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Abstract

The objective of this paper is to find an appropriate Seasonal Auto-Regressive
Integrated Moving Average (SARIMA) model for fitting the monthly discharge of a
karstic spring located at the North of the city of Serres (Agios loannis, Mount
Menikio) by considering the minimum of Akaike Information Criterion (AIC). Box-
Jenkins methodology applies models to find the best fit of a timeseries to past values
of this timeseries, in order to make forecasting and consists of a four-step iterative
procedure: identification, estimation, diagnostic check and forecasting. Timeseries
analysis and forecasting of hydrological parameters such as spring discharge may be
useful in decision making and optimum water resources usage. In this study, monthly
discharge measurements are analysed. Initial data are firstly transformed to normal
and stationary using differencing methods. Autocorrelation and Partial
Autocorrelation functions are calculated to determine the order of Autoregressive and
Moving Average parameters and residuals are then checked fo show the “white
noise”. The spring discharge data are forecasted based on the selected model up to
2008 and are then compared with measured values. The timeseries model SARIMA
(2,1,1)(1,0,1)12 could be used in monthly discharge forecasting at a short time (upco
ming one year) with a simple and explicit model structure in order to help decision m
akers to establish priorities in terms of water demand management. Finally, the corr
elation coefficient between the observed and fitted data is essentially high, while the
absolute and relative errors are significantly low.

Keywords: SARIMA model, Agios loannis, Box - Jenkins methodology, spring
discharge forecasting, transformation, Autocorrelation Function (ACF).

Mepiinyn

O OVTIKEUEVIKOS TTOYO0G THS EPYOTIOG EIVOL 1] EDPETH TOV KOTAAANAOD ETOYIKOD HOVTEAOD
SARIMA yia thv kadOTepn TPOGOPUOYH TWV UNVIGIWY TOPOYDY THS KOGPOTIKNG THYHS, TOD
Ppioketor ota. Bopeio. g moing twv Zeppav (Ayiog lwavvng, Opog Mevoikio),
lopfavoveag vdyn t younAdtepn T Tov kpitypiov Akaike. H ueBodoloyio twv Box-
Jenkins epopudleror wote va Ppebei to kotddinlo uoviélo, mwov ve mpoflémer
UEALOVTIKES  YPOVOOEIPES OOUPOVO. e TOAOLOTEPO. OedouéEVa.  axolovBwvtag uia
ETOVOATTIKY  OL00ikaoio. Te000pwv (4) Prudtov: ovayvapion, extiunon, EAeyyog
owgyvwans kor mpofleyn. H avalvon ypovooepwv kar 1 mpoflewn vdpoloyikay
TOPOUETPWY, OTWS 1] TOPOYH THYWDV UTOPEL VO, ATOPODY GHUOVTIKG YPHOIES OTH AN
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OmOPAoEWY KoL TH PelTioTn YpHon TV DOOTIKOV TOPWY. XTH UEAETH QUTH, UNVIOIES
LETPNOEIS TOPOoYV TNYNG avoldovior. Ta apyikd 0e00uEve. KavovIKOmolodvIal Kai
Letotpémovior oe otdoiuo, ypnoiuorolwviag puedooovg diopopiong. O1 cvvoptioels
ODTOGVCYETIONS KOL UEPIKNG QDTOCVCYETIONS DIOAOYILOVTOL Y10, TOV TPOCTOIOPIOUO THS
0éng TV TapouEtpwy g Avtorotivépdunons koi tov Kivoduevov Méoov ko karomry
eléyyoviar ta. vmoloimo. o v Vmopln  “Aevkod Bopdfov”. Or mapoyés mnydv
rpofrémovral, ue Paon to emiieyuévo povrelo, éwg to 2008 kot oty ovVE ELIR CVYKPIVOVTOL
ue non uetpnleioes tyéc. To emoyxd poviédo SARIMA(2,1,1)(1,0,1)12 umopei va
xpnoyomonbel yia. pvioio. Tpofrewn TV mopoywv THYHG VIO, EVO. GOVIOUO YPOVIKO
ogoTiuo. (g éva €1og), 00TwS Wote vo. TeBovy TPOTEPAIOTNTES 0TI OLOYEIPLON TWV
vooTiK@V avaykmv. TEAoG, 0 ovvtedeatiic ovoyéTiong Letold TV ToPaTHPRUEV@Y KoL TV
VITOAOYIOLUEVV TIUMV EIVOL ONUOVTIKG DYHAOS, EVE TO. OTOIVTO KO TO. CYETIKC, OPOAUOTO,
OHUOVTIKG. YOUNAG.

Aééerg Kierdid: Moviélo SARIMA, Ayiog Iwavvig, peBodoloyio Box - Jenkins,
TPOYVWON TOPOYDV THYHG, UETAGTYHUOTIOUOS, ovvapTnon avtoovoyétions (ACF).

1. Introduction

Spring discharge forecasting is significant to water resources management and exploitation since
groundwater from karstic limestones is of great importance to local and/or regional hydroeconomy
due to high water demands. Timeseries modelling and analysis is one of the most widely used
predicting methods having three modelling stages; identification, estimation and diagnostic check.
Therefore, there has been considerable interest in stochastically modelling hydrological parameters.
Hydrologically speaking a stochastic variable such as spring discharge is consisted of a deterministic
and stochastic time-dependent part, namely white noise (Koutsoyiannis, 2000, 2008). The utmost
purpose of timeseries modelling is to find a best fit to a dataset that can be defined by a model used
for forecasting. The existence of the deterministic part means that the timeseries are non-stationary
and should be therefore stationary. Box - Jenkins models are significantly used because of the simple
structure and the relatively small number of parameters to stationary and non-stationary procedures.
Finally, the great usefulness of these models is for the analysis and prediction of the timeseries as
well as to study and analyze complex cases when other methods are either not applicable or require
simplifying assumptions which cannot approach the physical — natural conditions (Ripley, 1987).

1.1. Site Location — Geomorphology

Menikio karstic aquifer belongs to the Water District of Central Macedonia (Figure 1). It is consisted
of marbles surrounded by Serres and Drama basins and located at the Northeast of the city of Serres.
The mountainous range has a Northeast to Southwest direction while the highlands are situated at
Mantili (1903m), Thamnopoti (1952m), Mavromata (1963m), Kallipoli (1203m) and Polykorfo
(1258m) sites. The highlands’ characteristic geomorphological aspect is that they do not constitute
an individual top of a mountain (as usually happens in other ranges) but instead smooth and almost
flat surfaces with minor uplifts (relief with gentle slopes, which become steep towards the western
outskirts). The karstic aquifer covers an area of approximately 289km2 with the major and minor
axis of 25.4Km and 16Km respectively. The mean elevation reaches 850m ranging between 100m
and approximately 2000m a.s.l. The dendritic drainage network is mainly composed of intermittent
rivers flowing in a NNW-SSE direction. The mountainous area show a sparse drainage network,
developed due to the presence of permeable formations (intensively tectonized marbles), while the
valley areas in the southwest form a relatively dense hydrographical network because of the less
permeable alluvial deposits (Figure 1).
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Figure 1 — (left) Geomorphological and (right) topographical zones maps.

1.2. Geological — Hydrogeological Setting

The mountainous range of Menikio geotectonically belongs to Rhodope zone forming an extensive
karstic aquifer and is bounded by Serbo-Macedonian zone and Ring-Rhodope one (Lazaridou et al.,
2001a). The Rhodope zone’s metamorphic rocks occupy almost the entire area of mount Menikio and
are consisted of three lithostratigraphic units such as gneiss (lower part of Rhodope mass), marbles
(intensively tectonized) and lithological interchanges (schists, marbles and gneiss) (Figure 2).

The Menikio karstic aquifer is developed under the last two geological formations and characterized
by several permeable lithologies either independent or with hydraulic communication between them
(Figure 2). These individuals less extensive karstic aquifers are commonly associated with springs
at different altitudes based on geological, stratigraphic and local conditions (tectonics,
geomorphology etc.). The exact orientation of those aquifers has not been done yet due to the
complex geological structure (neither a single karstic aquifer nor known karst base depth) and their
unknown hydraulic behavior with adjacent aquifers (Lazaridou et al., 2001a, b). The groundwater
flow and direction initially recharges the epikarstic water beds and then follows the deep structure
of karst according to the already formed tectonic lines of faulting zones, the rock Kkarstification etc.

Both springs location and karstic aquifers’ delineation are defined by the non-permeable
intercalations and is believed that karstic groundwater recharges the springs of mount Menikio as
well as the basin’s porous formations. Within the Menikio karstic aquifer two main permeable beds
are discerned; one in the regional area of Eptamila site (hydraulic head of +67m a.s.l.) where Agios
loannis spring is the main surface discharge point and the other in the wider area of Emmanouil
Papa with hydraulic head of +122m a.s.l. Taking into account the pumping tests of several boreholes
around the study area, the pumping rates were of the order of 60 - 130m3/h with drawdown ranges
from few centimeters to 10m. Moreover, transmissivity values were estimated to be 10-1 - 10-
3m2/sec (Lazaridou, 2010).

Agios loannis spring. Located at the Southwest of mount Menikio, approximately 2km at the east
of the city of Serres, at an altitude of ~60m, considered as contact - overflow spring (Figure 3).
Based on the available data the discharge rate ranges from 0.44 to 0.79m3/sec with mean value of
0.61m3/sec. The mean yearly runoff is of the order of 19x106m3 with a relative uniformity within
a year (spring; 26.3%, winter; 25.2%, summer; 23.4%, fall; 25.1%).
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Figure 3 — Schematic cross-section of Agios loannis karstic spring.

Depletion curve — Dynamic spring groundwater resources. According to Agios loannis depletion
curve, the groundwater resources volume is approximately 22x106m? derived by the completion of
the Maillet equation (Lazaridou et al., 20013, b). Also, the coefficient of depletion is of the order of
2x10-3 (d-1) representing the resources evacuation rate and showing the karstic aquifer’s extensive

hydrocapacity.

2. Applied Methodology

The most important stage in the process of modelling is to check for the series stationarity.
Stationarity could be achieved mostly by differencing the series using data transformation methods
such as Box-Cox, logarithmic and square root. There are also periodical tendencies named
seasonality or periodicity. Finally, residual scores determine whether there are still patterns in the
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Figure 4 — Hydrogeological map of the study area.

data that are not accounted for. Residual scores are the differences between the scores predicted by
the model and the actual scores for the series. After the aforementioned stages an equation is derived
to adequately predict the future of the process called forecasting (Manakos et al., 2004). Forecasting
refers to the process of predicting future observations from a known timeseries which is the main
objective in non-experimental use of the analysis.

In this paper, Agios loannis spring discharge is modeled by SARIMA model for the period from
1977 to 2001. Two divisions have been made, one calibration period from 1977 to 2001 to best fit
the most suitable model and one validation period from 2003 to 2006. The derived model is then
used for predicting discharge for the next two years until 2008. A preliminary timeseries analysis of
the monthly discharge data has to be implemented to explore extreme values, homogeneity, step and
trends. Box and Jenkins (1976) proposed a general form of SARIMA(p,d,q)(P,D,Q)12 for non-
stationary timeseries, in which p, g are autoregressive and moving average parameters and P, Q are
seasonal autoregressive and moving average parameters, respectively (Box et al., 1964;
Papamichail, 1993; Manakos et al., 2004, 2009). Moreover, these models show deterministic and
stochastic trends and can explain both stochastic and seasonal variations. The general form of
Seasonal ARIMA(p,d,q)(P,D,Q)s is as follows:

Equation 1 - Formula for SARIMA(p,d,q)(P,D,Q)s
¢op(B)Pe(B%) (1= B)(1— B°)°Y1 = 0q(B)Oq(B*)ac @)

where gp, ®P the autoregressive processes and g, ©@Q define moving average processes that
number of p, P, g and Q are estimated from Autocorrelation and Partial Autocorrelation Function of
the series. D and d show the order of seasonal and non-seasonal differencing used to make the series
stationary. B is the backward operator, s is the period of the season and at is the white noise.
SARIMA modelling includes three steps; identification, estimation and validation model. The
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identification process is based on the behavior of autocorrelation and partial autocorrelation
functions, efficient parameters’ estimation can be obtained after identifying the autocorrelation and
partial autocorrelation functions and finally, validation process is based on the goodness of fit.
(Ripley, 1987).

3. Model Design and Timeseries Modelling

Agios loannis spring discharge data are derived from the integrated hydrogeological study made
during the 3rd Community Support Framework concerning monthly values for the time period 1977
to 2008. In Figure 5, the observed discharge data are examined for the existence or not of trend and
stationarity.
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Figure 5 - Agios loannis monthly discharge data for the time period 1977 - 2008. The red thick
line shows the trend while the green one the 24-month moving average of the observed timese
ries. Both calibration and validation periods are also shown.

First of all, there was no need to transform the timeseries into normal and stationary using
differencing method (Figure 6) because after testing the normality of the data series by normal Q -
Q plot and histogram, showed that the data do have normal distribution, therefore no seasonal order
differencing (D=0) is used. Moreover, the above data seem to have trend, that is, d=1 (seasonal
trend), the timeseries is not of "white noise" and the seasonal length equals to 12 months. For
stationarity checking the autocorrelation and partial autocorrelation functions are calculated for the
estimation of p, q, P and Q components of the Autoregressive (AR) and Moving average (MA)
model respectively. Finally, in order to find the model that fits the best, successive trials are made
so that the predicted values to be as close as those of the observed ones (Figure 7).

In order to select the appropriate model in timeseries modelling there are several criteria which may
be used for representing a given set of data. Some of them are based on statistics (residuals sum up)
such as AIC (Akaike Information Criterion) and SBC (Schwartz-Bayesian Criterion) and others on
the forecasting error, like the Mean Percent Error (MPE), the Mean Square Error (MSE), the Mean
Absolute Error (MAE) and the Mean Absolute Percent Error (MAPE) (Salas, 1992). The most
suitable model is the one that the above statistics are the least. The Akaike information criterion
gives the measure of the relative goodness of fit of a statistical model (Papamichail, 1993; Manakos
et al., 2004, 2009). The preferred model is the one with the minimum AIC value. Concequently,
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AIC not only proves goodness of fit, but also discourages overfitting, that is, an increasing function
of the number of estimated parameters.
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Figure 7 - Autocorrelation (ACF) and Partial Autocorrelation functions (PACF) of the discharge
timeseries for the time period 1977 — 2001. The red thick lines show the confidence limits 95%.

Autocorrelation function (ACF) refers to the way the observations in a timeseries are related to each
other while partial autocorrelation is used to measure the degree of association when the effects at
other time lags are removed. Comparing the correlograms (plot of sample ACFs/PACFs versus lags)
obtained from the given measured data with the theoretical ones, one may find a reasonably good
match and choose one or more SARIMA models. The time period from 1977 to 2001 is used for
stochastic model calibration and then is validated during the period 2003 - 2006 for the confirmation
of the model’s parameters. The best fit and most suitable seasonal stochastic model satisfying the
majority of the aforementioned criteria is SARIMA(2,1,1)(1,0,1)12 and obviously can be used for
monthly spring discharge estimation and forecasting. The residuals check takes place so as to prove
if there is white noise taking into consideration the autocorrelation (ACF) and partial autocorrelation
(PACF) functions and it seems that the residuals are of white noise which means uncorrelated.
Additionally, (Figures 8, 9) shows the very good simulation and correlation of the above model on
the measured discharge data.
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Figure 8 - SARIMA(2,1,1)(1,0,1)12 model simulation at the observed timeseries.
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ht) SARIMA model generated series versus the observed monthly one (R?=0.7926).

4. Spring Discharge Data Prediction

SARIMA model is applied as long as the above discharge timeseries can provide safe predictions and
create, if possible, reliable future time period. As far as the model procedure is concerned the timeser
ies of months (1977 - 2008) is divided into two parts, the one of period month 1977 - 2001) and the ot
her of period month of 2003 - 2006). SARIMA model is applied to the first time period of months try
ing to simulate the observed discharge values and then to the next already known months to validate a
nd confirm the model. Re-estimation of model parameters is required for the last period month. The r
e-assessed model components slightly differ from the initial ones showing that the spring discharge d
ata that are derived by the application of SARIMA(2,1,1)(1,0,1):2 model may be used for a very satisf
actory forecasting. Hence, it is shown that SARIMA(2,1,1)(1,0,1)1> model being capable of adequatel
y simulating the timeseries data, can be used to reliably predict Agios loannis discharge data. The ana
Iytical, mathematical expression of the above model is of the form:
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Equation 2 — The SARIMA model analytical mathematical expression
(1-91B)(1-¢2B)(1-B*?)Zi=e; OF Zi=01(Zi1-Z113)p2(Zto-Zr14)+ Ze1o+€;

with ¢1=0.459 and ¢2=0.048. The very good fit of the model (Figure 10) is proved to be useful as
far as the rational and sustainable water resources management and planning are concerned. The
stochastic Seasonal ARIMA model seems to sufficiently describe the spring discharge and get
acquainted satisfactorily to natural conditions while they are able to provide short term predictions
- forecasting contributing to the sustainable exploitation of water resources. Finally, the seasonal
ARIMA model can provide synthetic timeseries which may be used for the water resources planning
proving its usefulness.
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Figure 10 - SARIMA(2,1,1)(1,0,1)12 model validation at the observed timeseries for the time
period of 2003 — 2006 (R?=0.9533).

Table 1 - Monthly spring discharge predicted data for the reference years 2007 - 2008.

Month / Estimated Observed Month / Estimated Observed
Year values (mm) | values (mm) Year values (mm) values (mm)
Jan-07 2601.4 2577.6 Jan-08 2039.6 2124.0
Feb-07 2405.5 2314.8 Feb-08 2016.8 2016.0
Mar-07 2488.8 2444.9 Mar-08 2021.6 2052.0
Apr-07 2472.0 2412.4 Apr-08 1952.0 1908.0
May-07 23005 2223.7 May-08 2026.5 2066.4
Jun-07 2154.4 2070.0 Jun-08 1956.8 1950.6
Jul-07 1864.2 1630.8 Jul-08 2021.5 2037.1
Aug-07 2033.1 1959.1 Aug-08 1973.0 1985.5
Sep-07 2013.6 2001.6 Sep-08 1950.8 1924.0
Oct-07 19715 1900.8 Oct-08 1864.6 1821.6
Nov-07 1987.4 1990.8 Nov-08 2038.0 2105.7
Dec-07 1953.6 1944.0 Dec-08 2127.9 2189.6

5. Conclusions

According to all mentioned above seasonal stochastic simulation is a method which can be easily
applied since the major advantage is the flexibility to perform in complex systems describing them
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reliably, without simplistic and robust assumptions and when analytical methods are either not
applicable or require oversimplifying assumptions for the system. Nevertheless, it has to be pointed
out that stochastic modelling is an approximate procedure and its accuracy depends on the sample size
(the bigger the sample size the more reliable results). Finally, SARIMA models are capable to show
deterministic and stochastic trends and efficiently simulate the stochastic and seasonal variations.

Discharge data are statistically and stochastically studied over Agios loannis Karstic spring at the
Northeast of the city of Serres. Using seasonal stochastic decomposition method, monthly mean discharge
values are forecasted with high accuracy and reliability since average of observed and predicted data are
proved almost the same. This is confirmed by the correlation coefficient between measured and predicted
timeseries which is about 0.80. Moreover, SARIMA (2,1,1)(1,0,1)12 model seems to be the most
appropriate in simulating the observed timeseries and is capable to forecast future data for at least two
years. Also, the goodness of fit as well as its easy adaptation to natural - physical conditions can be
regarded a useful tool to the sustainable water resources management and exploitation.
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