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Abstract 

Earthquakes with M ≥ 5.2 that occurred in the area of central Ionian Islands (1911-

2014) are assumed to form a semi-Markov chain, aiming to contribute in the field of 

seismic hazard assessment. The sojourn times are considered to be geometric or 

approximated by Pareto distributions. Destination probabilities are examined and the 

results demonstrate that in many cases these probabilities become higher adequately 

forecasting the magnitude class of an anticipated earthquake. The geometrically 

distributed model can also reveal the more probable occurrence time of the next 

earthquake since for this model the destination probabilities were found to obtain 

many times their maximum values for the real occurrence time. The successful 

forecasting as for the occurrence time is 63.75% for all earthquakes and becomes 

71.42% for the larger magnitude events (M ≥ 6.0).  

Keywords: Interevent times, destination probabilities, geometric distribution, Pareto 

distribution. 

Περίληψη 

Ένας κατάλογος σεισμών μεγέθους M ≥ 5.2, οι οποίοι έγιναν από το 1911 ως το 2014 στην 

περιοχή του κεντρικού Ιονίου, θα θεωρηθεί ότι αποτελεί μια ημι-Μαρκοβιανή αλυσίδα, 

αποσκοπώντας στην εκτίμηση της σεισμικής επικινδυνότητας. Θα υποθέσουμε ότι οι 

ενδιάμεσοι χρόνοι (χρόνοι μεταξύ των σεισμών) ακολουθούν γεωμετρικές κατανομές ή 

προσεγγίζονται από κατανομές Pareto. Οι υπό μελέτη ποσότητες είναι οι πιθανότητες 

προορισμού (destination probabilities). Σε αρκετές περιπτώσεις διαπιστώθηκε ότι οι 

πιθανότητες αυτές λαμβάνοντας μεγαλύτερη τιμή, προβλέπουν σωστά την κατηγορία 

μεγέθους του επόμενου σεισμού. Επίσης, το μοντέλο με γεωμετρικούς ενδιάμεσους χρόνους 

μπορεί να χρησιμοποιηθεί και για να υποδείξει τον αναμενόμενο χρόνο του επόμενου 

σεισμού, καθώς το ποσοστό της επιτυχούς εκτίμησης του χρόνου είναι 63.75% για όλους 

τους υπό μελέτη σεισμούς ενώ γίνεται 71.42% όσον αφορά τους μεγαλύτερους σεισμούς  (M 

≥ 6.0).  

Λέξεις κλειδιά: Πιθανότητες προορισμού, πιθανότητες εισόδου, γεωμετρικές 

κατανομές, κατανομές Pareto. 
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1. Introduction 

A semi-Markov model can describe the evolution of a system in time where the current state of the system 

depends only upon the previous one and the sojourn times can be arbitrarily distributed (Barbu and Limnios, 

2008). These models have been applied in many fields such as finance, meteorology, neuroscience and 

biology. Research has been conducted also in Seismology aiming to forecast an anticipated earthquake. For 

example, a semi-Markov model was applied (Altinok and Kolcak, 1999) in the north Anatolian fault zone 

between the longitudes 
o0026. E and 

o0042. E using a dataset of seventy one earthquakes with M ≥ 5.5 

that occurred in the area between 1902 and 1992. The evaluated magnitude to magnitude interval transition 

probabilities demonstrate that the probability that an earthquake with 5.5  M < 6.0 will follow another one 

of the same magnitude range, decreases as the time increases, whereas the probability that an earthquake 

with 5.5  M < 6.0 will follow another one of  6.0  M < 6.5 or 6.5  M increases with time. The study area 

was also divided in three subareas and the estimated region to region transition probabilities were found to 

increase with time. 

Semi-Markov modelling was adopted to describe 223 datasets each one containing one mainshock 

and the corresponding sequence of aftershocks. The data were extracted randomly from the seismic 

database “Commissariat à l’Energie Atomique” from different regions around the world covering 

the period 1984 to 1989 (Al-Hajjar and Blanpain, 1997). The main event and the aftershocks were 

classified into four classes 5.5  M1 < 6.5, 4.5  M2 < 5.5, 3.5  M3 < 4.5 and 3.5 < 4. The scope of 

the study was to estimate the time duration T of the aftershock activity. For mainshocks of category 

M1 the evaluated time duration was T = 130 days and for mainshocks of class M2 the time duration 

was found to be T = 58 days. 

A discrete semi-Markov model was applied on major seismic zones of the circum-Pacific belt for 

examining the recurrence of large earthquakes M ≥ 7.8 (Patwardha et al., 1980). Historical 

seismicity data were taken into consideration and the results presented reasonable agreement 

between the calculated and actual waiting times as well as the calculated and actual earthquake 

magnitudes. Semi-Markov models were also developed (Sadeghian et al., 2008) to forecast the three 

parameters (time, location and magnitude) of the next earthquake occurrences with M ≥ 6.0 in Iran. 

The study area was divided into zones (states of the model) and after declustering 3179 earthquakes 

between 1973 and 2007 were used and classified into 5 categories with magnitudes ranging from M 

 3.6 to 6.3 < M. The corresponding probability matrices were evaluated and 42% of the last 179 

earthquakes belonging in the magnitude classes M1  3.6, 3.6 < M2  4.8 and 4.8 < M3  5.4 were 

correctly forecasted. 

The forecasting ability of the semi-Markov model was also tested (Sadeghian, 2012) in the Tehran 

province area using as data earthquakes of all magnitudes classified into three categories 

  5 and 554 ,54 ..  from 1966 to 2004. Considering transitions from region-to-region 

(the study area was divided into 6 regions) and magnitude-to-magnitude the obtained results 

demonstrate that 56% of the earthquakes that occurred from 2004 and on have been correctly 

forecasted in all the three dimensions, 19% have been forecasted only as for their location and 19% 

have been forecasted as for the magnitude and location. 

A continuous-time semi-Markov model has been applied to a dataset of earthquakes with M ≥ 5.5 

that occurred from 1953 to 2007 in the region of the Northern Aegean Sea, which accommodates 

high seismic activity (Votsi et al., 2012). Earthquake occurrence rates were evaluated and it was 

found that the probability of an earthquake occurrence for a given state j (the states refer to the 

magnitude) increases as time elapses. A new classification of states combining both magnitude and 

fault orientation was also proposed, dividing the study area into smaller subareas on the basis of 

faulting similarity. The hitting time of an earthquake occurrence with M ≥ 5.6 into each one of the 

subareas was calculated and indicated that all the subregions presented a similar behaviour with 

regard to the particular estimated quantity. 
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2. Data and area under study 

The study area includes Kefalonia and Lefkada islands, and is characterized by frequent occurrence 

of strong (M ≥ 6.0) earthquakes. The Kefalonia transform fault system runs along the western coasts 

of these Islands and connects continental collision to the north with subduction to the south. A belt 

of thrust faulting, with a NE-SW direction of the axis of maximum compression, runs along the 

eastern coastline of Adriatic Sea, and terminates just north of the Lefkada Island. The subduction of 

the eastern Mediterranean oceanic floor beneath the Aegean microplate, which starts south of 

Kefalonia Island, forms the Hellenic Arc (Papazachos and Comninakis, 1971), which is the most 

prominent tectonic feature of the Aegean region. The dextral strike-slip character of the Kefalonia 

transform fault was first evidenced by Scordilis et al. (1985) and it is recognized as a major 

discontinuity between the Apulian platform and the West Hellenic arc with special emphasis to its 

prolongation towards the Ionian Abyssal Plain (Kokinou et al., 2006). The central Ionian Islands 

area constitutes the most active zone of shallow seismicity in the broader Aegean region. It is a key 

area for long-term study of the earthquake process since it has both a high level of seismic activity 

along an active boundary and a record of earthquakes extending back at least to 1850 for events at 

M 6 minimum magnitude of completeness (Papadimitriou, 2002). 

For this research we use a complete catalogue of earthquakes from 1911 to 2014 with M ≥ 5.2. A 

semi-Markov model, with time unit of one month, will be applied. In the case when more than one 

earthquake exists in the same time unit, only the one with the higher magnitude is considered. The 

total number of events is 80 and the data are classified into two categories, i.e., state 1: 5.2  M < 

6.0 and state 2: M ≥ 6.0. 

 
Figure 1 - The main geodynamic features of the broader Aegean region shown on a relief ma

p. The active boundaries are shown as solid lines. The arrows indicate the approximate direc

tion of relative plate motion. NAT: North Aegean Trough, CTF: Cephalonia Transform Faul

t. The rectangle indicates the study area.  
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The above classification allows more data to be included in each category, which is important from 

a statistical point of view. It is also based on how destructive an earthquake could be, since 

magnitudes larger than 6.0 can cause severe damage in the study area. 

3. Semi-Markov framework 

Let us consider a random system with finite state space }1{ d,...,E  . We suppose that the evolution 

of the system in time is described by the following chains (Barbu and Limnios, 2008): 

The embedded Markov chain  
NnnJJ   with state space E, where nJ  is the system’s state at the 

nth jump time (nth earthquake occurrence). 

The chain  
NnnSS   with state space ℕ, where nS  denotes the nth jump time. We suppose that 

00 S and ...SS...SS nn  1210  

The chain  
NnnXX  , where 1 nnn SS:X  for all nℕ∗and 00 :X . Thus, nX  represents 

the sojourn time in state 1nJ  before the nth jump (it is the time between successive earthquakes). 

We also denote by  
Ej,iijpP


  the transition matrix of J , defined by 

:pij  ℙ  nEjiiJ|jJ nn   , ,  ),( 1 . 

and let )(ijf be the common probability function of ,1nX n ℕ,  conditioned on nJ  and :1nJ  

:)k(fij  ℙ ),jJ,iJ|kX( nnn   11 k  ℕ. 

The chain  
NkkZZ   is considered to be a semi-Markov chain associated with the couple (J, S) 

if ,J:Z kNk )( k ℕ, where  n:)k(N  max{ ℕ }kS| n  is the discrete-time counting process of 

the number of jumps in [1, k]. 

Starting from a semi-Markov sample path we define for any states i, j and any positive integer k, 

:1 Mk   

 :)(MNi  the number of visits to state i of the Embedded Markov Chain (EMC), up to time 

M ;  

 :)(MNij  the number of transitions of the EMC from i to j, up to time M ; 

The “approached maximum-likelihood estimator” of the (i, j) element of the transition matrix P is 

).( / )()( MNMNMp iijij 


 Since )(kfij  is the sojourn time distribution function, the complement

ary cumulative sojourn time distribution is defined as (Howard, 1971) 

.  ... 2, 1, ,0  ,)()(

1

 




 kmfkf

km

ijij  

Now let )( u|zeij   be the probability that a process which enters state i at time zero and at transitio

n zero will enter state j at time u on its z-th transition. It is (Howard, 1971), 

... 2, ,1 ,0 ,  , ..., 2, ,1 , ,  0},)0( , ,11) U(,){U()( 0  uzNjitiJ|jJzuzuPu|ze nij  

where )U(u  denotes the number of transitions until time u and )0(t the starting time. 

This probability is called entrance probability and it is given by the following recursion  

)1()()()()(

1 1

mu|zemfpzuu|ze rj

N

r

u

m

iririjij  
 

  

where 










ji

ji
ij

 if 0

 if 1
  and 



 


elsewhere 0

0 if 1
)(

z
z  
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and ).()(0 uu|e ijij  The quantity of interest in this paper is the destination probability denoted by 

)( u|zijq  and defined to be the probability that a process which was in state i at time 0 at transition 

0 is observed to be in state j at time u after z transitions by that time, and will make its next transition 

to state q. The following recursion demonstrates that the destination probability )(  |ijq  is the convo

lution of the entrance probability )(  |eij  and the complementary cumulative sojourn time distributio

n )( muf jq   multiplied by the transition probability jqp  (Howard, 1971) that is 

2,... 1,  ,  ,2,... ,1 , ,  ),()()(

1




 uzNqjimufpm|zeu|z

u

m

jqjqijijq  

4. Semi-Markov model with geometric sojourn times 

It will be now assumed that the sojourn times of the model follow geometric distributions of the 

form 

ij
k

ijij aakf 1)1()(  ,    3,...} 2, {1,k where 10  ija  is the success probability. 

The transition probability matrix estimated by our data, described in section 2, is 

. 
0.3158     0.6842 

0.2295     0.7705 








P  

The sojourn time values evaluated from the data can be observed in Table 1. 

The maximum likelihood estimation for the parameter of the geometric distribution is nij X/â 1  

where nX  represents the mean value of the sojourn times.  Hence, 

,05610) 056101()( 1
11 ..kf k    ,06170) 061701()( 1

12 ..kf k  

0.1057, ) 0.1057 1()( 1
21

 kkf  0.1724. ) 0.1724 1()( 1
22

 kkf  

The matrix of the complementary cumulative geometric sojourn time distributions is 

 equation by thegiven  are elements ,  the where,
)172401(  )105701(

)061701(  )056101(
)( ji

..

..
kF

kk

kk




















 

. )1()1()(

1

1)-( k
ij

km

ij
m

ijij aaakf  





 

Table 1 - Sojourn times evaluated from the data (in months). 

Transition from state

  

i to state j   (i,j) 

 

Sojourn times nΧ  

 

(1,1) 

1, 5, 24, 42, 5, 19, 39, 10, 57, 12, 60, 26, 3, 2, 13, 22, 22, 8, 3, 1, 

3, 43, 2, 9, 8, 5, 37, 13, 13, 13, 51, 13, 1, 27, 18, 15, 4, 11, 29, 25, 

10, 14, 51, 31, 6, 3, 9 

(1,2) 8, 2, 3, 18, 17, 17, 1, 25, 9, 17, 19, 1, 8, 82 

(2,1) 2, 4, 6, 4, 12, 1, 1, 1, 63, 1, 1, 2, 25 

(2,2) 2, 21, 2, 3, 1 

Before proceeding in the evaluations we will test whether the sojourn times (Table 1) follow the 

aforementioned geometric distributions. For this purpose the Mann-Whitney (Mann and Whitney, 
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1947) and Anderson-Darling (Anderson and Darling, 1952) goodness of fit tests will be 

implemented (Dodge, 2008). The null hypothesis is rejected 0(H
: the data come from a certain 

distribution), at the significance level α if the evaluated p-value is smaller than α (for this application 

α=0.05). Applying the Mann-Whitney test via the SPSS package and the Anderson -Darling test via 

the R package “ADGofTest” (Bellosta, 2011) we derive the following results. 

Table 2 - Testing whether the sojourn times come from the geometric distribution. 

Sojourn times  nΧ    

states (1,1) (1,2) (2,1) (2,2) 

Mann-Whitney U 2.5 0 2.000 1.000 

p-value 0.767 0.221 0.245 1.000 

Anderson-Darling AD 0.9595 0.5329  1.5123 0.8147 

p-value 0.3788 0.7105 0.1738 0.4634 

Observing Table 2 we realize that for all the cases the p-values are found to be greater than .050.

 Hence, there is not much evidence to reject the null hypothesis. 

It will be now considered that we start to observe the process on 24-05-1911 (M=5.3, i=1). We know 

that the next earthquake occurred on 24-01-1912 (M=6.8, j=2) and the time elapsed between these 

events is 8u  while there was only one transition ).1( z  We seek the probability that the next 

earthquake will be of state 1q  or .q 2 The corresponding destination probabilities are 

0.0422 )8(1121 |  and 0.0154 )8(1122 | .Therefore, the probability that the next earthquake will be 

of state 1 is 2.74 times higher than the probability of an earthquake occurrence of state 2. Observing o

ur data, we realize that the next earthquake was of state 1 which was the most probable to occur. 

Let us consider that we start to observe the process again on 24-05-1911. The second transition 

)2( z is on 05-03-1912 when j=1 and the elapsed time is u=10 months. We seek the probability tha

t the next earthquake will be of state 1 or state 2. The corresponding quantities are 0.06 )10(2111 |

 0.0175 )10(2112 |  which means that the probability that the next earthquake will be of state 1 is 3

.42 times higher than the probability that the next earthquake will be of state 2. Observing the data we

 rea- lize that the next earthquake is of state 1 which was the most probable to occur. 

Ιn the same way 0.00978 )16(4111 |  and 0.00287 )16(4112 |  which means that if the starting ti

me is on 24-05-1911 when i=1 and we observe the process on 28-09-1912 when j=1, the time elapsed

 between i and j is u=16 months while the process has made 16 transitions, then the probability that th

e next earthquake will be of state 1 is 3.4 times higher compared to the probability that the next earth

quake will be of state 2, which describes adequately the succession of the data. 

As an example we will now present a different use of the destination probabilities. Let us assume t

hat we start to observe the chain on 10-04-1962 when an earthquake of M=6.3 occurred (i=2). We 

would like to evaluate the destination probabilities for the next two earthquakes considering that w

e do not know neither their magnitude nor their occurrence time. 

The above figure 2 demonstrates e.g. for u=3, that in the next 3 months it is more probable that an 

earthquake of state 1 will occur (green color) and will be also followed by an earthquake of state 1.

 For the next three months there exists also a higher probability (dark blue color) that an earthquak

e of state 2 will occur and will be followed by one of state 1 (this correspond to the observed data).

 The destination probabilities )(1212 u| and )(1222 u| illustrated by orange and light blue color res

pectively, are much smaller. 
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Figure 2 - Destination probabilities green: ),(1211 u| dark blue: ),(1221 u|  orange:

),(1212 u| light blue: )(1222 u| . 

Now let 19-07-1961 be the starting time. The event of 19-07-1961 (M=5.3, i=1) was followed by the 

events of 10-04-1962 (M=6.3) and 06-07-1962 (M=6.1). We will evaluate the probability )|(1122 u

aiming to reveal in how many months after the 7-1961 an earthquake of state 2 is anticipated for the f

irst time. Figure 3 illustrates the probability of an earthquake of state 1 to be followed by two successi

ve earthquakes of state 2. The probability is very small, however, if this is the case then the first earth

quake of state 2 (10-04-1962) is more probable to occur after 9 months (the curve of the graph has a 

maximum in 9 months) starting from 07-1961, and this fact corresponds to the data. 

 

Figure 3 - Destination probabilities )(1122 u| . 

Since, the time of an earthquake occurrence is of great importance for the seismic hazard assessment, 

the above case will be tested for another event too. The earthquake of 09-12-2002 (M=5.5, i=1) was f

ollowed by the events of 14-08-2003 (M=6.2, j=2) and 19-09-2005 (M=5.2, q=1). Assuming that the 

starting point is on 09-12-2002 we will evaluate the probability )|(1121 u aiming to reveal in how m

any months after the 12-2002, the event of state 2 is the most probable to occur. 

According to the results illustrated in figure 4 the destination probability is very small. Nevertheless, i

f this is the case then the event of state 2 is anticipated to occur more probably 10 months after the sta

rting point. Indeed the time between the earthquakes of 09-12-2002 and 14-08-2003 is 8 months. 

The aforementioned ability of the geometrically distributed model to forecast an earthquake occurrence 

time was tested for all the events of our dataset. More precisely, we assume that an event of state i will 

be followed by another one of state j after u months (while the chain is considered to make its first 
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transition, 1z  in j) and the earthquake of state j will be followed by another one of state q. The aim 

is to reveal the time u that the event of state j is anticipated to occur. 

 

Figure 4 - Destination probabilities )(1121 u| . 

Table 3 - Estimation of the time u (in months) that the earthquake of state j will succeed the 

earthquake of state i. 

)|(1 uijq  i j q u p 

)|(1121 u  1 2 1 3-25 p>0.03 

)|(1211 u  2 1 1 4-25 p>0.18 

)|(1111 u  1 1 1 4-40 p>0.14 

)|(1112 u  1 1 2 5-37 p>0.04 

)|(1122 u  1 2 2 3-20 p>0.01 

)|(1221 u  2 2 1 2-17 p>0.06 

)|(1212 u  2 1 2 4-25 p>0.05 

)|(1222 u  2 2 2 2-10 p>0.03 

For example the destination probabilities )|(1121 u  in the second row of Table 3 demonstrate that 

there is a higher probability that the earthquake of state 1 will be followed by one of state 2 in the 

next 3-25 (p>0.03) months under the assumption that the event of state 2 will be succeeded by 

another one of state 1. The corresponding graphs are as follows. 

The estimated time windows for the variable u, presented in Table 3 include 51 out of 80 real 

earthquake occurrence times (from our data) i.e., 63.75% of the total number of events. It is worth 

to be mentioned that when 2j the aforementioned time windows contain 10 out of 14 earthquake 

occurrence times i.e., 71.42%. 

5. Semi-Markov model with Pareto distributed sojourn times 

The Pareto distribution is a heavy tailed distribution, in the sense that the variables can take higher 

values with considerable probabilities, compared to other distribution functions. It is used to describe 

continuous data. In our case the sojourn times are considered to be discrete (time unit, one month). 

However, observing Table 1 it can be seen that the sojourn times of our application can take large 

values. This motivated us to use the Pareto distribution as an approximation. The probability density 

function (pdf) is .abbk
k

ab
kf

a

a

0  ,0  ,  ,)(
1




  



1407 

 

 

 

 

 

The maximum likelihood estimation of the parameters is (Malik, 1970) 

.
b̂k

n
ânikb̂

i i
ii

 


)ln)(ln(
 and )1,2,...,(   ),(min  

We obtain .b̂ji.â.â.â.â ij 1  , , allfor  and 9040 ,8230 ,4650 ,4180 22211211  Hence, 
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,
0.418 

)(
10.418 11 


k

kf    ,
4650

)(
1465012 


.k

.
kf  

,
8230

)(
1823021 


.k

.
kf  .

9040
)(

1904022 


.k

.
kf  

The complementary cumulative sojourn time distribution is of the form 

)1 ,(1)()(

1

kabmfkf a

km

 




   

where ζ represents the Hurwitz Zeta function, defined as (Miller and  Adamchik, 1998)  

.
rn

rs

n
s



 


0 )(

1
) ,(   

Thereby, 

 













)1 (1.904,0.904   )1 (1.823,8230

)1 (1.465,0.465   )1 (1.418,0.418
)(

kk.

kk
kF




. 

Before proceeding in the evaluation part we will test if the sojourn times of Table 1 can follow the 

estimated Pareto distributions. For this purpose the Mann-Whitney test will be implemented via the

 SPSS statistical package (The Anderson-Darling test cannot be applied for the Pareto distribution 

since for the estimated parameters ijb̂ the logarithm of the test cannot be defined). 

Table 4 - Testing whether the sojourn times come from the Pareto distribution. 

Sojourn times  nΧ    

states (1,1) (1,2) (2,1) (2,2) 

Mann-Whitney U 1 0 3 0 

p-value 0.248 0.221 0.439 0.221 

Observing Table 4 we realize that for all the cases the p-values are greater than ,050. the signif

i-cance level. Thus, there is not much evidence to reject the null hypothesis. 

We consider now that the time we start to observe the process is on 24-05-1911 (M=5.3, i=1) and it is 

known that the next earthquake occurred on 24-01-1912 (M=6.8, j=2). The elapsed time is 8u  

months and there was only one transition ).1( z  We seek the probability that the next earthquake will 

be of state 1q  or .q 2  The corresponding evaluated quantities are 0.039  )8(1121 |  and

0.0161  )8(1122 | . This means that the probability that the next earthquake will be of state 1 is 2.41 

times higher than the probability of an earthquake occurrence of state 2. Observing our data we realize 

that the next event was of state 1 which was the most probable to occur. 

Let the starting time be again on 24-05-1911. We suppose now that we observe the process on 05-

03-1912 when j=1 and the time between these events is u=10 months. The number of transitions 

that the process has made until state j is .z 2  We are interested in the probability that the next 

earthquake will be of state 1 or state 2. The corresponding quantities are 0.247  )10(2111 |  and

0.068  )10(2112 | . Hence, the probability that the next earthquake will be of state 1 is 3.58 times 

higher than the probability of an earthquake occurrence of state 2. Observing our data, the next 

earthquake on 19-04-1912 is indeed of state 1 (M=5.5), which was the most probable to occur. 
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Ιn the same way 0.263  )16(4111 |  and 0.0732  )16(4112 |  which means that if the starting time 

is on 24-05-1911 when i=1 and we observe the process on 28-09-1912 when j=1, the time between i 

and j is u=16 months and the process has made 16 transitions, then the probability that the next 

earthquake will be of state 1 is 3.59 times higher compared to the probability that the next earthquake 

will be of state 2. Observing our data, we realize that indeed the next earthquake was of state 1. 

It will be now assumed that we start to observe the chain on 02-01-1940 while being in state i=1 

(M=5.2). We would like to evaluate the destination probabilities for the next two earthquakes, i.e., 

),(1112 u| ),(1111 u| )(1121 u| and ).(1122 u|  

The probabilities )(1111 u| in Figure 5 are higher than all the other which means that it is more 

probable the next earthquake to be of state 1 at every time u and also the following event to be again 

of state 1. This result corresponds to our data since the occurrences of 14-02-1943 and 22-05-1943 

were both of state 1. Figure 6 demonstrates the evaluation of the above probabilities under the 

assumption that the sojourn times follow geometric distributions. 

 

Figure 5 - Destination probabilities for the Pareto distributed sojourn times green:

),(1111 u| dark blue: ),(1112 u| orange: ),(1121 u| light blue: )(1122 u| . 

 

Figure 6 - Destination probabilities for the geometric sojourn times green: ),(1111 u| dark 

blue: ),(1112 u| orange: ),(1121 u| light blue: )(1122 u| . 

The probabilities )(1111 u| are again higher compared to all the other. The advantage of the 

geometric distribution is that there is a maximum in the curve of the )(1111 u| showing that if the 

earthquake on 02-01-1940 is followed by another one of state 1 (14-02-1943) then this is more 

probable to occur in almost 20 months. Observing our data, we realize that the time u is adequately 

approximated. The shape of the destination probability curves in figure 5 is not that helpful in the 

sense that they do not provide a maximum. In Figure 4 we find out that the curve of the destination 
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probabilities )|(1121 u when the sojourn times are geometrically distributed, gives insight 

concerning the time in months that the earthquake of state 2 is anticipated, given that it will be 

followed by another one of state 1. The corresponding probabilities for the Pareto distributed sojourn 

times are illustrated in Figure 7. 

 

Figure 7 - Destination probabilities )(1121 u| , Pareto distributed sojourn times. 

Comparing Figures 4 and 7 we realize that the destination probabilities from the Pareto distribution 

are higher than these of the geometric but again they do not provide useful results as for the time (in 

months) that the next earthquake is more probable to occur. 

6. Conclusions 

A semi-Markov model with sojourn times that follow either geometric or Pareto distributions is 

applied to a dataset of earthquakes with 25.  that occurred (1911-2014) in the central Ionian 

Islands. The evaluated destination probabilities were found to forecast adequately the magnitude 

class of an anticipated earthquake, taking higher values. The model with geometric distributed 

sojourn times gives insight to the real occurrence time of an earthquake since the estimated time 

windows with the higher probabilities include the real occurrence time for 63.75% out of all cases 

and provide 71.42% successful forecasting when the anticipated event is of ..06  
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