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Abstract 

The objective of this paper is to find an appropriate Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) model for fitting the monthly discharge of a 

karstic spring located at the North of the city of Serres (Agios Ioannis, Mount 

Menikio) by considering the minimum of Akaike Information Criterion (AIC). Box-

Jenkins methodology applies models to find the best fit of a timeseries to past values 

of this timeseries, in order to make forecasting and consists of a four-step iterative 

procedure: identification, estimation, diagnostic check and forecasting. Timeseries 

analysis and forecasting of hydrological parameters such as spring discharge may be 

useful in decision making and optimum water resources usage. In this study, monthly 

discharge measurements are analysed. Initial data are firstly transformed to normal 

and stationary using differencing methods. Autocorrelation and Partial 

Autocorrelation functions are calculated to determine the order of Autoregressive and 

Moving Average parameters and residuals are then checked to show the “white 

noise”. The spring discharge data are forecasted based on the selected model up to 

2008 and are then compared with measured values. The timeseries model SARIMA 

(2,1,1)(1,0,1)12 could be used in monthly discharge forecasting at a short time (upco

ming one year) with a simple and explicit model structure in order to help decision m

akers to establish priorities in terms of water demand management. Finally, the corr

elation coefficient between the observed and fitted data is essentially high, while the 

absolute and relative errors are significantly low. 

Keywords: SARIMA model, Agios Ioannis, Box - Jenkins methodology, spring 

discharge forecasting, transformation, Autocorrelation Function (ACF). 

Περίληψη 

Ο αντικειμενικός στόχος της εργασίας είναι η εύρεση του κατάλληλου εποχικού μοντέλου 

SARIMA για την καλύτερη προσαρμογή των μηνιαίων παροχών της καρστικής πηγής, που 

βρίσκεται στα Βόρεια της πόλης των Σερρών (Άγιος Ιωάννης, Όρος Μενοίκιο), 

λαμβάνοντας υπόψη τη χαμηλότερη τιμή του κριτηρίου Akaike. Η μεθοδολογία των Box-

Jenkins εφαρμόζεται ώστε να βρεθεί το κατάλληλο μοντέλο, που να προβλέπει 

μελλοντικές χρονοσειρές σύμφωνα με παλαιότερα δεδομένα ακολουθώντας μια 

επαναληπτική διαδικασία τεσσάρων (4) βημάτων: αναγνώριση, εκτίμηση, έλεγχος 

διάγνωσης και πρόβλεψη. Η ανάλυση χρονοσειρών και η πρόβλεψη υδρολογικών 

παραμέτρων, όπως η παροχή πηγών μπορεί να αποβούν σημαντικά χρήσιμες στη λήψη 
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αποφάσεων και τη βέλτιστη χρήση των υδατικών πόρων. Στη μελέτη αυτή, μηνιαίες 

μετρήσεις παροχών πηγής αναλύονται. Τα αρχικά δεδομένα κανονικοποιούνται και 

μετατρέπονται σε στάσιμα, χρησιμοποιώντας μεθόδους διαφόρισης. Οι συναρτήσεις 

αυτοσυσχέτισης και μερικής αυτοσυσχέτισης υπολογίζονται για τον προσδιορισμό της 

τάξης των παραμέτρων της Αυτοπαλινδρόμησης και του Κινούμενου Μέσου και κατόπιν 

ελέγχονται τα υπόλοιπα για την ύπαρξη “λευκού θορύβου”. Οι παροχές πηγών 

προβλέπονται, με βάση το επιλεγμένο μοντέλο, έως το 2008 και στη συνέχεια συγκρίνονται 

με ήδη μετρηθείσες τιμές. Το εποχικό μοντέλο SARIMA(2,1,1)(1,0,1)12 μπορεί να 

χρησιμοποιηθεί για μηνιαία πρόβλεψη των παροχών πηγής για ένα σύντομο χρονικό 

διάστημα (έως ένα έτος), ούτως ώστε να τεθούν προτεραιότητες στη διαχείριση των 

υδατικών αναγκών. Τέλος, ο συντελεστής συσχέτισης μεταξύ των παρατηρημένων και των 

υπολογισμένων τιμών είναι σημαντικά υψηλός, ενώ τα απόλυτα και τα σχετικά σφάλματα 

σημαντικά χαμηλά. 

Λέξεις κλειδιά: Μοντέλο SARIMA, Άγιος Ιωάννης, μεθοδολογία Box - Jenkins, 

πρόγνωση παροχών πηγής, μετασχηματισμός, συνάρτηση αυτοσυσχέτισης (ACF). 

1. Introduction 

Spring discharge forecasting is significant to water resources management and exploitation since 

groundwater from karstic limestones is of great importance to local and/or regional hydroeconomy 

due to high water demands. Timeseries modelling and analysis is one of the most widely used 

predicting methods having three modelling stages; identification, estimation and diagnostic check. 

Therefore, there has been considerable interest in stochastically modelling hydrological parameters. 

Hydrologically speaking a stochastic variable such as spring discharge is consisted of a deterministic 

and stochastic time-dependent part, namely white noise (Koutsoyiannis, 2000, 2008). The utmost 

purpose of timeseries modelling is to find a best fit to a dataset that can be defined by a model used 

for forecasting. The existence of the deterministic part means that the timeseries are non-stationary 

and should be therefore stationary. Box - Jenkins models are significantly used because of the simple 

structure and the relatively small number of parameters to stationary and non-stationary procedures. 

Finally, the great usefulness of these models is for the analysis and prediction of the timeseries as 

well as to study and analyze complex cases when other methods are either not applicable or require 

simplifying assumptions which cannot approach the physical – natural conditions (Ripley, 1987). 

1.1. Site Location – Geomorphology 

Menikio karstic aquifer belongs to the Water District of Central Macedonia (Figure 1). It is consisted 

of marbles surrounded by Serres and Drama basins and located at the Northeast of the city of Serres. 

The mountainous range has a Northeast to Southwest direction while the highlands are situated at 

Mantili (1903m), Thamnopoti (1952m), Mavromata (1963m), Kallipoli (1203m) and Polykorfo 

(1258m) sites. The highlands’ characteristic geomorphological aspect is that they do not constitute 

an individual top of a mountain (as usually happens in other ranges) but instead smooth and almost 

flat surfaces with minor uplifts (relief with gentle slopes, which become steep towards the western 

outskirts). The karstic aquifer covers an area of approximately 289km2 with the major and minor 

axis of 25.4Κm and 16Κm respectively. The mean elevation reaches 850m ranging between 100m 

and approximately 2000m a.s.l. The dendritic drainage network is mainly composed of intermittent 

rivers flowing in a NNW-SSE direction. Τhe mountainous area show a sparse drainage network, 

developed due to the presence of permeable formations (intensively tectonized marbles), while the 

valley areas in the southwest form a relatively dense hydrographical network because of the less 

permeable alluvial deposits (Figure 1). 
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Figure 1 – (left) Geomorphological and (right) topographical zones maps. 

1.2. Geological – Hydrogeological Setting 

The mountainous range of Menikio geotectonically belongs to Rhodope zone forming an extensive 

karstic aquifer and is bounded by Serbo-Macedonian zone and Ring-Rhodope one (Lazaridou et al., 

2001a). The Rhodope zone’s metamorphic rocks occupy almost the entire area of mount Menikio and 

are consisted of three lithostratigraphic units such as gneiss (lower part of Rhodope mass), marbles 

(intensively tectonized) and lithological interchanges (schists, marbles and gneiss) (Figure 2). 

The Menikio karstic aquifer is developed under the last two geological formations and characterized 

by several permeable lithologies either independent or with hydraulic communication between them 

(Figure 2). These individuals less extensive karstic aquifers are commonly associated with springs 

at different altitudes based on geological, stratigraphic and local conditions (tectonics, 

geomorphology etc.). The exact orientation of those aquifers has not been done yet due to the 

complex geological structure (neither a single karstic aquifer nor known karst base depth) and their 

unknown hydraulic behavior with adjacent aquifers (Lazaridou et al., 2001a, b). The groundwater 

flow and direction initially recharges the epikarstic water beds and then follows the deep structure 

of karst according to the already formed tectonic lines of faulting zones, the rock karstification etc. 

Both springs location and karstic aquifers’ delineation are defined by the non-permeable 

intercalations and is believed that karstic groundwater recharges the springs of mount Menikio as 

well as the basin’s porous formations. Within the Menikio karstic aquifer two main permeable beds 

are discerned; one in the regional area of Eptamila site (hydraulic head of +67m a.s.l.) where Agios 

Ioannis spring is the main surface discharge point and the other in the wider area of Emmanouil 

Papa with hydraulic head of +122m a.s.l. Taking into account the pumping tests of several boreholes 

around the study area, the pumping rates were of the order of 60 - 130m3/h with drawdown ranges 

from few centimeters to 10m. Moreover, transmissivity values were estimated to be 10-1 - 10-

3m2/sec (Lazaridou, 2010). 

Agios Ioannis spring. Located at the Southwest of mount Menikio, approximately 2km at the east 

of the city of Serres, at an altitude of ~60m, considered as contact - overflow spring (Figure 3). 

Based on the available data the discharge rate ranges from 0.44 to 0.79m3/sec with mean value of 

0.61m3/sec. The mean yearly runoff is of the order of 19x106m3 with a relative uniformity within 

a year (spring; 26.3%, winter; 25.2%, summer; 23.4%, fall; 25.1%). 
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Figure 2 – Geological map of the study area (Xydas et al., 1985). 

 

Figure 3 – Schematic cross-section of Agios Ioannis karstic spring. 

Depletion curve – Dynamic spring groundwater resources. According to Agios Ioannis depletion 

curve, the groundwater resources volume is approximately 22x106m³ derived by the completion of 

the Maillet equation (Lazaridou et al., 2001a, b). Also, the coefficient of depletion is of the order of 

2x10-3 (d-1) representing the resources evacuation rate and showing the karstic aquifer’s extensive 

hydrocapacity. 

2. Applied Methodology 

The most important stage in the process of modelling is to check for the series stationarity. 

Stationarity could be achieved mostly by differencing the series using data transformation methods 

such as Box-Cox, logarithmic and square root. There are also periodical tendencies named 

seasonality or periodicity. Finally, residual scores determine whether there are still patterns in the  
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Figure 4 – Hydrogeological map of the study area. 

data that are not accounted for. Residual scores are the differences between the scores predicted by 

the model and the actual scores for the series. After the aforementioned stages an equation is derived 

to adequately predict the future of the process called forecasting (Manakos et al., 2004). Forecasting 

refers to the process of predicting future observations from a known timeseries which is the main 

objective in non-experimental use of the analysis. 

In this paper, Agios Ioannis spring discharge is modeled by SARIMA model for the period from 

1977 to 2001. Two divisions have been made, one calibration period from 1977 to 2001 to best fit 

the most suitable model and one validation period from 2003 to 2006. The derived model is then 

used for predicting discharge for the next two years until 2008. A preliminary timeseries analysis of 

the monthly discharge data has to be implemented to explore extreme values, homogeneity, step and 

trends. Box and Jenkins (1976) proposed a general form of SARIMA(p,d,q)(P,D,Q)12 for non-

stationary timeseries, in which p, q are autoregressive and moving average parameters and P, Q are 

seasonal autoregressive and moving average parameters, respectively (Box et al., 1964; 

Papamichail, 1993; Manakos et al., 2004, 2009). Moreover, these models show deterministic and 

stochastic trends and can explain both stochastic and seasonal variations. The general form of 

Seasonal ARIMA(p,d,q)(P,D,Q)s is as follows: 

Equation 1 - Formula for SARIMA(p,d,q)(P,D,Q)s 

φp(B)ΦP(Bs)(1− B)d(1− Bs)DYt = θq(B)ΘQ(Bs)at  (1) 

where φp, ΦP the autoregressive processes and θq, ΘQ define moving average processes that 

number of p, P, q and Q are estimated from Autocorrelation and Partial Autocorrelation Function of 

the series. D and d show the order of seasonal and non-seasonal differencing used to make the series 

stationary. B is the backward operator, s is the period of the season and at is the white noise. 

SARIMA modelling includes three steps; identification, estimation and validation model. The 



813 

 

identification process is based on the behavior of autocorrelation and partial autocorrelation 

functions, efficient parameters’ estimation can be obtained after identifying the autocorrelation and 

partial autocorrelation functions and finally, validation process is based on the goodness of fit. 

(Ripley, 1987). 

3. Model Design and Timeseries Modelling 

Agios Ioannis spring discharge data are derived from the integrated hydrogeological study made 

during the 3rd Community Support Framework concerning monthly values for the time period 1977 

to 2008. In Figure 5, the observed discharge data are examined for the existence or not of trend and 

stationarity. 

 

Figure 5 - Agios Ioannis monthly discharge data for the time period 1977 - 2008. The red thick

 line shows the trend while the green one the 24-month moving average of the observed timese

ries. Both calibration and validation periods are also shown. 

First of all, there was no need to transform the timeseries into normal and stationary using 

differencing method (Figure 6) because after testing the normality of the data series by normal Q - 

Q plot and histogram, showed that the data do have normal distribution, therefore no seasonal order 

differencing (D=0) is used. Moreover, the above data seem to have trend, that is, d=1 (seasonal 

trend), the timeseries is not of "white noise" and the seasonal length equals to 12 months. For 

stationarity checking the autocorrelation and partial autocorrelation functions are calculated for the 

estimation of p, q, P and Q components of the Autoregressive (AR) and Moving average (MA) 

model respectively. Finally, in order to find the model that fits the best, successive trials are made 

so that the predicted values to be as close as those of the observed ones (Figure 7). 

In order to select the appropriate model in timeseries modelling there are several criteria which may 

be used for representing a given set of data. Some of them are based on statistics (residuals sum up) 

such as AIC (Akaike Information Criterion) and SBC (Schwartz-Bayesian Criterion) and others on 

the forecasting error, like the Mean Percent Error (MPE), the Mean Square Error (MSE), the Mean 

Absolute Error (MAE) and the Mean Absolute Percent Error (MAPE) (Salas, 1992). The most 

suitable model is the one that the above statistics are the least. The Akaike information criterion 

gives the measure of the relative goodness of fit of a statistical model (Papamichail, 1993; Manakos 

et al., 2004, 2009). The preferred model is the one with the minimum AIC value. Concequently, 
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AIC not only proves goodness of fit, but also discourages overfitting, that is, an increasing function 

of the number of estimated parameters. 

  

Figure 6 - Normal Q-Q plot (p<0.005) and histogram with normal distribution curve showin

g the normality of the monthly spring discharge values. 

Autocorrelation function (ACF) refers to the way the observations in a timeseries are related to each 

other while partial autocorrelation is used to measure the degree of association when the effects at 

other time lags are removed. Comparing the correlograms (plot of sample ACFs/PACFs versus lags) 

obtained from the given measured data with the theoretical ones, one may find a reasonably good 

match and choose one or more SARIMA models. The time period from 1977 to 2001 is used for 

stochastic model calibration and then is validated during the period 2003 - 2006 for the confirmation 

of the model’s parameters. The best fit and most suitable seasonal stochastic model satisfying the 

majority of the aforementioned criteria is SARIMA(2,1,1)(1,0,1)12 and obviously can be used for 

monthly spring discharge estimation and forecasting. The residuals check takes place so as to prove 

if there is white noise taking into consideration the autocorrelation (ΑCF) and partial autocorrelation 

(PACF) functions and it seems that the residuals are of white noise which means uncorrelated. 

Additionally, (Figures 8, 9) shows the very good simulation and correlation of the above model on 

the measured discharge data. 

  

Figure 7 - Autocorrelation (ACF) and Partial Autocorrelation functions (PACF) of the discharge

 timeseries for the time period 1977 – 2001. The red thick lines show the confidence limits 95%. 
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Figure 8 - SARIMA(2,1,1)(1,0,1)12 model simulation at the observed timeseries. 

 

 

Figure 9 - (Left) Autocorrelation (ACF) and Partial Autocorrelation functions (PACF) of the 

residuals for the time period 1977 – 2001 (The red lines show the confidence limits 95%). (Rig

ht) SARIMA model generated series versus the observed monthly one (R2=0.7926). 

4. Spring Discharge Data Prediction 

SARIMA model is applied as long as the above discharge timeseries can provide safe predictions and

 create, if possible, reliable future time period. As far as the model procedure is concerned the timeser

ies of months (1977 - 2008) is divided into two parts, the one of period month 1977 - 2001) and the ot

her of period month of 2003 - 2006). SARIMA model is applied to the first time period of months try

ing to simulate the observed discharge values and then to the next already known months to validate a

nd confirm the model. Re-estimation of model parameters is required for the last period month. The r

e-assessed model components slightly differ from the initial ones showing that the spring discharge d

ata that are derived by the application of SARIMA(2,1,1)(1,0,1)12 model may be used for a very satisf

actory forecasting. Hence, it is shown that SARIMA(2,1,1)(1,0,1)12 model being capable of adequatel

y simulating the timeseries data, can be used to reliably predict Agios Ioannis discharge data. The ana

lytical, mathematical expression of the above model is of the form: 



816 

 

Equation 2 – The SARIMA model analytical mathematical expression 

(1-φ1Β)(1-φ2B)(1-Β12)Zt=et or Zt=φ1(Ζt-1-Zt-13)φ2(Zt-2-Zt-14)+Zt-12+et 

with φ1=0.459 and φ2=0.048. The very good fit of the model (Figure 10) is proved to be useful as 

far as the rational and sustainable water resources management and planning are concerned. The 

stochastic Seasonal ARIMA model seems to sufficiently describe the spring discharge and get 

acquainted satisfactorily to natural conditions while they are able to provide short term predictions 

- forecasting contributing to the sustainable exploitation of water resources. Finally, the seasonal 

ARIMA model can provide synthetic timeseries which may be used for the water resources planning 

proving its usefulness. 

 
 

Figure 10 - SARIMA(2,1,1)(1,0,1)12 model validation at the observed timeseries for the time 

period of 2003 – 2006 (R2=0.9533). 

Table 1 - Monthly spring discharge predicted data for the reference years 2007 - 2008. 

Month / 

Year 

Estimated 

values (mm) 

Observed 

values (mm) 

Month / 

Year 

Estimated 

values (mm) 

Observed 

values (mm) 

Jan-07 2601.4 2577.6 Jan-08 2039.6 2124.0 

Feb-07 2405.5 2314.8 Feb-08 2016.8 2016.0 

Mar-07 2488.8 2444.9 Mar-08 2021.6 2052.0 

Apr-07 2472.0 2412.4 Apr-08 1952.0 1908.0 

May-07 2300.5 2223.7 May-08 2026.5 2066.4 

Jun-07 2154.4 2070.0 Jun-08 1956.8 1950.6 

Jul-07 1864.2 1630.8 Jul-08 2021.5 2037.1 

Aug-07 2033.1 1959.1 Aug-08 1973.0 1985.5 

Sep-07 2013.6 2001.6 Sep-08 1950.8 1924.0 

Oct-07 1971.5 1900.8 Oct-08 1864.6 1821.6 

Nov-07 1987.4 1990.8 Nov-08 2038.0 2105.7 

Dec-07 1953.6 1944.0 Dec-08 2127.9 2189.6 

5. Conclusions 

According to all mentioned above seasonal stochastic simulation is a method which can be easily 

applied since the major advantage is the flexibility to perform in complex systems describing them 
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reliably, without simplistic and robust assumptions and when analytical methods are either not 

applicable or require oversimplifying assumptions for the system. Nevertheless, it has to be pointed 

out that stochastic modelling is an approximate procedure and its accuracy depends on the sample size 

(the bigger the sample size the more reliable results). Finally, SARIMA models are capable to show 

deterministic and stochastic trends and efficiently simulate the stochastic and seasonal variations. 

Discharge data are statistically and stochastically studied over Agios Ioannis karstic spring at the 

Northeast of the city of Serres. Using seasonal stochastic decomposition method, monthly mean discharge 

values are forecasted with high accuracy and reliability since average of observed and predicted data are 

proved almost the same. This is confirmed by the correlation coefficient between measured and predicted 

timeseries which is about 0.80. Moreover, SARIMA (2,1,1)(1,0,1)12 model seems to be the most 

appropriate in simulating the observed timeseries and is capable to forecast future data for at least two 

years. Also, the goodness of fit as well as its easy adaptation to natural - physical conditions can be 

regarded a useful tool to the sustainable water resources management and exploitation. 

6. Acknowledgements 

The authors wish to express their thanks to all those hydrogeologists and technical stuff of the 

Institute of Geology and Mineral Exploration (branch of Thessaloniki) for the unconditional help 

offered to all phases of the groundwater field sampling work. 

7. References 

Βοx, G. and Cox, D., 1964. Αn Analysis of Transformations, J. R. Stat. Soc., Ser. Β, 26, 211-252. 

Box, G. and Jenkins, G., 1976. Time Series Analysis, Forecasting and Control, Holden - Day, San 

Francisco, California, U.S.A. 

Koutsoyiannis, D., 2000. A generalized mathematical framework for stochastic simulation and 

forecast of hydrologic timeseries, Wat. Resour. Re., 36(6), 1519-1534. 

Koutsoyiannis, D. 2008. Stochastic Methods in Water Resources, National & Technical University 

of Athens. 

Lazaridou, M. and Papadopoulos, K., 2001a. Hydrogeological research of carbonate rocks of mounts 

Menikio and Agkistro, 2nd Community Support Framework, I.G.M.E. Branch of 

Thessaloniki. 

Lazaridou, M. and Polizonis, E., 2001b. Quality monitoring and water resources control of Central 

Macedonia, Prefecture of Serres, 2nd Community Support Framework, I.G.M.E. Branch of 

Thessaloniki. 

Lazaridou, M., 2010. Basins water balance. Quality parameters monitoring and protection measures 

of the groundwater in Central Macedonia, 3rd Community Support Framework, I.G.M.E. 

Branch of Thessaloniki. 

Manakos, A. and Dimopoulos, G., 2004. Contribution of Stochastic Models to the Sustainable Water 

Management. The example of Krania Elassona Karstic Aquifer in Thessaly, Proceedings of 

the 10th International Conference of Greek Geological Society, Thessaloniki. 

Manakos, A. and Georgiou, P., 2009. Timeseries modelling of groundwater head Using Seasonal 

Stochastic Models SARIMA, Proceedings of the Common Conference of the 11th Hellenic 

Hydrotechnical Society and of the 7th Conference of the Hellenic Committee of Water 

Management, Volos. 

Papamichail, D., 1993. Seasonal ARIMA Modelling of Acheloos River Monthly Discharge. 

Proceedings of the 2nd Hydrogeological Congress, Patra. 

Ripley, B.D., 1987. Stochastic Simulation, Wiley, New York. 

Salas, J.D., 1992. Analysis and Modelling of Hydrologic Timeseries, Maidment, D.R., ed., 

Handbook of Hydrology, New York. 

Xydas, S. and Staikopoulos, G., 1985. Serres sheet geological map, scale 1:50.000. I.G.M.E. 

  


