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Abstract 

We present a detailed study of various shear wave velocity, VS, profiles at TST site of 

Euroseistest test-site. We benefit from the availability of 62 VS models derived from 

seismic interferometry, stress–strain analysis and annealing simulation based on 

earthquake data, conventional seismic prospecting (surface wave inversion, crosshole 

and downhole tests), and seismic noise array measurements, that when grouped in 

five lead to corresponding averaged VS profiles. The estimate of VS models differs 

depending on the technique used. The observed disparity with respect to the average 

reference model, albeit small, becomes significant at certain depths and is associated 

with the existence of strong vertical discontinuities, introducing an uncertainty on the 

interface definition between the main formations. Results from site amplification 

study, based on these profiles, show an analogous uncertainty leading to a certain 

underestimation with respect to the reference model, which should be treated with 

caution when engineering applications are involved. 

Keywords: interferometry, stress-strain, seismic noise, prospecting. 

Περίληψη 

Παρουσιάζουμε μια λεπτομερή μελέτη πολλών VS προσομοιωμάτων στη θέση TST του 

πειραματικού πεδίου Euroseistest. Επωφελούμαστε από 62 διαθέσιμα προσομοιώματα 

που προέκυψαν στην ίδια θέση από μετρήσεις και μεθόδους όπως σεισμική 

συμβολομετρία, ανάλυση τάσεων-παραμορφώσεων και προσομοίωσης ανόπτησης σε 

σεισμικές καταγραφές, συμβατικές σεισμικές διασκοπήσεις (αντιστροφή επιφανειακών 

κυμάτων, crosshole and downhole), και σεισμικό θόρυβο σε δίκτυα. Όλα τα 

προσομοιώματα ομαδοποιήθηκαν σύμφωνα με τις τεχνικές ανάλυσης σε 5 μέσους 

όρους, Τα αποτελέσματα έδειξαν ότι διαφέρουν μεταξύ τους καθώς εξαρτώνται από τις 

υποθέσεις κάθε τεχνικής. Οι διαφοροποιήσεις τους σε σχέση με τον μέσο όρο τους, αν 

και μικρές, είναι σημαντικές στις κατακόρυφες ασυνέχειες που ορίζουν τους 

σχηματισμούς διαφορετικής δυστμησίας, εισάγοντας σχετική αβεβαιότητα. 

Αποτελέσματα της σεισμικής απόκρισης με βάση τα προσομοιώματα έδειξαν ανάλογη 

αβεβαιότητα με σημαντική υποεκτίμηση της ενίσχυσης, γεγονός που πρέπει να 

διαχειρίζεται με προσοχή στον αντισεισμικό σχεδιασμό των κατασκευών. 

Λέξεις κλειδιά: συμβολομετρία, τάσεις-παραμορφώσεις, σεισμικός θόρυβος, διασκοπήσεις. 
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1. Introduction 

Shear wave velocity (VS) is deemed the most important parameter in earthquake engineering and 

engineering seismology studies. Its knowledge is useful for site effect estimations (e.g. Borcherdt, 

1970; Aki, 1988; Bard, 1994 and Chávez-García, 2011), seismic hazard assessment and Ground 

Motion Prediction Equations (e.g. Boore, 2004; Abrahamson et al., 2008 and Douglas et al., 2009), 

microzonation and other site specific studies in geotechnical engineering (i.e. liquefaction, soil-

foundation–structure interaction etc.). On the other hand, the exploration of Vs velocity is a rather 

non-straightforward task due to the nature of the demands of the anticipated study and its non-unique 

evaluation from different techniques (for details see also Raptakis, 2012, 2013 and Raptakis and 

Makra, 2015). Then, in such cases of different VS estimates available at a site, it is necessary to 

understand the differences and not simply compute an average. 

Currently, a set of non-invasive and invasive techniques were applied, in order to get at one site, 

TST, at the center of a rather shallow basin known as Mygdonian basin or EUROSEISTEST site 

(Jongmans et al., 1998; Raptakis et al., 2000, 2005; Manakou et al., 2010; Chávez-García et al., 

2014; Hannemann et al., 2014), the VS profile intended to satisfy different kinds of studies, with 

special emphasis, though, to site response evaluation. For the purpose of this study, 62 estimated VS 

profiles are analysed, their differences are reviewed, and averaged profiles are compared to each 

other. The result is a combined model of sediments VS until intact bedrock (VS ~ 3200 m/s) at depth 

of several hundreds of meters, used as a reference one. Hereafter, the averaged Vs profiles are used 

to evaluate their site response characteristics in a framework of preliminary study. 

2. VS profiles at TST site 

The site under study is situated in the centre of EUROSEISTEST (Mygdonian) basin. A huge 

amount of geotechnical and geophysical surveys has been deployed at this test site during the last 

22 years including seismic prospecting methods, microtremor measurements, and in-situ and 

laboratory geotechnical tests. The final outcome of this effort was initially a 2D soil model (Raptakis 

et al., 2000 and Raptakis et al., 2005) and recently a 3D structure (Manakou et al., 2010). Especially, 

at TST where a deep 3-component accelerometers down-hole array has been installed, all 

measurements and analyses are gathered in an effort to build the most precise and accurate possible 

soil model. This vertical array (www.dbseis.civil.auth.gr, Pitilakis et al., 2013) consists of 6 

accelerometers; at surface, 18.7, 40, 73.1, 136 and 196 m depths; the last located at sediments-

bedrock interface with common trigger, absolute time as well as orientation control of the horizontal 

components. The analyses of DH earthquake recordings result to shear wave velocity profiles of the 

sedimentary formations and are presented herein together with VS profiles from conventional 

seismic prospecting and array noise measurements. 

Seismic interferometry technique (CC). Recordings from 8 earthquakes at the vertical 

accelerometric array were used to determine VS velocity of soil layers (figure 1a) using seismic 

interferometry of ground motion (Raptakis and Makra, 2015). Raw data have been corrected for 

instrument response and baseline offset. The horizontal components of the recordings, of casual but 

known orientation, are rotated to derive the radial and transverse components of motion with respect 

to the basin shape. Both horizontal components of motion at each station are cross-correlated using 

the deepest station, at 196 m, as reference. The results, phase velocity derived from the pronounced 

very onset first S-wave arrival, are quite stable with small standard deviation (less than 8%) despite 

that data used come from earthquakes with different azimuths, epicentral distances and focal depths, 

parameters that may affect the vertical near surface propagation of body waves. The small scatter is 

related with the use of a single point-phase of the signals. The similarity of VS velocities between 

horizontal components does not suggest any significant anisotropy effect, thus an average of both 

components can be considered representative at the site, for this method. 

Stress–strain (τ–γ) analysis (SS). Six earthquake recordings at the vertical array used to define 
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the stiffness of sediments in an alternative way with stress–strain (τ–γ) analysis (Zeghal et al., 

1995; Elgamal et al., 2005). This is based on the first-order linear interpolation between 

accelerations at all available depths to estimate stresses and on the second-order interpolation 

between displacements to evaluate strains for the same depths. Then, the estimated shear stress and 

strain seismic histories are related with the soil shear stiffness (secant modulus) at each level and 

thus the VS velocity in cases of low peak ground acceleration recordings. Figure 2b shows the VS 

velocity distribution with depth for both horizontal components together with their mean value and 

± 1 std. In both components, VS values are very similar and quite stable for all soil formations with 

a small exception for the layers between 55.5 m and 104.5 m depths, with less than about 12% 

average standard deviation. At greater depths the scatter is quite large (20–35%) since it is related 

with the fact that stations are positioned at large intervals (of about 60 m). This does not allow 

computing coherent stress and strain histories, since a) up- and down-going body waves superposed 

with laterally propagated surface waves from “basin edge” diffractions (Raptakis et al., 2000; 

Chávez-García et al., 2000) and b) contamination of inverted P- and S-phases at the intermediate 

interfaces, biasing both the amplitude and frequency content of the first complete period of S-wave 

with direct consequence on the shape of stress-strain ellipses. Finally, mean VS models from both 

horizontal components are almost identical, suggesting a rather reliable estimation of an overall 

mean VS profile (Figure 2b), which is very similar to that of seismic interferometry. 

Adaptive Simulated Annealing Algorithm (ASA). Another way to analyse data from the vertical 

array at TST is to use algorithms based on simulated annealing (SA) such as general Monte Carlo 

approximation methods that allow optimizing problems when a desired global minimum is hidden 

among many local minima (see details in Chávez-García and Raptakis, 2008). Velocities VP and 

especially VS (at the topmost layers and for frequencies smaller than 5 Hz, in this case) are used in 

the inversion scheme and they are fixed when synthetic and empirical spectral ratios of 8 earthquakes 

match. Their good agreement for the radial and transverse components, leads to the VS profile of 

figure 2c. Observed disparities with the previous models, in both velocities and depths, are due to 

the fact that the thickness of soil layers taken into account in ASA method were a priori determined 

from the 2D soil model of Raptakis et al. (2000). 

 

(a)                                           (b)                                       (c) 

Figure 1 - Vs profiles from a) interferometry on radial (red lines) and transverse (blue lines) 

components with their mean value CC_R or CC_T (black lines) and their mean value ± 1 std 

(dashed lines) and overall mean Vs  ± 1 std profile (CC), b) same for stress-strain analysis 

(SS) and c) ASA. 
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Conventional seismic prospecting techniques (CONV). During the last 20 years, many different 

groups of reversed seismic profiles for seismic prospecting were deployed for short S-wave 

refraction tests including Love wave inversion analysis, and intermediate and long P-wave refraction 

tests for Rayleigh wave inversion. This sample of data presents a variety of VS profiles. All these 

surface measurements together with cross-hole (CH) and down-hole (DH) tests are performed in a 

limited area (of about 0.25 km2) around TST site and their analysis led to a total of 26 VS profiles 

(Figure 2). Details could be found in Raptakis and Makra (2015). Field measurements of different 

lengths, geophone spacings and offsets are performed in order to achieve good resolution VS profiles 

at depths from top to 10-50 m (Figure 2a), and to 140–190 m; i.e. from top to bedrock (Figure 2b). 

Having in hand all these results, an average 200 m VS model is built up taking into account the 

ability of each analyse to provide detailed layering with regard to their accurate penetration depth. 

In this manner, average VS model down to 16 m in depth is based on the results of shorter models 

(SA and SB), following with that of SC group for depths 50 m. For greater depths, the average Vs 

profile of deeper models is adopted to complete the overall average VS model. This combined model 

(Figure 2c) shows a successive increase of VS values with depth, from about 100 m/s to 1200 m/s, 

and considerable vertical VS changes at 2, 4, 10, 20, 40, 60, 140 and 180 m depths with a 

corresponding increase of the order of 40, 17, 24, 31, 25, 27, 15, and 26%. At all depths the std is 

less than 15% except specific horizons at 15-20 m, 50-60 m, 120-140 m, and 155-190 m depth of 

higher scatter (18-28%). Meanwhile, the problem to inspect depth and velocity of bedrock remains 

open. 

 

(a) (b) (c) 

Figure 2 - a) Near surface VS profiles (14 in total) grouped in 3 sets according to their 

maximum penetration depth. b) VS profiles (12 in total) from SWI and (c) Composite VS 

profile – CONV (mean values & mean ± 1std). 

Ambient noise array measurements (AMN). In addition to the above, array microtremor 

measurements (ANM) were obtained with various scaling of circular arrays in different seasons of 

the year (Kudo et al., 2002; Apostolidis, 2002) and analysed with Spatial Auto-Correlation 

coefficient (SPAC) technique (Aki, 1957; Okada, 1998). During the period of measurements, 4 

different data sets were acquired. Ambient noise recordings of two sets from different circular arrays 

- a small of 4 broadband instruments and a large of 7 ones - are analysed to obtain experimental 

dispersion curves and two different codes to invert them into the corresponding VS profiles (Figure 

3). The obtained Vs profiles, except one, arise down to 1575 m depth, where the Vs of 3200 m/s, 

that of the intact bedrock, was found. Five new analyses were added to two old published in 

Apostolidis (2002) and Kudo et al. (2002). All these VS models together show significant stability 

in their resolution depths until 165 m, with an average disparity less than 10%, except for the top 10 

m and between 110 and 120 m where the observed disparity is slightly larger than 20%. Scatter of 

similar order is also observed at all depths for the rest of the profile until bedrock with an exception 
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close to 185 m (± 20 m) depth, where it gets the maximum value (~ 50%). At this depth a large 

impendence contrast between sediments and weathered bedrock is present and the observed scatter 

could be related with a possible inclination of the sediments–bedrock interface (Manakou et al., 

2010). An average VS profile (Figure 3) is finally adopted, having in mind that the large array 

configuration does not allow a detail VS distribution at the very surficial layers (< 10–20 m). VS 

variations with depth are larger than 20% at 10, 30, 165, 190, and 1575 m. 

 

                        (a)                  (b) 

Figure 3 - VS profiles (7 in total) from SPAC method, together with their mean ± 1 std, a) top 

to 200 m for sediments, b) from the top to 1600 m depth. 

3. Comparisons between VS profiles and associated uncertainties 

In this section, we compare mean VS profiles provided from a total of 62 different VS profiles 

gathered in five (5) groups (Figure 4). This comparison gives the opportunity to evaluate the 

differences between VS exploration methods. On the other hand, this comparison reveals the 

different sources of scatter discussed previously. These differences cannot be accounted for as a 

measure of goodness of one technique relative to the others, but rather as an index of the difference 

in the principals and assumptions of each method to explore the earth structure; for example the 

efficiency of methods to detect spatial in-homogeneity of soils (layering stiffness gradient, 

inclination, and degree of heterogeneity). 

The mean CC and SS models, which are based on the analysis of earthquake recordings, have a 

limitation regarding their efficiency to discern layers of different shear wave velocities with 

thickness smaller than those fixed at inter-station distances. This fact maybe has its impact on their 

reliability. Additionally, ASA profile is built based on primary estimations of the sublayers thickness 

at the site. Moreover, regarding conventional techniques, the inefficiency of the active source 

capacity to penetrate deep soil horizons in combination with the degree of the soil heterogeneity 

arises. Layering resolution of the surficial layers of the investigated profiles is related to the 

consistency of detected wavelengths with measurement configuration (total length, inter-stations 

and offset distances, source power, etc.). Finally, techniques based on the ambient noise recordings 

at wide spread arrays (SPAC, ReMi, f-k) fail to explore with high discreteness top soil layers due to 

inconsistency between small layer thickness and large detected wavelength. Another issue that 
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results from the application of the above techniques refers to the observed instability of the interface 

horizons, which is expressed with a significant scatter (> 20%) with respect to the averaged VS 

values (Figure 4b). This scatter mostly appears at deep vertical discontinuities (> 100 m), where 

very stiff formations with large impedance contrast do not allow the penetration of sufficient amount 

of source energy; frequently the latter is trapped within overlying layers. 

In general, it has been indicated that techniques, which are based on a single phase of the recording 

e.g. the very onset S-wave, provide models without significant scatter (interferometry analysis and 

SH-refraction, DH and CH tests). The scatter in both VS velocities and interface depths becomes 

significant, at least at large depths, when more sophisticated techniques were applied that make use 

time-windows of the recordings, for example an S-wave complete period (τ–γ ellipses), surface 

waves (dispersion curves) and transfer functions (ASA). Then, in cases where several techniques 

can be applied, the user has to select taking into account data in hand, specific aims of the study, and 

advantages and disadvantages of exploration tools between simplicity and robustness of the models 

and more sophisticated ones in which layer thickness is a free formed parameter. 

 

(a)    (b)    (c) 

Figure 4 - a) Reference VS profile at TST (black line) together with the mean VS profiles of 

each method, b) Standard deviation (%) of mean VS profiles of each method, c) Disparity 

(%) of mean VS profile of each method with respect to the reference one (right). 

To this end, a mean shear wave velocity profile with depth is proposed as reference (REF), in order 

to be used for the evaluation of the scatter. This reference profile includes all available information 

balanced in such way to take into consideration imperfections of the results. For example the overall 

mean VS velocities at the surface layer is of about 150 m/s, which is larger than the originally 

provided from the short, however more accurate with respect to the thickness of layers and 

wavelength relationship seismic profiles (VS ~ 95 m/s). In this case we decided to assign the lower 

value for layers within the first 10 m (groups SA and SB) because the higher velocity values are a 

result of low sensitivity methods. Another issue refers to the increase (of an order 10-20%) of the 

mean shear wave velocity at 10, 20, 40, 135, 165, 180, 190, and ~1575 m depths. However, no 

significant and unique VS contrast is observed, a fact that shows a very heterogeneous stratigraphy 

of soil mix formations that constrains quite well with the geotechnical description and the NSPT 

values as well as with VP velocities from long P-wave refraction seismic profiles (Raptakis et al., 

2000). 
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This reference profile presents an average quasi-constant scatter (10–20%), for all depths down 190 

m with respect to mean VS profile of each method (Figure 4c). An increase of scatter (> 15–20% 

max) is observed at depths close to intermediate interfaces that are associated with an identified 

increase of VS velocity at 10 and 20 m, 30 and 50 m, 60 and 80 m, and 165 and between 185 and 

195 m. Certainly, the fact that this scatter is higher around the interfaces, shows the relative 

uncertainty of their exact depth. On the other hand, these indications lead us to identify that the 

observed scatter has at least a remarkable physical or epistemic cause, related with alterations of 

geological formations. Both scatter and VS variation between models and layers, indicate the 

disparity between the techniques used to investigate the most important parameter in site response 

analyses. This overall disparity is 17% for CC, 12% for SS, 21% for ASA, 8% for CONV and 12% 

for ANM profile. Thus, a maximum of 20% disparity could be safely adopted as a realistic bound 

of the shear wave velocity (Stephenson et al., 2005). 

4. Preliminary site response analysis 

There is a variety of ways to compute site amplification for a given profile. Between them, two 

principal ways of computations exist; the traditional transfer function and that obtained with the 

Quarter WaveLength (QWL) approximation (see for details in Boore, 2003). Both of them provide 

amplification factors as a function of frequency. However, in this study, the QWL approach is 

applied because it is found to concentrate, compared to the others, the following advantages: i) its 

outcome has simple shape against the resonant amplification peaks and troughs shaped transfer 

functions (Figure 5), ii) the quantitative comparison of many different Vs profiles is easier, and iii) 

its application yields good estimates of high frequency amplification without the constraint of 

knowing the deep profile, and iv) it is based on the total travel time of the propagated S-wave 

required by seismic codes and smoothed slowness instead of the measured Vs in the field. 

Using QWL technique introduced by Joyner et al. (1981), site amplification A(f) is computed 

according to the formula A(f) = [(ρBVS,B)( ρS,AVE(f)VS,ave(f))
-1]0.5, where ρB and VS,B the density 

and the shear wave velocity of the reference layer of the VS profile (e.g. seismic impedance changes 

or bedrock). Therefore, for the comparison of site amplification for two or more models the 

appropriate equation is Ac_model(f) / Aref_model(f) = [VS,AVE,c_model(f)
-1/VS,AVE,ref_model(f)

-1]0.5 (where 

Ac_model(f) and Aref_model(f) are the amplifications calculated for the model [c_model] assumed to be 

compared with that considered as reference one [ref_model]. In this case, densities of both models 

assumed to be the same. In general, the advantages of this technique are sufficiently described in 

Brown et al. (2002). 

 

Figure 5 - Transfer functions for reference VS profile with respect to the mean VS profile of 

each method used. 

Results regarding transfer functions depicted in Figure 5 show that the shape and especially the 

fundamental resonant frequency for all the models is different ranging between 0.6 and 0.8 Hz. All 

transfer functions calculated using reflectivity method (Kennett, 1983), in the linear-elastic region 
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free from any attenuation. However, whether soil attenuation is to be considered then its impact 

would be for frequencies greater than the fundamental one. Results make clear the difficulty of 

accepting one of them as the representative for the site. Thus, we proceed with the more suitable 

QWL technique using SITE_AMP software, developed by Boore (2003). Figure 6a shows the 

amplification as a function of frequency for all five mean Vs profiles and the reference one. All Vs 

models independently of their final depth were extended with the Vs velocities provided from the 

AMN model until a depth reaching intact rock. For simplicity reasons, similarly to traditional 

transfer functions, attenuation or κ factor is not taken into account in the computations, and mass 

densities were adopted to be the same for all profiles. We observe that CONV, ASA and REF models 

give a continuously increasing of the amplification factor (between 2.5 and 4.5) up to 10 Hz. While, 

the rest models (CC, SS, and AMN) for frequencies larger than 3 Hz, amplification is quasi constant 

of a factor of 3. These frequencies refer to the contribution of the very surface layers in the 

amplification. In general, comparing amplification factors derived from both techniques are 

compatible, since those of QWL technique are the mean of those for the transfer functions (Figure 

5), at all frequencies of interest. 

On the other hand, most VS results that come from different techniques are generally compared 

either in a qualitative way or with statistical single values (average, standard deviation, variance, 

etc.) for all depths. While these approaches form a common practice in Geotechnical Earthquake 

Engineering and Engineering Seismology, the interest is recently concentrated to the QWL 

approximation. Then, knowing the discrepancies between VS models with respect to the reference 

one (REF), we are interested to quantitatively evaluate their differences in terms of site response. 

To achieve this, the computed amplification of the reference profile is used as the basis relative to 

which we express the differences in amplification (Figure 6b). Therefore, CC and SS, and AMN 

curves for frequencies greater than the fundamental one (0.65 Hz), underestimates (25%, 22% and 

17% respectively) site amplification with respect to the adopted REF model. The smallest 

differences in the amplification with respect to the reference model are observed for ASA and 

CONV profiles (3 and 5% respectively). These differences in amplification is quite analogous with 

the differences in the VS values measured in the uppermost layers expressed by the VS30 parameter, 

namely 21% for CC, 30% for SS, 21% for ANM and 11% for ASA, 5% for CONV. This disparity 

in the amplification of the order 20-25 % is sufficient enough to be cautious against which model 

could be used to represent soil conditions at the site. 

 
 

Figure 6 - Amplifications for each averaged VS (left) and relative amplification between 

averaged models with respect to the reference one (right). 

5. Conclusions 

We have benefited from the availability of 62 VS profiles at TST site of Euroseistest site derived 

from earthquake records, conventional seismic prospecting, and seismic noise array measurements. 

Five groups of models provided from 9 different invasive and non-invasive methods lead to averaged 

VS profiles. The estimate of VS profiles that we obtain differs depending on the technique used. 
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However, we cannot discern which one is correct and which is not. We believe that all profiles 

represent reliable models on the base of the hypotheses and standards of each technique. 

The observed scatter of models for each group of measurements is an indication of the uncertainty 

of the estimate. In general, less scatter is observed at models resulted from the analysis of a single 

phase (S-wave arrival). In contrast, this scatter becomes significant when the analysis concerns more 

than one specific phase, such as complete periods of S-wave or surface waves propagated in different 

modes. However, the techniques based on the S-wave picking have disadvantages (average between 

fixed receivers or small penetration depth) with respect to those with which a thorough analysis of 

surface wave results to as deep as possible profiles with layering thickness acting as a free parameter. 

Moreover, the average of the mean models with their standard deviation is computed. The 

percentage of standard deviation with respect to the average model albeit is less than 20% (for 

techniques based on a single phase of S-wave), this becomes significant at certain depths and is 

associated with the existence of strong vertical discontinuities, thus introducing an uncertainty on 

the interface definition between the main formations. 

Site amplification for all VS profiles was computed with two different techniques; the reflectivity 

method and the Quarter WaveLength approximation. The different models leads to different transfer 

functions at least for the shape and the fundamental frequency, as it was to expect. However, no 

direct comparison between attributes of the amplification can be done. The use of QWL technique 

aims to investigate the disparity between models in terms of site amplification. Mean VS models 

derived from the various techniques/methods used underestimates site amplification with respect to 

the reference model by 20-25 %. This disparity is analogous to the differences in the VS30 parameter 

for the mean VS profile of each method with respect to the reference one. 
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