dating using the SAR protocol. Radioactivity measurements were performed in order to estimate the annual dose rate of the surrounding soils to which the quartz grains were submitted during the burial period of the collected samples. The estimated OSL ages agreed well with the available stratigraphical data, and archaeological evidence. The occurrence of three surface faulting events in a time span between 1.42 ± 0.06 ka and 5.59 ± 0.13 ka was revealed while an earlier faulting event (fourth) was also recognized to be older than 5.59 ± 0.13 ka.

Keywords: OSL dating, SAR protocol, annual dose rate, paleoseismology.
1. Introduction

The Gyrtoni Fault (GF), a south-dipping normal fault affecting Thessaly, Central Greece (Pavlides et al., 2010), is located ~13 km from Larissa, one of the largest cities of Greece (population ~160,000, Fig. 1). Therefore, the understanding of the seismotectonic behavior of this active fault in terms of slip rate, recurrence interval and date of past earthquakes (McCalpin, 2009b), is of great importance considering the hazard due to a future great seismic event for the population of the area.

Several large events have occurred in Thessaly during historical times and the instrumental period (Caputo et al., 2006 and references therein), but only three of these events have been directly related to the Tyrnavos Basin; the 1731 (Ms 6.0), the 1781 (Ms 6.3) and the 1941 (Ms 6.1) earthquakes (Papazachos and Papazachou, 1997). Also, archaeological data, based on remains and damaged monuments, provide evidence of strong earthquakes in the Tyrnavos Basin during the last 2-3 ka (Caputo and Helly, 2005b). However, the correlation of these events with specific faults of Tyrnavos Basin is still under discussion.

Optically Stimulated Luminescence (OSL) dating (Huntley et al., 1985) provides age estimates for the last time a sediment was exposed to sunlight and is a potentially useful tool in dating earthquake-related deposits (e.g. Aitken, 1998). The single-aliquot regenerative-dose (SAR) protocol (Murray and Wintle, 2003) is extensively used for measuring the equivalent dose (D_e), providing a high degree of precision and accuracy for OSL ages (Murray and Olley, 2002). OSL dating studies based on the SAR protocol applied to date earthquake-related deposits provide reliable results (Porat et al., 1996; Chen et al., 2003; Fattahi et al., 2010).

Only a few previous studies have applied luminescence dating to fault-related deposits associated with paleoearthquakes, in Greece. Chatziptetos et al. (1998) were the first to apply thermoluminescence (TL) and 14C dating to colluvial sediments associated with the Palaeochori-Sarakina Fault in western Macedonia, Greece, for estimating recurrence intervals of past earthquakes.
In palaeoseismological investigations carried out along the Tyrnavos and the Rodia faults, Central Greece, Caputo et al. (2004) and Caputo and Helly (2005a) reported TL, OSL and AMS ages from numerous trenches and quantified the most important seismotectonic parameters. In the present study, chemically purified quartz extracted from fluvial-colluvial sediment and pottery samples, which were collected from two excavated palaeoseismological trenches along the GF, was subjected to OSL dating method using the SAR protocol (Murray and Wintle, 2003). The chronological determination of the identified past surface faulting events has been constrained by the obtained OSL ages of the observed stratigraphic units. Our results allowed the estimation of the Holocene slip rate, the mean return period and the elapsed time from the last earthquake on the GF. In addition, the establishment of a reliable chronological framework for the floodplain deposits exposed in the excavated trenches was employed.

2. Materials and Methods
2.1. Sample collection
To establish a reliable chronological framework for this area, six samples for OSL dating were collected from four of the five distinct lithologic units exposed on the upthrown fault block of an excavated trench G1, perpendicular to the Gyrtoni Fault. Additionally, three samples were collected from fallen blocks belonging to another fifth unit and involved in the shear zone. To evaluate internal consistency, also three samples were collected from the exposed units of the upthrown fault block of a second excavated trench G2. Eight sediment samples and five pottery fragments were collected from the four distinct lithologic units exposed on the downthrown fault blocks of the two trenches to constrain the timing of the earthquake events observed in the trenches and thus reconstruct the recent seismotectonic behavior. One sediment sample and four pottery fragments, as well as pieces from buried pottery were collected from silty clay units of trench G1. Due to the lack of clear layering and some uncertainty in the recognition of the units of trench G2, four samples were collected in a vertical sequence in order to establish an age trend with depth (McCalpin, 2009a), and two from different parts close to the fault zone of the fifth unit from trench G2. One additional sample was collected from the silty sand colluvial deposit unit that was exposed on the west wall of the same trench. For details on litholgical units of the two trenches, see Tsodoulos et al. (2016).

All sediment samples were collected by hammering 20 x 5 cm steel tubes horizontally into the surface of the walls of the two trenches, which were then carefully dragged out. The tubes were closed and sealed using duct tape and aluminum foil, labeled and stored in black plastic bags. Also, an additional sample for water content estimation and dose rate determination was collected.

2.2. Sample preparation
Sample preparation and luminescence measurements were carried out at the luminescence dating laboratory of the Archaeometry Center at the University of Ioannina. The collected steel tubes were opened under subdued red light laboratory conditions. The outermost 2 cm of the sediment were removed from each end of the steel tubes to avoid contamination with light-exposed material and then the sediment from the central part of the cores was reserved for quartz OSL equivalent-dose (D_e) determination. Pottery samples were sawed with a low speed diamond-impregnated wheel in order to remove a 2 mm layer from the surface and then were gently crushed and grinded using a vice and a mortar. The grain-size fraction of 125-250 μm, for samples from trench G1, and 63-100 μm, for samples from trench G2, were extracted by wet-sieving. The extracted grains were treated with 8% HCl and 30% H_2O_2 to remove carbonates and organic material. Finally, 40% HF was applied for 1 h to remove feldspars and to etch the outer surface of quartz grains, thus eliminating the alpha contribution, followed by concentrated HCl to remove any remaining soluble fluorides. After the chemical treatment, the grains were mounted on 10 mm diameter stainless steel discs by evaporation of an acetone suspension. The purity of the quartz extract was checked using the OSL-
IR depletion ratio with an extra step within the SAR sequence (Duller, 2003) and by observing the 110 °C TL peak during preheating (Constantin et al., 2014). (Fig. 2).

Figure 2 - Typical OSL decay curves (inset) and SAR growth curves for pottery (Gyr1OSL_13) and sediment (Gyr2OSL_07E and Gyr1OSL_06) samples using a 260°C and 240°C preheat for 10s, respectively, and a 160°C cut heat.

2.3. Equipment and equivalent dose determination

Following sample preparation, luminescence measurements were performed on a Risø TL/OSL-DA-20 reader (Bøtter-Jensen et al., 2010) equipped with a 1.48 GBq Sr-Y beta radiation source with a dose rate ~0.084 Gy/s. Quartz OSL was obtained through stimulating with blue LEDs emitting at 470 nm (FWHM = 20 nm) and delivering ~50 mW/cm² at the sample position and infrared (IR) stimulating using IR diodes emitting at 880 nm delivering ~145 mW/cm². Signals were detected using a 7 mm Hoya U-340 optical filter in front of an EMI 9235QA photomultiplier tube.
Measurements of OSL were made on chemically purified coarse-grained quartz, using the single-aliquot regenerative-dose (SAR) protocol proposed by Murray and Wintle (2003).

All OSL measurements were made using stimulation with blue diodes at 125°C for 40 s. To determine D_0, the initial 0.8 s (channels 1 to 5) of the OSL decay curve was used, and the background was assumed as the mean of the signal in the last 8 s (50 channels) of the 40 s measurement of the decay curve. Preheat temperatures of 240°C for 10 s for sediment samples and 260°C for 10 s for pottery samples, were chosen after performing preheat plateau tests and dose recovery tests using different preheat temperatures. A cut heat of 160°C followed by immediate cooling prior to test dose response of approximately 5 Gy was used. Preliminary luminescence measurement tests on aliquots from the pottery samples, using the standard SAR protocol, were found to have significant recuperated corrected OSL signal compared to the natural signal (e.g., GyroSL1_13, >10%). Thus, an additional 40 s optical stimulation at 280°C was added at the end of each measurement cycle of the SAR protocol, and recuperation was reduced to <10% for all pottery samples.

The D_0 values were calculated using the Analyst software (Duller, 2015) by fitting an exponential or exponential-plus-linear function to the dose-response curve, with an instrumental error of 1.0 %.

2.4. Dose rate assessment

The environmental dose rate for each sample was calculated using high-resolution gamma spectrometry to measure the radionuclide concentrations of 238U, 232Th and 40K (Murray et al., 1987), at the Nuclear Physics Laboratory of the University of Ioannina. Dry sample material was packed in plastic containers, sealed and stored at least for four weeks to allow for radon equilibrium before being measured on a Canberra broad energy HPGe gamma spectrometer for ~48h. The concentrations of 238U, 232Th and 40K were then used to calculate the dose rates using the conversion factors of Adamiec and Aitken (1998) and Liritzis et al. (2013). The water content (%) weight of each sample was measured in the laboratory based on the initial field water content. In addition to the environmental dose rate, the contribution of the cosmic radiation was calculated based on the modern burial depth of the samples, the sediment density (1.8 g/cm3) and the site’s latitude, longitude and altitude, using the equations given by Prescott and Hutton (1994). The analytical results from gamma spectroscopy measurements are summarized in Table 1.

2.5. Luminescence characteristics

To establish appropriate preheat conditions for the SAR measurement protocol, preheat plateau tests and dose recovery tests using different preheat temperatures were conducted on representative samples. We first examined the dependence of D_0 on different preheat temperatures, using representative samples selected to be studied in detail. In this experiment, twenty-four aliquots were measured for each sample (three aliquots for each preheat temperature) by the SAR protocol using eight different preheat temperatures from 160 to 300°C (in 20°C steps) for 10 s, with a fixed test dose cut heat temperature of 160°C. For sample GyroSL07E, a plateau was detected between temperatures 180-300°C, giving an average D_0 of 5.58 ± 0.47 Gy. The recycling ratios and the signal recuperation values are all within 10% of unity and <2.0% of the natural signal, respectively. The D_0 values of the sample GyroSL1_13 also show to be independent of preheat temperatures at least between 180 to 300°C, giving an average D_0 of 5.79 ± 1.10 Gy. The recycling ratios obtained are also within 10% of unity but the recuperation values are sufficiently high (3 - 13 %), in the temperature region 180 - 300°C. High recuperation values of pottery samples can be attributed to low count rates of the natural OSL signal of the samples (Choi et al., 2009). In order to minimize this effect an additional 40 s optical stimulation at 280°C was included as an extra step at the end of the SAR protocol (Murray and Wintle, 2003). A dose recovery test was also performed. Twenty-four aliquots from each sample were bleached by exposure to blue LED stimulation for 1 ks at room temperature (Rowan et al., 2012), with a 10 ks pause between bleaches to allow charge in the 110°C trap to empty, followed by another 1 ks blue LED stimulation. The aliquots were then given a beta dose of 5.60 Gy and were measured as if they were natural samples using the SAR protocol.
Measurements were made using a range of OSL preheat temperatures (160 °C - 300 °C, step 20 °C) using three aliquots for each temperature and a test dose cut heat of 160 °C. For sample Gyr2OSL_07E a plateau is identified between temperatures 160 °C-300 °C and ratios of the recovered dose to given dose are within 10 % of unity for all temperatures. For sample Gyr1OSL_13 a plateau was identified between temperatures 180-280 °C, but the given dose seemed to be underestimated in the preheat temperature region between 160 °C and 240 °C. The recycling ratios for both samples were all within 10 % of unity, and signal recoveries were < 2.0 % of the natural signal. Based on these test results, a preheat temperature of 240 °C for sediment samples and 260 °C for pottery samples were adopted for all further SAR OSL measurements.

Table 1 - Sample information, radionuclide concentrations and dose rates results for luminescence samples collected from the two palaeoseismological trenches at Gyrfouti Fault, Thessaly, Central Greece.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Sample position</th>
<th>Material</th>
<th>Depth (m)</th>
<th>Water Content (%)</th>
<th>Age_{IN} (ka)</th>
<th>Age_{OSL} (ka)</th>
<th>Age_{A} (ka)</th>
<th>Age_{E} (ka)</th>
<th>External β dose rate (μGy/yr)</th>
<th>External γ dose rate (μGy/yr)</th>
<th>Cosmic dose rate (μGy/yr)</th>
<th>Total dose rate (μGy/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gy01S0L_01</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>0.5</td>
<td>7.3</td>
<td>28.1 ± 1.3</td>
<td>163 ± 1.1</td>
<td>207 ± 2.6</td>
<td>299 ± 3.0</td>
<td>0.96 ± 0.05</td>
<td>0.95 ± 0.02</td>
<td>0.21 ± 0.02</td>
<td>1.04 ± 0.06</td>
</tr>
<tr>
<td>Gy01S0L_02</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>1.1</td>
<td>5.9</td>
<td>282 ± 4.6</td>
<td>127 ± 0.7</td>
<td>270 ± 5.0</td>
<td>313 ± 5.6</td>
<td>0.92 ± 0.04</td>
<td>0.92 ± 0.02</td>
<td>0.18 ± 0.02</td>
<td>1.01 ± 0.05</td>
</tr>
<tr>
<td>Gy01S0L_03</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>0.7</td>
<td>19.2</td>
<td>36.1 ± 1.5</td>
<td>30.3 ± 1.3</td>
<td>408 ± 3.4</td>
<td>429 ± 3.8</td>
<td>1.29 ± 0.06</td>
<td>0.99 ± 0.03</td>
<td>0.19 ± 0.02</td>
<td>2.51 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_04</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>1.2</td>
<td>36.6</td>
<td>24.5 ± 1.2</td>
<td>316 ± 1.4</td>
<td>404 ± 3.2</td>
<td>432 ± 3.5</td>
<td>1.05 ± 0.05</td>
<td>0.73 ± 0.02</td>
<td>0.18 ± 0.02</td>
<td>1.96 ± 0.06</td>
</tr>
<tr>
<td>Gy01S0L_05</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>1.4</td>
<td>23.6</td>
<td>26.2 ± 1.1</td>
<td>215 ± 1.1</td>
<td>347 ± 2.8</td>
<td>338 ± 3.4</td>
<td>0.67 ± 0.04</td>
<td>0.60 ± 0.02</td>
<td>0.17 ± 0.03</td>
<td>1.04 ± 0.05</td>
</tr>
<tr>
<td>Gy01S0L_06</td>
<td>Upthrown block</td>
<td>Sediment</td>
<td>2.3</td>
<td>43.7</td>
<td>20.4 ± 0.8</td>
<td>217 ± 0.8</td>
<td>289 ± 1.9</td>
<td>308 ± 2.3</td>
<td>0.98 ± 0.03</td>
<td>0.43 ± 0.01</td>
<td>0.10 ± 0.02</td>
<td>1.57 ± 0.03</td>
</tr>
<tr>
<td>Gy01S0L_07</td>
<td>Fault zone</td>
<td>Sediment</td>
<td>1.8</td>
<td>17.1</td>
<td>30.0 ± 1.1</td>
<td>233 ± 1.2</td>
<td>383 ± 2.7</td>
<td>389 ± 3.6</td>
<td>0.89 ± 0.05</td>
<td>0.51 ± 0.02</td>
<td>0.17 ± 0.02</td>
<td>1.62 ± 0.06</td>
</tr>
<tr>
<td>Gy01S0L_08</td>
<td>Fault zone</td>
<td>Sediment</td>
<td>1.6</td>
<td>12.0</td>
<td>15.0 ± 0.8</td>
<td>160 ± 1.1</td>
<td>465 ± 3.0</td>
<td>476 ± 3.5</td>
<td>1.64 ± 0.06</td>
<td>0.62 ± 0.02</td>
<td>0.17 ± 0.03</td>
<td>1.48 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_09</td>
<td>Fault zone</td>
<td>Sediment</td>
<td>2.2</td>
<td>14.9</td>
<td>29.1 ± 1.2</td>
<td>204 ± 1.1</td>
<td>396 ± 2.7</td>
<td>411 ± 3.2</td>
<td>1.61 ± 0.09</td>
<td>0.65 ± 0.02</td>
<td>0.16 ± 0.02</td>
<td>1.96 ± 0.06</td>
</tr>
<tr>
<td>Gy01S0L_10</td>
<td>Downthrown block</td>
<td>Sediment</td>
<td>0.7</td>
<td>12.6</td>
<td>28.1 ± 1.4</td>
<td>284 ± 1.4</td>
<td>409 ± 3.4</td>
<td>432 ± 3.7</td>
<td>1.32 ± 0.07</td>
<td>0.67 ± 0.03</td>
<td>0.20 ± 0.02</td>
<td>2.38 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_11</td>
<td>Downthrown block</td>
<td>Pottery</td>
<td>0.7</td>
<td>13.8</td>
<td>39.3 ± 1.3</td>
<td>468 ± 3.7</td>
<td>1.29 ± 0.07</td>
<td>0.95 ± 0.03</td>
<td>0.20 ± 0.02</td>
<td>2.71 ± 0.06</td>
<td>0.03 ± 0.02</td>
<td>3.00 ± 0.06</td>
</tr>
<tr>
<td>Gy01S0L_12</td>
<td>Downthrown block</td>
<td>Pottery</td>
<td>1.0</td>
<td>9.7</td>
<td>27.2 ± 1.4</td>
<td>360 ± 1.6</td>
<td>504 ± 2.9</td>
<td>3.16 ± 0.07</td>
<td>0.90 ± 0.03</td>
<td>0.16 ± 0.02</td>
<td>2.43 ± 0.03</td>
<td>3.99 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_13</td>
<td>Downthrown block</td>
<td>Pottery</td>
<td>1.6</td>
<td>44.6</td>
<td>30.5 ± 1.4</td>
<td>295 ± 3.2</td>
<td>1.32 ± 0.07</td>
<td>0.98 ± 0.03</td>
<td>0.22 ± 0.03</td>
<td>2.43 ± 0.07</td>
<td>0.16 ± 0.02</td>
<td>3.05 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_14</td>
<td>Downthrown block</td>
<td>Pottery</td>
<td>1.0</td>
<td>13.5</td>
<td>28.2 ± 1.2</td>
<td>314 ± 1.1</td>
<td>532 ± 3.1</td>
<td>1.29 ± 0.06</td>
<td>0.01 ± 0.03</td>
<td>0.16 ± 0.02</td>
<td>2.38 ± 0.07</td>
<td>2.55 ± 0.07</td>
</tr>
<tr>
<td>Gy01S0L_15</td>
<td>Downthrown block</td>
<td>Pottery</td>
<td>2.0</td>
<td>18.6</td>
<td>28.8 ± 1.1</td>
<td>295 ± 1.1</td>
<td>464 ± 3.1</td>
<td>1.19 ± 0.06</td>
<td>0.17 ± 0.02</td>
<td>1.86 ± 0.02</td>
<td>3.05 ± 0.07</td>
<td>3.97 ± 0.07</td>
</tr>
</tbody>
</table>

* Depths below the surface of the trench.
* Water content expressed as a percentage of the mass of dry sediment, calculated using bulk values.

Finally, in order to confirm the suitability of the chosen SAR protocol to accurately measure a known laboratory dose, dose-recovery tests have been performed on all samples (Murray and Wintle, 2003). During these tests, three new aliquots of each sample were bleached twice using the same procedure as previously described, and a known dose close to the expected natural dose (≈De) was applied. The same preheating conditions and measurement sequence as selected for dating were used. Of 74 aliquots, ~85% had dose recovery ratios within the range 0.9 - 1.1. The statistical analysis of the doses recovered show a mean and standard deviation of 0.98 ± 0.06 of the given laboratory dose, confirming that the chosen SAR protocol is able to recover a given dose prior to any thermal treatment for all samples. The aliquots’ measurements were accepted when the following criteria were satisfied: (i) recycling ratio of 1.0 ± 0.1, (ii) OSL-IR depletion ratio of 1.0 ± 0.1, (iii) a detectable OSL signal (i.e. >3 sigma above background), (iv) recuperation of signal less than 5% of the natural signal for soil samples and 10% for pottery samples, and (v) whether the sensitivity corrected natural signal intersected the dose-response curve. Typical dose-response curves, for pottery sample (Gyr1OSL_13) sediment samples (Gyr2OSL_07E and Gyr1OSL_06), and natural OSL signal decay curves are shown in Fig. 2. The decay curves are
typical for quartz, and show that the OSL signal was depleted rapidly during the initial 3 s of stimulation, indicating that the signal was dominated by the fast component. The dose-response curves of samples Gyr2OSL_07E and Gyr1OSL_13 were fitted by a single exponential function. The D_e values of 5.54 ± 0.17 Gy and 5.50 ± 0.34 Gy were obtained for these samples, respectively. The D_e values obtained are far below the saturation level of their growth curves except for the Gyr1OSL_06 sample. Although the D_e value of 285.2 ± 17.3 Gy that was obtained for this sample is in a dose range where the exponential component is saturated, the continuous growth of the dose-response curve indicates saturation at much higher doses.

2.6. Equivalent dose distribution

Sediment samples from depositional environments, such as floodplains and colluvial systems may not be well-bleached due to the short fluvial or gravity transport distance (Wallinga, 2002a). The D_e distribution of an insufficiently bleached sample is expected to have a scattered form and high overdispersion values (σ_{OD}) (Wallinga, 2002b). Overdispersion values >20% may indicate incomplete bleaching (Olley et al., 2004).

Table 2 - Equivalent doses (D_e) and quartz OSL ages calculated for samples collected from the two paleoseismological trenches at Gyrtsoni Fault, Thessaly, Central Greece.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Grain size (μm)</th>
<th>Aliquots</th>
<th>f00 (%)</th>
<th>Total dose rate (Gy/ka)</th>
<th>Equivalent dose (D_e) (Gy)</th>
<th>Age (ka)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyr1OSL_01</td>
<td>125 - 250</td>
<td>33</td>
<td>1.84 ± 0.06</td>
<td>84.91 ± 5.36</td>
<td>46.1 ± 3.3</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_02</td>
<td>125 - 250</td>
<td>19</td>
<td>1.61 ± 0.05</td>
<td>76.54 ± 2.00</td>
<td>50.5 ± 2.5</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_03</td>
<td>125 - 250</td>
<td>17</td>
<td>2.37 ± 0.07</td>
<td>264.85 ± 10.14</td>
<td>86.4 ± 5.0</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_04</td>
<td>125 - 250</td>
<td>20</td>
<td>1.56 ± 0.06</td>
<td>260.95 ± 7.00</td>
<td>128.3 ± 5.4</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_05</td>
<td>125 - 250</td>
<td>27</td>
<td>1.64 ± 0.05</td>
<td>220.08 ± 6.34</td>
<td>133.9 ± 5.5</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_06</td>
<td>125 - 250</td>
<td>21</td>
<td>1.17 ± 0.03</td>
<td>273.14 ± 12.59</td>
<td>233.3 ± 12.5</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_07</td>
<td>125 - 250</td>
<td>20</td>
<td>1.67 ± 0.06</td>
<td>34.77 ± 2.12</td>
<td>20.9 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_08</td>
<td>125 - 250</td>
<td>20</td>
<td>1.84 ± 0.07</td>
<td>57.58 ± 3.44</td>
<td>28.1 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_09</td>
<td>125 - 250</td>
<td>26</td>
<td>1.85 ± 0.06</td>
<td>45.74 ± 2.13</td>
<td>24.7 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_10</td>
<td>125 - 250</td>
<td>43</td>
<td>2.38 ± 0.07</td>
<td>338.09 ± 14.23</td>
<td>142.0 ± 6.04</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_11</td>
<td>125 - 250</td>
<td>30</td>
<td>2.31 ± 0.08</td>
<td>7.26 ± 0.19</td>
<td>3.15 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_12</td>
<td>125 - 250</td>
<td>17</td>
<td>2.43 ± 0.08</td>
<td>5.42 ± 0.44</td>
<td>2.33 ± 0.19</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_13</td>
<td>125 - 250</td>
<td>41</td>
<td>2.37 ± 0.07</td>
<td>5.96 ± 0.13</td>
<td>2.52 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_14</td>
<td>125 - 250</td>
<td>13</td>
<td>2.28 ± 0.07</td>
<td>4.52 ± 0.11</td>
<td>1.98 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Gyr1OSL_15</td>
<td>125 - 250</td>
<td>12</td>
<td>2.13 ± 0.06</td>
<td>8.03 ± 0.16</td>
<td>3.77 ± 0.13</td>
<td></td>
</tr>
</tbody>
</table>

* is the number of aliquots accepted for D_e calculations.
$^\text{a}_{OD}$ is the overdispersion of the D_e distribution.
* Equivalent doses (D_e) and OSL ages calculated using the central age model (CAM) of Galbraith et al. (1999).
* OSL ages are expressed as thousands of years (ka) before 2014 AD, and rounded to the nearest 10 years with the exception of the relatively young samples which are rounded to the nearest 10 years.

The D_e distributions obtained for these samples are usually narrow and symmetrical with overdispersion values <20%, except for the pottery sample Gyr1OSL_12 which shows a significant
overdispersion (29%) and a skewed D\text{\textsubscript{i}} distribution (Table 2), indicating sufficient bleaching of the fluviocolluvial sediments of the downthrown block of the GF. Therefore, the central age model (CAM; Galbraith and Roberts, 2012) was applied to the D\text{\textsubscript{i}} data for all samples. The estimated D\text{\textsubscript{i}} values for all samples are summarized in Table 2.

3. Results and discussion

3.1. OSL ages

The OSL ages were calculated by dividing the CAM D\text{\textsubscript{i}} by the total dose rate. Table 2 summarizes the OSL chronology for the two excavated paleoseismological trenches at GF. The derived ages of the samples from the upthrown fault blocks of the two paleoseismological trenches are in stratigraphic order, within uncertainties. The six samples from the exposed four units on the upthrown block of trench G1 were dated between 46.1 ± 3.3 and 233.3 ± 12.5 ka (Table 2). The ages of the three samples dated from the displaced blocks of fifth upper unit ranged from 20.9 ± 1.5 ka to 28.1 ± 2.1 ka (Table 2), which nicely fit the stratigraphic order of this unit. Three additional samples were also dated from the units exposed on the upthrown fault block of trench G2 to check for internal consistency between trenches. These samples provided ages of 92.6 ± 6.1 ka (Gyr2OSL_01E), 96.9 ± 6.5 ka (Gyr2OSL_02E) and 148.2 ± 10.8 ka (Gyr2OSL_03E). Sample Gyr2OSL_01E showed comparable age, that agreed within one standard deviation, to the sample Gyr1OSL_03 (86.4 ± 5.0 ka) which was taken from the middle part of the same silt clay deposit of the trench G1. The sample Gyr2OSL_03E (148.2 ± 10.8 ka) collected from the base unit is in stratigraphic order with the samples Gyr1OSL_05 (133.9 ± 5.5 ka) and Gyr1OSL_06 (233.3 ± 12.5 ka) taken from the upper and the lower part, respectively, of the same massive silt clay unit exposed on trench G1.

In summary, all OSL ages from the upthrown fault block clearly document that the exposed units were deposited during the upper part of the Middle Pleistocene. Van Andel \textit{et al.} (1990) estimated that the Agia Sophia alluvium, which is the earliest and most extensive unit of the Niederterrasse, deposited between c. 40 to 27 ka BP during the last glacial period, and is overlaid by a mature paleosoil (Agia Sophia soil). Interestingly, OSL ages from units 4 and 5 ranges from 50 to 21 ka thus suggesting they likely belong to the Agia Sophia alluvium (see Tsodoulos \textit{et al.}, 2016).

A ceramic fragment (Gyr1OSL_15) from the buried pottery that was found on unit 6 (trench G1), was dated and provided an OSL age of 3.77 ± 0.13 ka (Table 2) with an archaeological estimation by the Department of History and Archaeology of the University of Ioannina (Dr. Andreas Vlachopoulos, personal communication) to be from 2000 – 1600 B.C. (Middle Bronze Age), thus in good agreement with the OSL age. The four pottery fragments dated from trench G1, provided OSL ages ranging from 1.98 ± 0.08 to 3.15 ± 0.13 ka (Table 2). The determined OSL ages for the pottery fragments were expected to be older than the ages of the sediment unit in which they were found (Moro \textit{et al.}, 2013; Vanneste \textit{et al.}, 2006). This is consistent with the OSL age (1.42 ± 0.06 ka) of the sediment sample Gyr1OSL_10 taken from the base of unit 7 (trench G1, see Tsodoulos \textit{et al.}, 2016) (Table 2). In trench G2, the calculated OSL ages for unit 5 ranged from 1.35 ± 0.02 to 3.77 ± 0.06 ka (Table 2). Samples Gyr2OSL_06E to 09E were collected in a vertical sequence at every ~0.50 m. Thus, from the obtained OSL ages of these samples a mean age trend with depth of 1.60 yr/cm and a mean sedimentation rate of 0.62 mm/yr was estimated. An OSL age of 5.59 ± 0.13 ka was obtained for a sediment sample (Gyr2OSL_01W) from the scarp derived colluvial deposit (unit 4), west wall in trench G2 (see Tsodoulos \textit{et al.}, 2016) (Table 2). Overall, the calculated OSL ages indicate that the fluvial-colluvial deposits of the downthrown fault block were deposited during the Middle-Late Holocene. Previous researchers (Demitrack, 1986) consider the Gyrtou alluvium to have been deposited between c. 5.0 and 4.0 ka BP, using archaeological criteria, and defined the end of the deposition of the higher floodplain of the Pinios River.
4. Conclusions

The OSL characteristics of the studied samples from the two paleoseismological trenches were discussed. Recycling ratio, recuperation and dose recovery tests confirmed the suitability of the quartz grains for OSL dating purposes, using the SAR protocol. Preheat plateau tests were also performed to select the appropriate preheat temperatures. Overdispersion values of the assessed ages for each sample were found to be less than ~20% for the majority of the samples, indicating well bleached quartz and assuring the quality of the dating process. Using a combination of OSL dating and paleoseismological trenching, we have estimated dates of the observed paleoearthquakes related with the Gyrtsoni Fault. The two paleoseismological trenches provide evidence of at least three, and possibly four faulting events (age ranges of 2.16-1.42 ka, 3.77-2.80 ka, 5.59-3.77 ka, and <5.59 ka) with an average recurrence interval 1.39 ± 0.14 ka. The estimated OSL ages agreed well with the available stratigraphical data, and archaeological evidence.

5. Acknowledgements

This research project was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” and is co-financed by the European Social Fund (ESF) and the Greek State.

6. References

Moro, M., Gori, S., Falcucci, E., Saroli, M., Galadini, F. and Salvi, S., 2013. Historical earthquakes and variable kinematic behaviour of the 2009 L’Aquila seismic event (central Italy) causative fault, revealed by paleoseismological investigations, Tectonophysics, 583, 131-144.

401