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Abstract

Interdependencies in earthquakes with M > 5.0 that occurred in the Greek territory
during 1911-2014 are investigated by means of network analysis. The nodes of the
seismic network represent seismic zones and the connections between them are given
by the time succession of two earthquakes of any seismic zones. Five different
approaches for determining the weighted connections are studied based on different
normalizations of the frequencies of successions for each pair of nodes (areas). In
particular, two approaches transform the transition matrix to transition probability
matrix of a Markov chain or Gibbs sequence. The network structure is quantified by
five selected network measures, and we assess how changes in seismicity (number of
earthquakes or seismic moment release) in sliding time windows (e.g. decades) agree
with changes in the network structure. It turns out that the best matching of seismicity
and network measures is succeeded with the two approaches normalizing the
maximum frequency of a succession pair, over the current time window or over all
time windows, and with the approach that is based on probability distribution for the
pairs of nodes. For the approaches transforming the transition matrix to transition
probability matrix, a test is developed for the null hypothesis according to which the
observed transition in a time window is equal to the predicted one on the basis on the
information given from the previous time window. The developed parametric test is
based on Chi-square null distribution and shows that the null hypothesis could not be
rejected in some time windows, providing a tool for future seismic hazard assessment.
Keywords: weighted matrix, transition matrix, Markov chain, Gibbs sequence,
network measure.

Hepiinyn

Emiyeipeitar digpedvon twv arlnleCoptioewy uetald oetoumv ue M = 5.0 mov éyvay
otov eEAAnViKo ywpo kot v mepiodo 1911-2014 ue  Ponbera e avaloons diktoov.
O1 Koufot TV JIKTOOV AVTITPOTWTEDOVY TEIGLUIKES (VES KO 0L CVVOETELS UETALD TOVG
O1VOVTOL IO TV YPOVIKH OL10.00)H 00O GELGUMY TTOV TPOYUATOTOLODVIAL OE OTOLAONTOTE
oetouxh (ovy. Eletaloviar mévie 010p0peTIKES TPOTEYYITEIS VIO, TOV KOHOPIoUO THG
otabuicuévng odvieons, ue Paon ™ O1apopetikl eCOUGAIVVON TWV GUYVOTHTOV TWV
010 001KV OEIGUMYV Yia. Kabe (eDyog Koufwv (mepioyés). Eidikotepa, dvo mpooeyyioels
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LETATPETOVY TOV TivoKo. LETafaons o€ mivaka mboavotitwy uetfoons o alooioog
Markov 7 ailnlovyiog Gibbs. H dourp tov diktdov mocotikomoisitar e mévie
EMIAEYUEVOL LLETPAL OIKTOOD, KO EKTIUMOVTOL OV 01 UETOPOAES TNG oeloukoTnToS (TAO0S
OEIOUOV 1] amelev0épwon celoukng evépyelag) o Ol To. avpiueve. mopadopo. Tov
XPOVOD (T.)y. JEKOETIES) TOUPWVODY UE TIS AALOYES aTn o] TOV JIKTOOV. ATOdEIKVDETOUL
OTL ) KAADTEP AVTIOTOLYION THG OELOUIKOTHTOG KOl TV UETPWY OIKTDOV ETITOYYAVETOL
UE TIG ODO TPOOEYYITEIS OTIC OTOIES ] OUALOTOINON PIVETOL LUE TH UEYLOTH GUYVOTHTO. EVOG
{evyovg O1ad0)NG, TAVW OmO TO TPEYOV XPOVIKO TOpPGHvpo 1 movew omo OAa To.
wapalvpa. 00 Ypovov, Kal pe TNV TPOGEYYIoN Tov PocileTor otV  KOTOVOUN
mBovotiTwv yio ta (evyn TV Koufwv. 1o TIc TPOsEYYIoEIS TOV UETOTPETOVY TOV
mivako, petdfioons oe mivaxoa mOavoTHTOV HETAPacNS, avomtOyOnke Eleyyoc ue
unoevikn vwobean ot n mopoTnpoduEvy ueTGfocn o€ Eva. ypoviko mopabvpo eival ion
LE TNV TpofAemouevn ue faon tny TAnpopopio wov JIVETaL OO TO TPONYOVUEVO YPOVIKO
ropabopo. H ovartoln mopauetpixng doxiooios wov Paciletar otny Kotovoun x-
TETPAYVO E0€ile OT1 N undeviky vwobeon dev umopel vo. arwoppiplel oe KAamoio. Ypovika.
opalopa, TopEYOVTOS EVa YPHOIUO EPYOLEID VIO EKTIUNCH THG UEAAOVTIKNG CELOLUKNG
EMKIVOLVOTNTOG.

Aééerg Kiardid. Ilivoxag Papav, mivaxag petdfoong, alvaioa Markov, axolovio
Gibbs, uézpo dikrvov.

1. Introduction

The network approach is a powerful tool for analyzing dynamic structures of complex systems.
Complex network analysis is an emerging field that was introduced recently also in seismology by
Abe and Suzuki (2004) in order to study seismicity as a spatiotemporal complex system. The seismic
network has a number of interesting properties, some of which are common with many other natural
and artificial complex systems, such as the metabolic network and the network of the web (Albert
and Barabasi, 2002), which enable the study of seismicity. Global physical properties of seismicity
can be explored by examining the geometrical (topological) and dynamic characteristics. The
changes in the structure of the network (dynamic characteristics) can reveal a main shock few days
before it occurs and the topological characteristics show the interdependencies between the variables
of the complex network (Abe and Suzuki, 2009).

The purpose of this study is the construction of seismic networks, with directed and weighted
connections, where the nodes of networks represent seismic zones and the connections between
them are given by the time succession of two earthquakes of any seismic zone. The weights of
connections are formed by different normalizations of the frequencies of successions. Six
approaches are shown, one for simple connections and five for weighted connections, to forming
the adjacency or weighted matrix for introducing the connections of seismic network. Two of the
five approaches for weighted connections transform the transition matrix to transition probability
matrix of a Markov chain or Gibbs sequence to purpose the estimation of future seismic hazard. In
addition, we examine which of the six approaches can depict better the seismic activity observed in
the study area during 1911-2014, using two ranking lists of seismic zones that come from the real
seismic activity and the network measures for each time window. Finally, we make a statistical test
which examines whether the a priori known transition probability matrix differs from the estimated
one. The results encourage research in the next step for evaluation of future seismic hazard.

2. Data and Methodology

The observation data are obtained from the earthquake catalog compiled in the Geophysics
Department of the Aristotle University of Thessaloniki (http://geophysics.geo.auth.gr/ss/), and
comprise crustal earthquakes (focal depth less than 40 Km) of magnitude M > 5.0 (2.018 events)
that occurred in 1911-2014 (Fig. 1). In this study the seismic measures which are used to construct
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the seismic network are indicated by the sum of the number of successive earthquakes or by the sum
of the seismic moment M, released for each pair of nodes. The seismic moment is calculated from
the empirical relation logM, = 1.5M + 16.01, where M the earthquake magnitude (Kanamori and
Anderson, 1975). The analysis is performed in sliding non-overlapping time windows of 2, 3, 5 and
10 years duration. The approaches which are based on Markov chain and Gibbs sequence are applied
only for 10 years duration because they require at least one transition from each seismic zone.

2.1 Approaches for determining the connections of networks

Generally with the term of network we mean the graph G = (N, E) which is defined by the nodes
and the connections between them, where N is the set of nodes and E the set of connections. The
|E| network connections of the |N| nodes can be directed or undirected, weighted or binary such
that the network of N nodes is fully described by a square matrix of size NxN and the value at each
position (i, ) € E of this matrix indicates the connection between nodes i and j. For any two nodes
i and j the distance d(i, j) between them is defined as the length of the shortest path from i to j, if
the nodes are connected and called neighbors, whereas d (i, j) = oo otherwise. The adjacency matrix
A introduces simple connections, and in case of directed connections of network is a square non-
symmetric matrix A = {a;;}, i, j € N of size |[N|x|N|, having entries (i, j). The adjacency matrix
A takes a value of one (1) if there is a connection between nodes i and j and zero (0) otherwise. On
a network with weighted and directed connections the weighted matrix W is also a square non-
symmetric matrix W = {w;;}, i, j € N of size |[N|=«|N|, where w;; is the weight which
characterizes the weighted connection.
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Figure 1 - Epicentral distribution of M > 5. 0 that occurred in 1911-2014 in the broader area
of Greece. The diameter of the cycles is proportional to the earthquake magnitude and the
color proportional to the focal depth as given by a color scale.

For the construction of networks firstly we divide the study area into subareas, the seismic zones,
that are homogenous from the seismotectonic point of view (faulting type, seismic moment release)
and taking into account previous publications (Papazachos et al., 1998; Papaioannou and
Papazachos, 2000). The N seismic zones represent the N nodes of the seismic network. Two
successive earthquakes define a connection between the respective nodes. If two successive
earthquakes occur inside the same zone, they form a loop. The connections and loops represent the
correlations between two successive earthquakes.
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The first approach, for introducing connections, constructs the seismic network with simple
connections, i.e. the adjacency matrix A contains the value one (1) or zero (0) for each pair (i, j) of
nodes. This approach, called Binary, has the disadvantage that full exploitation of data is not
achieved, because the multiple successions of earthquakes are not recognized but it is considered as
a simple one.
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Figure 2 - The 15 seismic zones in which the study area is divided and which represent the
network nodes.

Five approaches are now introduced to constructing weighted connections in space [0,1]. The
construction process of the weighted matrix W is as follows: For each time window a square non-
symmetric transition matrix S = {s;;} is created, where s;; indicates how many times the succession
of earthquakes appears for each pair (i, j) of nodes. Alternatively it is a positive real number that
indicates the value of seismic moment M, which is released between nodes i and j. Having created
such square matrices, which are equal in number with the time windows, we define the weighted
matrix W for each time window as W = S/max{s;;}, where max{s;;} is the maximum value of all
matrices S. This approach, called Wallwin, has as variation the definition of the weighted matrix W
at each time window as W = S/max{s;;}, where now max{s;;} is the maximum value of matrix S
for each time window. This approach is called Weachwin. The fourth approach, the third for
weighted connections, is based on probability frequency distribution for the transition matrix S, and
is called Wprob. A probability frequency distribution is a way to show the eventual occurrence
frequency at each pair (i, j) of nodes. A probability distribution assigns a probability to each pair
(i,j) of matrix as W = {s;;}/ Zﬁ‘szl{sij}. Thus, the sum of elements of weighted matrix W is equal
to the unity.

A completely different approach for the construction of the weighted matrix W is based on the Markov
chain. Consider V = {1, 2, ....., N} the state space of a Markov chain, i.e. the space V' consists of all
nodes. Let as define X, (t = 1, 2,..,n) as the Markov chain which was formed by the time succession
of two earthquakes of any seismic zones with values from the state space V. Firstly, the transition
matrix S = {s;;} is formed as in the previous approaches. We define the probabilities {p;;}, that form
the square non-symmetric transition probability matrix P because we have directed connections, as
follows: P = {p;;} = {SU}/Z,V s }with i, j =1,2,...,N. The main characteristic of the transition
j=10ij
probability matrix P is that the sum of each row is unity, i.e. Z?’=1 pij = 1. The matrix P is the
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weighted matrix and this approach is called Markov. The last approach is based on Gibbs sequence
(Casella and George, 1992). Starting with random variables X = {X/, X1, ....,Xy}and Y = {Y,,Y;,..,
Yy}, the matrices Py|y and Py thought of as transition matrices the probabilities of getting to X states
from Y states and vice versa are given. If we are only interested in generating the marginal distribution
of X, we are mainly concerned with the X" sequence. To go from X, — X; we have to go through Y;,
so the iteration sequence is X, —» Y{ - X; and X/ —» X; forms a Markov chain with transition
probability P(X] — x;1]Xg = x0) = X, P (X1 = x1|Y{ =y)* P(Y{ = y|Xy = x,) . Thus, the
transition probability matrix of the X" sequence is given by Pyx = Py|x * Py}y, and is a weighted
matrix. This approach is called Gibbs.

The value of each network measure gives different information on the network structure (Table 1).

The network properties are quantified with a number of characteristics (indices) computed on A and
W or P.

Table 1 - Information provided from each network measure.

Network measures (for
weighted connections)

Information

Degree/Strength: One of the most basic statistics that characterize the graphs,
1 w measuring the connections in each node.
SR = D
iEN jJEN

Clustering coefficient:

oW = 1 YjheNWiiWipWjp

N ki(k; — 1)

i€EN

Probability that two nodes connected to a common node to
be interconnected. It shows the tendency of the nodes to
group by triads.

Global efficiency:
2 Z] EN]il(dl]) !
N

iEN

The small distances between nodes give higher efficiency of
the information flow on the network.

Eigenvector centrality:

Xi =" Y en wij X,
A the largest eigenvalue of the
solution of equation WX = AX.

The nodes with many neighbors have high value and
contribute more to the flow of information in network, i.e.
the connections linking high degree nodes contribute to the
high value of the node.

Pagerank: Calculate the rank value that indicates the importance of a
PY(n) node. A node that is connected with many nodes with high
_1-d +d Z P () Pagerank receives a high rank itself.
TN m outdeg(n;) | *outdeg, in type, is the number of outgoing connections.
Nje ()

3. Results and Discussion

The study area, i.e. the broader area of Greece, is divided into 15 seismic zones which represent the
nodes of the seismic network and the connections between them are given by the time succession of
two earthquakes of any seismic zones. After forming the seismic network, with the six approaches
for each of the sliding time window, the changes in the structure of networks are examined per
approach as for example during the time window 1971-1980 when the width of the sliding window
is 10 years (Fig. 3). The different structure of network, is shown by the different values of network
measures for each approach (Table 2).

(@) (b) (©)
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Figure 3 - The structure of the seismic network when as a seismic measure the number of
earthquakes is considered during the time window 1971-1980 with the six approaches a)
Binary, b) Wallwin, ¢) Weachwin, d) Wprob, ) Markov and f) Gibbs.

After the investigation of the structure of networks we study the seismic activity which is observed
for each seismic zone during 1911-2014 using sliding non-overlapping time windows of 2, 3, 5 and
10 years duration as for example for the period 1971-1980 which is shown in Figure 4.

12

Table 2 - The values of the network measures, when as a seismic measure the number of
earthquakes is considered, for all approaches during the time window 1971-1980.

Approach
Binary | Wallwin | Weachwin | Woprob Markov | Gibbs
Measure of network
Degree/Strength 6.4 0.39 1.01 0.06 1 1
Clustering 0.73 0.04 0.10 0.01 0.11 0.06
coefficient
Global efficiency 0.69 0.03 0.08 0.04 0.09 0.06
Eigenvector 0.23 0.20 0.20 0.20 0.25 0.25
centrality
Pagerank 0.15 0.07 0.07 0.03 0.10 0.09

To perform the ranking, we are interested in the first position for each time window when the number
of earthquakes and the seismic moment release in each seismic zone is taken into account (Fig. 5).
The ranking of the seismic zones in many cases, based on the above seismic measures, is different
because the number of earthquakes as a seismic measure does not express the amount of energy
release unlike the measure when the seismic moment is considered.
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Figure 4 - The seismic activity of the seismic zones (x — axis) during the time window 1971-
1980, with seismic measure the number of earthquakes (y — axis, squares) and the seismic
moment (y — axis in a logarithmic scale, cycles).

Using five network measures, for weighted or simple connections the values of which were
calculated for each seismic zone in each approach, a second ranking is generated as regards the first
position for each time window of the seismic zones on the network measures.
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Figure 5 - The first position for each time window (x — axis) when the sliding window lasts
10 years, for the larger earthquake number and seismic moment release (y — axis).

Having the two ranking lists for the first position for each time window, when the first list results
from the observations and the second one from the network measures, the agreement of the two
ranking lists is investigated (Fig. 6). The results of the Binary approach (Fig. 6, the five first network
measures) show the ineffective way to construct the seismic network because the success rates do
not exceed 60% in any of the seismic and network measure. The Wallwin, Weachwin and Wprob
approaches show the best results, if we exclude the almost expected 100% success rate with network
measure the degree and seismic measure the seismic moment. This is due to the method of
introducing connections of the network, because by definition the seismic zone with the higher
seismic activity has the most connections. The rates of success are over 80% with network measure
the eigenvector centrality and pagerank when the seismic measure is the number of events.
Particularly low rates are derived from the approach of Markov and Gibbs for all network measures
when as seismic measure the seismic moment release is considered. When the number of events is
considered the success rates for the Gibbs approach is very high particularly when the network
measure is the degree.
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Figure 6 - Success rate (y — axis, agreement between the two ranking lists for the first
position) with seismic measure a) the seismic moment release and b) the number of
earthquakes based on the network measures (x — axis, the first five measures with the suffix
B next to the abbreviation of the name of the measures for simple connections and the next
five for weighted connections with the suffix W).

The satisfactory results from Gibbs and Markov approaches, when the measure is the number of
events and the network measure is the degree, encourage the effort to estimate the predicted
transition probability matrix for the next time window in order to assess the future seismic hazard.
The estimation to predicted transition probability matrix is performed with Gibbs and Markov
approaches because they use the stochastic matrix P as weighted matrix for introducing the
connections of network.

3.1 Statistical test

The elements of the a priori known transition propability matrix P are obtained as described in
subsection 2.1 about the approach of Markov and Gibbs, respectively. We test, for every time
window, if the elements of the transition probability matrix P which is constructed with the approach
of Gibbs and Markov, respectively, agree with the values of the elements of the predicted transition
probability matrix P*. To estimate the predicted matrix P* we create the square non-symmetric
matrix Ps which is formed from the transition matrix S. The transition matrix S is calculated from
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all historical data without dividing them in time windows and following the known process of
transformation to the stochastic matrix for each approach (described in subsection 2.1), and the
transition probability matrix Ps is generated. According to Markov process, the predicted transition
probability matrix P* in different periods is formed by P, = P, * P;, where t=1, 2,.., n (Zhang and
Zhang, 2009). Suppose that the null hypothesis H,: P = P*, in case of testing all transitions together
then a statistical criterion for testing the hypothesis can be based on the fact that the test statistic
(PF.—p;: )2
A ?’=1n’(PLI’)—“P”) follows the x? distribution with N(N — 1) — a degrees of freedom, where N
ij

is the number of states (nodes), a the number of zero elements in matrix P, n; the number of
transitions of the row i in transition matrix S and the sums are for those values of i and j for which
P;;>0. The statistical test shows the acceptance of the null hypothesis H, in many cases (Fig. 7, when
dashed line is above the continuous line for the same time window) only for the Gibbs approach.
This happened because the Gibbs approach provides higher success rates, concerning the agreement
between of the two ranking lists, than the Markov approach. The results of the statistical test show
that network approach is a useful tool for future seismic hazard assessment.

250 T T -“"-—“‘L-" — T T T
-©- Markov
Gibbs
% 2001, o Gritical Markov |
= ‘ Critical Gibbs }
» 1507
b }
1)
G 100
(O]
: -
T 1 NC o O e @ N a T
> 50 g e

2 3 4 5 6 7 8 9 10
time=t+1
Figure 7 - The value of test statistic (y — axis) as a function of time for 10-years sliding
windows (x — axis). The dashed (critical) lines are defined from statistical tables for
significance level a = 0. 05.

4. Concluding Remarks

These first results suggest the contribution of network analysis in deriving from seismicity properties
of a seismically active area which is divided in seismic zones. The approach of Gibbs estimates
reliably, in some cases, the future seismic activity as evidenced by the statistical test unlike the
Markov approach where we have rejections of null hypothesis H,. The Binary approach is the most
unsuitable for introducing connections unlike with the other three approaches, Wallwin, Weachwin
and Woprob. These approaches show high success rates with network measure the eigenvector
centrality and pagerank, and excluding the degree, when the seismic measure is the number of
earthquakes. Generally, the results are better when the seismic measure is the number of earthquakes
than the seismic moment. In addition, the network index of degree can be regarded as an index of
the level of seismicity and may be a useful tool in the study of earthquake networks.

The network approach has been found to be a powerful tool that contributes significantly to
investigate properties of complex phenomena such as seismic activity. The construction of the
seismic network with new seismic measures, the use of approach through the time series for
introducing the network connections, the introduction of new network measures for examining the
network structure can be significantly contribute to seismic hazard assessment. An open issue arising
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from this work is the application of the same analysis, which is presented in this study, with the
above-mentioned settings.
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