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Abstract 

Interdependencies in earthquakes with 𝑀 ≥ 5.0 that occurred in the Greek territory 

during 1911-2014 are investigated by means of network analysis. The nodes of the 

seismic network represent seismic zones and the connections between them are given 

by the time succession of two earthquakes of any seismic zones. Five different 

approaches for determining the weighted connections are studied based on different 

normalizations of the frequencies of successions for each pair of nodes (areas). In 

particular, two approaches transform the transition matrix to transition probability 

matrix of a Markov chain or Gibbs sequence. The network structure is quantified by 

five selected network measures, and we assess how changes in seismicity (number of 

earthquakes or seismic moment release) in sliding time windows (e.g. decades) agree 

with changes in the network structure. It turns out that the best matching of seismicity 

and network measures is succeeded with the two approaches normalizing the 

maximum frequency of a succession pair, over the current time window or over all 

time windows, and with the approach that is based on probability distribution for the 

pairs of nodes. For the approaches transforming the transition matrix to transition 

probability matrix, a test is developed for the null hypothesis according to which the 

observed transition in a time window is equal to the predicted one on the basis on the 

information given from the previous time window. The developed parametric test is 

based on Chi-square null distribution and shows that the null hypothesis could not be 

rejected in some time windows, providing a tool for future seismic hazard assessment. 

Keywords: weighted matrix, transition matrix, Markov chain, Gibbs sequence, 

network measure. 

Περίληψη 

Επιχειρείται διερεύνηση των αλληλεξαρτήσεων μεταξύ σεισμών με 𝑀 ≥ 5.0 που έγιναν 

στον ελληνικό χώρο κατά την περίοδο 1911-2014 με τη βοήθεια της ανάλυσης δικτύου. 

Οι κόμβοι του δικτύου αντιπροσωπεύουν σεισμικές ζώνες και οι συνδέσεις μεταξύ τους 

δίνονται από την χρονική διαδοχή δύο σεισμών που πραγματοποιούνται σε οποιαδήποτε 

σεισμική ζώνη. Εξετάζονται πέντε διαφορετικές προσεγγίσεις για τον καθορισμό της 

σταθμισμένης σύνδεσης, με βάση τη διαφορετική εξομάλυνση των συχνοτήτων των 

διαδοχικών σεισμών για κάθε ζεύγος κόμβων (περιοχές). Ειδικότερα, δύο προσεγγίσεις 
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μετατρέπουν τον πίνακα μετάβασης σε πίνακα πιθανοτήτων μετάβασης μιας αλυσίδας 

Markov ή αλληλουχίας Gibbs. Η δομή του δικτύου ποσοτικοποιείται με πέντε 

επιλεγμένα μέτρα δικτύου, και εκτιμώνται αν οι μεταβολές της σεισμικότητας (πλήθος 

σεισμών ή απελευθέρωση σεισμικής ενέργειας) σε όλα τα συρόμενα παράθυρα του 

χρόνου (π.χ. δεκαετίες) συμφωνούν με τις αλλαγές στη δομή του δικτύου. Αποδεικνύεται 

ότι η καλύτερη αντιστοίχιση της σεισμικότητας και των μέτρων δικτύου επιτυγχάνεται 

με τις δύο προσεγγίσεις στις οποίες η ομαλοποίηση γίνεται με τη μέγιστη συχνότητα ενός 

ζεύγους διαδοχής, πάνω από το τρέχον χρονικό παράθυρο ή πάνω από όλα τα 

παράθυρα του χρόνου, και με την προσέγγιση που βασίζεται στην κατανομή 

πιθανοτήτων για τα ζεύγη των κόμβων. Για τις προσεγγίσεις που μετατρέπουν τον 

πίνακα μετάβασης σε πίνακα πιθανοτήτων μετάβασης, αναπτύχθηκε έλεγχος με 

μηδενική υπόθεση ότι η παρατηρούμενη μετάβαση σε ένα χρονικό παράθυρο είναι ίση 

με την προβλεπόμενη με βάση την πληροφορία που δίνεται από το προηγούμενο χρονικό 

παράθυρο. Η ανάπτυξη παραμετρικής δοκιμασίας που βασίζεται στην κατανομή χ-

τετράγωνο έδειξε ότι η μηδενική υπόθεση δεν μπορεί να απορριφθεί σε κάποια χρονικά 

παράθυρα, παρέχοντας ένα χρήσιμο εργαλείο για εκτίμηση της μελλοντικής σεισμικής 

επικινδυνότητας.  

Λέξεις κλειδιά: Πίνακας βαρών, πίνακας μετάβασης, αλυσίδα Markov, ακολουθία 

Gibbs, μέτρο δικτύου. 

1. Introduction 

The network approach is a powerful tool for analyzing dynamic structures of complex systems. 

Complex network analysis is an emerging field that was introduced recently also in seismology by 

Abe and Suzuki (2004) in order to study seismicity as a spatiotemporal complex system. The seismic 

network has a number of interesting properties, some of which are common with many other natural 

and artificial complex systems, such as the metabolic network and the network of the web (Albert 

and Barabasi, 2002), which enable the study of seismicity. Global physical properties of seismicity 

can be explored by examining the geometrical (topological) and dynamic characteristics. The 

changes in the structure of the network (dynamic characteristics) can reveal a main shock few days 

before it occurs and the topological characteristics show the interdependencies between the variables 

of the complex network (Abe and Suzuki, 2009). 

The purpose of this study is the construction of seismic networks, with directed and weighted 

connections, where the nodes of networks represent seismic zones and the connections between 

them are given by the time succession of two earthquakes of any seismic zone. The weights of 

connections are formed by different normalizations of the frequencies of successions. Six 

approaches are shown, one for simple connections and five for weighted connections, to forming 

the adjacency or weighted matrix for introducing the connections of seismic network. Two of the 

five approaches for weighted connections transform the transition matrix to transition probability 

matrix of a Markov chain or Gibbs sequence to purpose the estimation of future seismic hazard. In 

addition, we examine which of the six approaches can depict better the seismic activity observed in 

the study area during 1911-2014, using two ranking lists of seismic zones that come from the real 

seismic activity and the network measures for each time window. Finally, we make a statistical test 

which examines whether the a priori known transition probability matrix differs from the estimated 

one. The results encourage research in the next step for evaluation of future seismic hazard. 

2. Data and Methodology 

The observation data are obtained from the earthquake catalog compiled in the Geophysics 

Department of the Aristotle University of Thessaloniki (http://geophysics.geo.auth.gr/ss/), and 

comprise crustal earthquakes (focal depth less than 40 Km) of magnitude 𝑀 ≥ 5.0 (2.018 events) 

that occurred in 1911-2014 (Fig. 1). In this study the seismic measures which are used to construct 



1301 

 

the seismic network are indicated by the sum of the number of successive earthquakes or by the sum 

of the seismic moment 𝑀0 released for each pair of nodes. The seismic moment is calculated from 

the empirical relation 𝑙𝑜𝑔𝑀0 = 1.5𝑀 + 16.01, where 𝛭 the earthquake magnitude (Kanamori and 

Anderson, 1975). The analysis is performed in sliding non-overlapping time windows of 2, 3, 5 and 

10 years duration. The approaches which are based on Markov chain and Gibbs sequence are applied 

only for 10 years duration because they require at least one transition from each seismic zone. 

2.1 Approaches for determining the connections of networks 

Generally with the term of network we mean the graph 𝐺 = (𝑁, 𝐸) which is defined by the nodes 

and the connections between them, where 𝑁 is the set of nodes and 𝐸 the set of connections. The 

|𝐸| network connections of the |𝑁| nodes can be directed or undirected, weighted or binary such 

that the network of 𝑁 nodes is fully described by a square matrix of size 𝑁𝑥𝑁 and the value at each 

position (𝑖, 𝑗) ∈ 𝐸 of this matrix indicates the connection between nodes 𝑖 and 𝑗. For any two nodes 

𝑖 and 𝑗 the distance 𝑑(𝑖, 𝑗) between them is defined as the length of the shortest path from 𝑖 to 𝑗, if 
the nodes are connected and called neighbors, whereas 𝑑(𝑖, 𝑗) = ∞ otherwise. The adjacency matrix 

𝐴 introduces simple connections, and in case of directed connections of network is a square non-

symmetric matrix 𝐴 = {𝑎𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑁 of size |𝑁|𝑥|𝑁|, having entries (𝑖, 𝑗). The adjacency matrix 

𝐴 takes a value of one (1) if there is a connection between nodes 𝑖 and 𝑗 and zero (0) otherwise. On 

a network with weighted and directed connections the weighted matrix 𝑊 is also a square non-

symmetric matrix 𝑊 = {𝑤𝑖𝑗}, 𝑖, 𝑗 ∈ 𝑁 of size |𝑁| ∗ |𝑁| , where 𝑤𝑖𝑗  is the weight which 

characterizes the weighted connection. 

 

Figure 1 - Epicentral distribution of 𝐌 ≥ 𝟓. 𝟎 that occurred in 1911-2014 in the broader area 

of Greece. The diameter of the cycles is proportional to the earthquake magnitude and the 

color proportional to the focal depth as given by a color scale. 

For the construction of networks firstly we divide the study area into subareas, the seismic zones, 

that are homogenous from the seismotectonic point of view (faulting type, seismic moment release) 

and taking into account previous publications (Papazachos et al., 1998; Papaioannou and 

Papazachos, 2000). The 𝑁  seismic zones represent the 𝑁  nodes of the seismic network. Two 

successive earthquakes define a connection between the respective nodes. If two successive 

earthquakes occur inside the same zone, they form a loop. The connections and loops represent the 

correlations between two successive earthquakes. 



1302 

 

The first approach, for introducing connections, constructs the seismic network with simple 

connections, i.e. the adjacency matrix 𝐴 contains the value one (1) or zero (0) for each pair (𝑖, 𝑗) of 

nodes. This approach, called Binary, has the disadvantage that full exploitation of data is not 

achieved, because the multiple successions of earthquakes are not recognized but it is considered as 

a simple one. 

 

Figure 2 - The 15 seismic zones in which the study area is divided and which represent the 

network nodes. 

Five approaches are now introduced to constructing weighted connections in space [0,1]. The 

construction process of the weighted matrix 𝑊 is as follows: For each time window a square non-

symmetric transition matrix 𝑆 = {𝑠𝑖𝑗} is created, where 𝑠𝑖𝑗 indicates how many times the succession 

of earthquakes appears for each pair (𝑖, 𝑗) of nodes. Alternatively it is a positive real number that 

indicates the value of seismic moment 𝑀0 which is released between nodes 𝑖 and 𝑗. Having created 

such square matrices, which are equal in number with the time windows, we define the weighted 

matrix 𝑊 for each time window as 𝑊 = 𝑆/max{𝑠𝑖𝑗}, where max{𝑠𝑖𝑗} is the maximum value of all 

matrices 𝑆. This approach, called Wallwin, has as variation the definition of the weighted matrix 𝑊 

at each time window as 𝑊 = 𝑆/max{𝑠𝑖𝑗}, where now max{𝑠𝑖𝑗} is the maximum value of matrix S 

for each time window. This approach is called Weachwin. The fourth approach, the third for 

weighted connections, is based on probability frequency distribution for the transition matrix 𝑆, and 

is called Wprob. A probability frequency distribution is a way to show the eventual occurrence 

frequency at each pair (𝑖, 𝑗) of nodes. A probability distribution assigns a probability to each pair 

(𝑖, 𝑗) of matrix as 𝑊 = {𝑠𝑖𝑗}/∑ {𝑠𝑖𝑗}
𝑁
𝑖,𝑗=1 . Thus, the sum of elements of weighted matrix 𝑊 is equal 

to the unity. 

A completely different approach for the construction of the weighted matrix 𝑊 is based on the Markov 

chain. Consider 𝑉 = {1, 2, … . . , 𝑁} the state space of a Markov chain, i.e. the space 𝑉 consists of all 

nodes. Let as define 𝑋𝑡 (𝑡 = 1, 2, . . , 𝑛) as the Markov chain which was formed by the time succession 

of two earthquakes of any seismic zones with values from the state space V. Firstly, the transition 

matrix 𝑆 = {𝑠𝑖𝑗} is formed as in the previous approaches. We define the probabilities {𝑝𝑖𝑗}, that form 

the square non-symmetric transition probability matrix P because we have directed connections, as 

follows: 𝑃 = {𝑝𝑖𝑗} =  
{𝑠𝑖𝑗}
∑ {𝑠𝑖𝑗}
𝑁
𝑗=1
⁄  with 𝑖, 𝑗 = 1, 2, … , 𝑁. The main characteristic of the transition 

probability matrix P is that the sum of each row is unity, i.e. ∑ 𝑝𝑖𝑗 = 1
𝑁
𝑗=1 . The matrix 𝑃  is the 
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weighted matrix and this approach is called Markov. The last approach is based on Gibbs sequence 

(Casella and George, 1992). Starting with random variables 𝑋 = {𝑋𝑜
′ , 𝑋1
′ , … . , 𝑋𝑁

′ } and 𝑌 = {𝑌0
′ , 𝑌1

′ , . .,
𝑌𝑁

′ }, the matrices 𝑃𝑋|𝑌 and 𝑃𝛶|𝛸 thought of as transition matrices the probabilities of getting to 𝑋 states 

from 𝑌 states and vice versa are given. If we are only interested in generating the marginal distribution 

of 𝑋, we are mainly concerned with the 𝑋 ′ sequence. To go from 𝑋0
′ → 𝑋1

′  we have to go through 𝑌1
′, 

so the iteration sequence is 𝛸𝑜
′ → 𝑌1

′ → 𝑋1
′  and 𝛸𝑜

′ → 𝑋1
′  forms a Markov chain with transition 

probability 𝑃(𝛸1
′ → 𝑥1|𝛸0

′ → 𝑥0) = ∑ 𝑃𝑦 (𝛸1
′ = 𝑥1|𝑌1

′ = 𝑦) ∗  𝑃(𝑌1
′ =  𝑦|𝛸0

′ = 𝑥0) . Thus, the 

transition probability matrix of the 𝑋′ sequence is given by 𝑃𝑋|𝑋 = 𝑃𝑌|𝑋 ∗ 𝑃𝑋|𝑌 , and is a weighted 

matrix. This approach is called Gibbs. 

The value of each network measure gives different information on the network structure (Table 1). 

The network properties are quantified with a number of characteristics (indices) computed on 𝐴 and 

𝑊 or 𝑃. 

Table 1 - Information provided from each network measure. 

Network measures (for 

weighted connections) 

Information 

Degree/Strength: 

𝐾𝑊 =
1

𝑁
 𝑘𝑖

𝑊

𝑖 ∈ 𝑁

=  {𝑤𝑖𝑗}

𝑗 ∈ 𝑁

 

One of the most basic statistics that characterize the graphs, 

measuring the connections in each node. 

Clustering coefficient: 

𝐶𝑊 =
1

𝑁
 
∑ 𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ𝑗,ℎ ∈ 𝑁

𝑘𝑖(𝑘𝑖 − 1)
𝑖 ∈ 𝑁

 

Probability that two nodes connected to a common node to 

be interconnected. It shows the tendency of the nodes to 

group by triads. 

Global efficiency: 

𝐸𝑊 =
1

𝑁
 
∑ (𝑑𝑖𝑗

𝑤)−1𝑗 ∈ 𝑁,𝑗≠𝑖

𝑁 − 1
𝑖 ∈𝑁

 

The small distances between nodes give higher efficiency of 

the information flow on the network. 

Eigenvector centrality: 

𝑋𝑖 = 𝜆𝑖
−1∑ 𝑤𝑖𝑗𝑗 ∈ 𝑁 𝑥𝑗, 

λ the largest eigenvalue of the 

solution of equation 𝑊𝑋 = 𝜆𝑋. 

The nodes with many neighbors have high value and 

contribute more to the flow of information in network, i.e. 

the connections linking high degree nodes contribute to the 

high value of the node. 

Pagerank: 
𝑃𝑊(𝑛𝑖)

=
1 − 𝑑

𝑁
+ 𝑑  

𝑃𝑊(𝑛𝑗)

𝑜𝑢𝑡𝑑𝑒𝑔(𝑛𝑗)
𝑛𝑗 ∈ 𝑁(𝑛𝑖)

 

Calculate the rank value that indicates the importance of a 

node. A node that is connected with many nodes with high 

Pagerank receives a high rank itself. 

*outdeg, in type, is the number of outgoing connections. 

3. Results and Discussion 

The study area, i.e. the broader area of Greece, is divided into 15 seismic zones which represent the 

nodes of the seismic network and the connections between them are given by the time succession of 

two earthquakes of any seismic zones. After forming the seismic network, with the six approaches 

for each of the sliding time window, the changes in the structure of networks are examined per 

approach as for example during the time window 1971-1980 when the width of the sliding window 

is 10 years (Fig. 3). The different structure of network, is shown by the different values of network 

measures for each approach (Table 2). 

        (a)                                        (b)                                           (c) 
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                      (d)                                           (e)                                             (f) 

                

Figure 3 - The structure of the seismic network when as a seismic measure the number of 

earthquakes is considered during the time window 1971-1980 with the six approaches a) 

Binary, b) Wallwin, c) Weachwin, d) Wprob, e) Markov and f) Gibbs. 

After the investigation of the structure of networks we study the seismic activity which is observed 

for each seismic zone during 1911-2014 using sliding non-overlapping time windows of 2, 3, 5 and 

10 years duration as for example for the period 1971-1980 which is shown in Figure 4. 

Table 2 - The values of the network measures, when as a seismic measure the number of 

earthquakes is considered, for all approaches during the time window 1971-1980. 

Approach 

 

Measure of network 
Binary Wallwin Weachwin Wprob Markov Gibbs 

Degree/Strength 6.4 0.39 1.01 0.06 1 1 

Clustering 

coefficient 

0.73 0.04 0.10 0.01 0.11 0.06 

Global efficiency 0.69 0.03 0.08 0.04 0.09 0.06 

Eigenvector 

centrality 

0.23 0.20 0.20 0.20 0.25 0.25 

Pagerank 0.15 0.07 0.07 0.03 0.10 0.09 

To perform the ranking, we are interested in the first position for each time window when the number 

of earthquakes and the seismic moment release in each seismic zone is taken into account (Fig. 5). 

The ranking of the seismic zones in many cases, based on the above seismic measures, is different 

because the number of earthquakes as a seismic measure does not express the amount of energy 

release unlike the measure when the seismic moment is considered. 
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Figure 4 - The seismic activity of the seismic zones (𝐱 − 𝐚𝐱𝐢𝐬) during the time window 1971-

1980, with seismic measure the number of earthquakes (𝐲 − 𝐚𝐱𝐢𝐬, squares) and the seismic 

moment (𝐲 − 𝐚𝐱𝐢𝐬 in a logarithmic scale, cycles). 

Using five network measures, for weighted or simple connections the values of which were 

calculated for each seismic zone in each approach, a second ranking is generated as regards the first 

position for each time window of the seismic zones on the network measures. 

 

Figure 5 - The first position for each time window (𝐱 − 𝐚𝐱𝐢𝐬) when the sliding window lasts 

10 years, for the larger earthquake number and seismic moment release (𝐲 − 𝐚𝐱𝐢𝐬). 

Having the two ranking lists for the first position for each time window, when the first list results 

from the observations and the second one from the network measures, the agreement of the two 

ranking lists is investigated (Fig. 6). The results of the Binary approach (Fig. 6, the five first network 

measures) show the ineffective way to construct the seismic network because the success rates do 

not exceed 60% in any of the seismic and network measure. The Wallwin, Weachwin and Wprob 

approaches show the best results, if we exclude the almost expected 100% success rate with network 

measure the degree and seismic measure the seismic moment. This is due to the method of 

introducing connections of the network, because by definition the seismic zone with the higher 

seismic activity has the most connections. The rates of success are over 80% with network measure 

the eigenvector centrality and pagerank when the seismic measure is the number of events. 

Particularly low rates are derived from the approach of Markov and Gibbs for all network measures 

when as seismic measure the seismic moment release is considered. When the number of events is 

considered the success rates for the Gibbs approach is very high particularly when the network 

measure is the degree. 
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a) 

 

             b) 

 

Figure 6 - Success rate (𝐲 − 𝐚𝐱𝐢𝐬, agreement between the two ranking lists for the first 

position) with seismic measure a) the seismic moment release and b) the number of 

earthquakes based on the network measures (𝐱 − 𝐚𝐱𝐢𝐬, the first five measures with the suffix 

B next to the abbreviation of the name of the measures for simple connections and the next 

five for weighted connections with the suffix W). 

The satisfactory results from Gibbs and Markov approaches, when the measure is the number of 

events and the network measure is the degree, encourage the effort to estimate the predicted 

transition probability matrix for the next time window in order to assess the future seismic hazard. 

The estimation to predicted transition probability matrix is performed with Gibbs and Markov 

approaches because they use the stochastic matrix 𝑃  as weighted matrix for introducing the 

connections of network. 

3.1 Statistical test 

The elements of the a priori known transition propability matrix 𝑃 are obtained as described in 

subsection 2.1 about the approach of Markov and Gibbs, respectively. We test, for every time 

window, if the elements of the transition probability matrix 𝑃 which is constructed with the approach 

of Gibbs and Markov, respectively, agree with the values of the elements of the predicted transition 

probability matrix 𝑃∗ . To estimate the predicted matrix 𝑃∗  we create the square non-symmetric 

matrix 𝑃𝑆 which is formed from the transition matrix 𝑆. The transition matrix 𝑆 is calculated from 
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all historical data without dividing them in time windows and following the known process of 

transformation to the stochastic matrix for each approach (described in subsection 2.1), and the 

transition probability matrix 𝑃𝑆 is generated. According to Markov process, the predicted transition 

probability matrix 𝑃∗ in different periods is formed by  𝑃𝑡+1
∗ = 𝑃𝑡 ∗ 𝑃𝑆, where t=1, 2,.., n (Zhang and 

Zhang, 2009). Suppose that the null hypothesis 𝐻0: 𝑃 = 𝑃
∗, in case of testing all transitions together 

then a statistical criterion for testing the hypothesis can be based on the fact that the test statistic 

∑  𝑁𝑖=1 ∑
𝑛𝑖(𝑃𝑖𝑗
∗ −𝑃𝑖𝑗)

2

𝑃𝑖𝑗

𝑁
𝑗=1  follows the 𝑥2 distribution with 𝑁(𝑁 − 1) − 𝑎 degrees of freedom, where 𝑁 

is the number of states (nodes), α the number of zero elements in matrix 𝑃, 𝑛𝑖  the number of 

transitions of the row 𝑖 in transition matrix 𝑆 and the sums are for those values of i and j for which 

𝑃𝑖𝑗>0. The statistical test shows the acceptance of the null hypothesis 𝐻0 in many cases (Fig. 7, when 

dashed line is above the continuous line for the same time window) only for the Gibbs approach. 

This happened because the Gibbs approach provides higher success rates, concerning the agreement 

between of the two ranking lists, than the Markov approach. The results of the statistical test show 

that network approach is a useful tool for future seismic hazard assessment. 

 

Figure 7 - The value of test statistic (𝐲 − 𝐚𝐱𝐢𝐬) as a function of time for 10-years sliding 

windows (𝐱 − 𝐚𝐱𝐢𝐬). The dashed (critical) lines are defined from statistical tables for 

significance level 𝐚 = 𝟎. 𝟎𝟓. 

4. Concluding Remarks 

These first results suggest the contribution of network analysis in deriving from seismicity properties 

of a seismically active area which is divided in seismic zones. The approach of Gibbs estimates 

reliably, in some cases, the future seismic activity as evidenced by the statistical test unlike the 

Markov approach where we have rejections of null hypothesis 𝐻0. The Binary approach is the most 

unsuitable for introducing connections unlike with the other three approaches, Wallwin, Weachwin 

and Wprob. These approaches show high success rates with network measure the eigenvector 

centrality and pagerank, and excluding the degree, when the seismic measure is the number of 

earthquakes. Generally, the results are better when the seismic measure is the number of earthquakes 

than the seismic moment. In addition, the network index of degree can be regarded as an index of 

the level of seismicity and may be a useful tool in the study of earthquake networks. 

The network approach has been found to be a powerful tool that contributes significantly to 

investigate properties of complex phenomena such as seismic activity. The construction of the 

seismic network with new seismic measures, the use of approach through the time series for 

introducing the network connections, the introduction of new network measures for examining the 

network structure can be significantly contribute to seismic hazard assessment. An open issue arising 
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from this work is the application of the same analysis, which is presented in this study, with the 

above-mentioned settings. 
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