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Abstract 

The main objective of the present study was to develop a landslide susceptibility model 

by combining Fuzzy logic and Information Theory in order to estimate the spatial 

probability of landslide manifestation, in the mountains of central Tzoumerka, 

Greece. Specifically, Fuzzy logic was enabled for weighting the landslide related 

variables based on expert knowledge and in respect to landslide susceptibility, while 

the Shannon’s entropy index, an index from Information Theory, was calculated to 

weight the significance of each landslide related variable based on the available data. 

The final landslide susceptibility map was produced by applying the weighted sum 

method. Engineering lithological units, slope angle, slope aspect, distance from 

tectonic features, distance from river network and distance from road network were 

among the six landslide related variables that were included in the landslide database 

used in the training phase. The landslide inventory map was constructed by 

interpreting aerial photographs, satellite images and field surveys and was separated 

into two datasets, one for training and one for validating the model. The outcomes of 

the validation process illustrated that the developed methodology efficiently provided 

the most susceptible areas and was in good agreement with the actual landslide 

locations. The area under the curve was estimated to be for the training and validating 

datasets 0.7575 and 0.7828 respectively. The produced landslide susceptibility map 

could be regarded from local and national authorities as a valuable mean to evaluate 

strategies or to prevent and mitigate the impact of landslides. 

Keywords: slope stability, fuzzy weighting, Shannon’s entropy index, Tzoumerka, 

Greece. 

Περίληψη 

Ο κύριος στόχος της παρούσας μελέτης ήταν η ανάπτυξη μιας μεθοδολογιάς για την 

εκτίμηση της κατολισθητικής επιδεκτικότητας η οποία συνδυάζει την ασαφή λογική και 

τη Θεωρία της Πληροφορίας, στα βουνά της κεντρικής περιοχής των Τζουμέρκων. 

Συγκεκριμένα, η ασαφής λογική χρησιμοποιήθηκε για την εκτίμηση των συντελεστών 

βαρύτητας των κλάσεων των μεταβλητών που επιλέγθηκαν στην οποία εκτίμηση 

λαμβάνεται υπόψη η γνώση των εμπειρογνωμόνων. Ο δείκτης εντροπίας του Shannon, 

χρησιμοποιήθηκε για τον υπολογισμό των συντελεστών βαρύτητας της κάθε μεταβλητής 

με βάση τα διαθέσιμα δεδομένα. Ο χάρτης κατολισθητικής επιδεκτικότητας 

κατασκευάστηκε με εφαρμογή της μεθόδου του σταθμισμένου αθροίσματος. Οι 

τεχνικογεωλογικές ενότητες, η γωνία κλίσης, η διεύθυνση της γωνίας κλίσης,η 

απόσταση από τα τεκτονικά χαρακτηριστικά, η απόσταση από το υδρογραφικό δίκτυο 

και η απόσταση από το οδικό δίκτυο ήταν μεταξύ των έξι μεταβλητών που επιλέγθηκαν. 
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Η βάση δεδομένων με τη καταγραφή των κατολισθητικών φαινομένων έγινε μετά από 

τη σχετική ερμηνεία αεροφωτογραφιών, δορυφορικών εικόνων καθώς και τη 

διεξαγωγή ερευνών πεδίου. Χωρίστηκε σε δύο σύνολα δεδομένων, ένα για εκπαίδευση 

και ένα για επικύρωση του μοντέλου. Τα αποτελέσματα της διαδικασίας επικύρωσης 

έδειξαν ότι η μεθοδολογία που αναπτύχθηκε ήταν σε καλή συμφωνία με την πραγματική 

θέση των καταγεγραμένων κατολισθήσεων. Συγκεκριμένα, η περιοχή κάτω από την 

καμπύλη (AUC curve), ένας στατιστικός δείκτης, εκτιμήθηκε ότι είναι για την 

εκπαίδευση 0.7575 και για την επικύρωση και 0.7828. Ο παραγόμενος χάρτης 

κατολισθητικής επιδεκτικότητας θα μπορούσε να θεωρηθεί από τις τοπικές και εθνικές 

αρχές ως ένα πολύτιμο μέσο για την αξιολόγηση των στρατηγικών ή για την πρόληψη 

και τον μετριασμό των επιπτώσεων των κατολισθήσεων. 

Λέξεις κλειδιά: Κατολισθητική επιδεκτικότητα, ασαφής λογική, Θεωρία της 

Πληροφορίας, Τζουμέρκα, Ελλάδα. 

1. Introduction  

Landslides involve a wide variety of processes that result in the gravitational movement of slope-

forming materials that may occur in offshore, coastal or/and inland areas. They are considered 

among the most frequent natural hazards with significant consequences to human life and 

incalculable social - economic consequences. Its general accepted that natural hazards cannot be 

prevented; however their impacts can be reduced. In this context, the spatial distribution of future 

landslides that is estimated during a landslide susceptibility analysis provides information and 

knowledge that aids land – use planning, decision making and overall landslide risk reduction. Thus, 

the estimation of the likelihood of a landslide occurring in an area is a fundamental process defined 

by a set of geological, tectonic and hydrologic conditions, morphological characteristics, soil and 

vegetation features, land use and human practices. The analysis of landslide phenomenon is 

attempted through qualitative or expert - driven models and quantitative or data - driven models. 

Relatively recently, new techniques and methods derived from the domain of Machine Learning and 

Data Mining where utilized as promising tools to evaluate the susceptibility and risk against 

landslides (Korup and Stolle, 2014). These methods are characterized by the ability of learning and 

discovering hidden and unknown patterns from large multi-thematic databases. Numerous papers 

could be found through the scientific literature that take advantage of their ability to sufficiently 

assess data, including: the logistic regression approach (Pourghasemi et al., 2013a; Regmi et al., 

2014), fuzzy logic method (Pourghasemi et al., 2012a; Tien Bui et al., 2012a; Feizizadeh and 

Blaschke, 2013; Zhu et al., 2014), artificial neural network method (Ermini et al., 2005; Ferentinou 

and Sakellariou 2007; Yilmaz 2010; Tien Bui et al., 2012b; Conforti et al., 2014; Tsangaratos and 

Benardos, 2014), Bayes theorem based on weights of evidence (Regmi et al., 2010a, 2010b; Kouli 

et al., 2014; Ilia and Tsangaratos 2015), neural–fuzzy method (Vahidnia et al., 2010; Oh and 

Pradhan, 2011), support vector machines (Yilmaz 2010; Tien Bui et al., 2012c; Pourghasemi et al., 

2013b; Pradhan 2013), index of entropy (Bednarik et al., 2010; Constantin et al., 2011; Pourghasemi 

et al., 2012b; Devkota et al., 2013; Youssef et al., 2015) and decision tree method (Saito et al., 2009; 

Yeon et al.,2010; Nefeslioglu et al., 2010; Tien Bui et al., 2012c; Pradhan, 2013; Tsangaratos and 

Ilia, 2015). The main objective of the present study is to produce a landslide susceptibility map based 

on the combination of Fuzzy logic and Information Theory. The Fuzzy logic approach was applied 

in order to weight the variables according to expert opinion, while the Information Theory was 

applied to estimate the influence of each variable has on the landslide susceptibility calculation based 

on the data. The study area covers the mountains of Central Tzoumerka, which are located at the 

administrative unit of Epirus Greece, where serious landslides events have been encountered. The 

computation process was carried out using SPSS 16.0 (SPSS, 2007) for validating the model, while 

ArcGIS 10.1 (ESRI, 2013) was used for compiling the data and producing the landslide 

susceptibility maps. 
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2. Study area 

The main research area is located at the eastern part of the Pindus administrative unit covering 

approximately an area of 222 km2 clarified as the Kallaritikos watershed, a sub - basin of the Greek 

Water District Epirus (Fig. 1a). 

 

Figure 1a - The study area, 1b - The geology of the area. 

Concerning the topography of the area it’s characterized as mountainous, with the highest altitude 

observed in the area reaching 2354m while the lowest point is at 325m above sea level. The 

geological profile of the wider region consists of formations that are part of the Ionian tectonic zone, 

mainly constituted by Upper Eocene - Lower Miocene sedimentary sequences, as well as part of the 

Pindus tectonic zone, where Upper Cretaceous - Eocene sedimentary sequences outcrop (Brunn, 

1956; Aubouin, 1959). About 43.40% of the research area is covered by chert formations with 

limestone interbeds, 37.20 % covered by limestone formations and about 17.35% covered by flysch 

formations. The area is characterized by a dense dendritic drainage pattern, while large successive 

anticlines and synclines overthrusts to the west. 

3. Materials and Methods 

3.1. The developed methodology 

The developed methodology consisted of a four phase procedure; (a) classifying and weighting 

the predictor variables based on fuzzy logic and expert knowledge, (b) calculating the weight of 

each variable based on the Shannon’s entropy index, (c) applying the weigh ted sum model to 

produce the landslide susceptibility map and (d) validating the produced model. Details of each 

phase are provided in the following paragraphs. The first phase, involves the application of a 

fuzzy logic approach in order to estimate the weight of each predictor variable. The developed 

methodology collects the opinions of a group of experts in reference to the importance each 

predictor factor has to the estimation of landslide susceptibility. Each expert assigns a linguistic 

value (very important, quiet important, important, neutral, unimportant, quite unimportant and 

very unimportant) when asked about the importance of the factor that is transformed into a 

triangular fuzzy number (Table 1). 
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Table 1 - Scale of importance. 

Intensity of importance Fuzzy triangular number 

Very important (VI) (1, 2, 3) 

Quiet important (QI) (2, 3, 4) 

Important (I) (3, 4, 5) 

Neutral (N) (4, 5, 6) 

Unimportant (UnI) (5, 6, 7) 

Quite unimportant(QUnI) (6, 7, 8) 

Very unimportant (VUnI) (7, 8, 9) 

The aggregated triangular fuzzy number is calculated using the geometric mean model of mean 

general model proposed by Klir and Yuan (1995). The computing formula is illustrated as follows:  

Assume the linguistic value assigned to the jth predictor factor (j=1, 2... n) by the ith expert (i=1,2,..k) 

and the equivalent triangular fuzzy number that corresponds to that linguistic value ),,(
~
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The next step is to use the simple centre of gravity method to defuzzify the aggregated triangular 

fuzzy number of each predictor factor and to estimate the Intensity of importance (Ij) (Equation 1), 

while the weighting of each predictor variable is obtained by the equation 2. 

Equation 1 - Intensity of importance  
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The next phase involves the estimation of weight of influence of each variable based on Shannon’s 

entropy index. The Shannon’s entropy index has been used in the Information Theory as a measure 

originally proposed by Claude Shannon to quantify the entropy, uncertainty or information content 

in strings of text (Shannon, 1948). It proposes that the more information one has the more certain 

one becomes, likewise we can postulate that the more diverse something is the more uncertain we 

become in knowing its decision or outcome. The information coefficient is an index that ranges 

between 0 and 1, with values closer to 0 indicating less influence of the variable while values closer 

to 1 indicating more influence. The equations used to calculate the information coefficient Wj 

representing the weight value for the parameter as a whole (Bednarik et al., 2010; Constantin et al., 

2011) are given in Table 2.  
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Table 2 - Equation for determining the Weight coefficient based on Shannon’s entropy 

index. 
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The third phase involves the application of the weighted sum method in order to calculate the 

landslide susceptibility index, according to equation 9: 

Equation 3 - Landslide susceptibility index 

ijc

n

j

ijpi wiw
j

LSi  
1

1  

The result of the summation is a continuous interval of values which represent the various levels of 

susceptibility and forms the landslide susceptibility map that is reclassified according to the natural 

break method for the determination of the class intervals (Feizizadeh and Blaschke, 2013). Classes 

identified are described as follows: very high susceptibility (VHS), high susceptibility (HS), 

moderate susceptibility (MS), low susceptibility (LS) and very low susceptibility (VLS). The final 

phase involves the validation of the developed model by means of the success-rate and prediction-

rate methods (Fawcett, 2006). Using the landslide grid cells in the training dataset, the success-rate 

results were obtained, while the validation dataset were used for the construction of the prediction-

rate curves (Chung and Fabbri, 2003). The area under the ROC curve (AUC) has been used as a 

metric to access the overall quality of the predictive models by evaluating the models ability to 

anticipate correctly the occurrence or non-occurrence of predefined events (Hanley and McNeil, 

1982; Fawcett, 2006). If AUC is close to 1, the outcomes of the analysis are excellent, while if the 

AUC is closer to 0.5, the less accurate the result of the analysis is. 

3.2. Data 

Concerning the landslide inventory which includes information about the location, features and 

abundance of landslide areas, it was based on historical information concerning landslide incidence, 

the interpretation of aerial photos, the use of satellite imagery and extensive field observations. A 

total of 116 sites where identified and partitioned into two datasets, one for training and one for 

validating purpose, containing 93 and 23 sites, respectively. The landslide related variables that was 

selected for the assessment of the landslide susceptibility of the research area are described by the 

following six variables: engineering geological units, slope angle, slope aspect, distance from 

tectonic features, distance from river network and distance from road network. Particular, the 
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geological formations that cover the research area were grouped into four categories based on their 

engineering geological behavior, the spatial distribution of failures identified in the region, but also 

the experience and knowledge that has been recorded in related studies. Specifically, the following 

were found and classified: A) quaternary loose, fine grained deposits that consist mainly of cobbles, 

pebbles, grits and sands with low proportions of fines, such as clayey silts and sandy silts; B) 

limestones formations, that are characterized as Pelagic, thin to medium – bedded, often micro - 

brecciated with nodules or lenticular silica layers and local thin intercalations of shales; C) flysch 

formations with alternating siltstones and sandstones and frequent participation of conglomerates 

and intermediate lithological types, and D) chert formations with limestone interbeds. The fault 

density maps were also constructed based on the geological map (IGME, 1961) and was classified 

into three zones of influence: A) < 250m, B) 251-500m and C) > 501m. A digital elevation model 

(DEM) with a spatial resolution of 20x20m was generated from national topographic maps in scale 

1:50.000. Based on the DEM data, slope angle, slope aspect and distance from the river network 

were constructed. Specifically, five classes for slope angle have been identified and classified: A) 

00-150, B) 160-300, C) 310–450, D) 460–600 and E) slopes greater than 610. In accordance to the 

previous, five classes for slope aspect have been identified and classified: A) 2260-2700, B) 460-900, 

C) 910-1350, 2710-3150, and D) 3160-450, 1360-2250 (Fig.4d). Concerning the river network density 

map, it was formed using the DEM data and further classified into three zones of influence: A) < 

100m, B) 101-300m, and C) > 301m. Finally, the distance from the road network was constructed 

based on the national topographic maps and classified into three zones of influence, characterizing 

the distance of landslide incidence from the road network: A) < 100m, B) 101-300m, and C) > 301m. 

4. Results 

According to the weighting process conducted in the first phase (Table 2), that was based on fuzzy 

logic and expert knowledge, the most susceptible class was estimated to be class A (<100m) in the 

variable Distance to road network (0.5714), followed by the class A (<100m) in the variable 

Distance to river network (0.5000). The least susceptible class was class A (<150) in the variable 

Slope (0.0667), followed by the class A (2260-2700) in the variable Aspect (0.1000). From the 

analysis performed during the second phase (Table 3), that was based on the Information Theory 

and the Shannon index, the most uncertain variable was estimated to be Distance to river network 

(0.0133), followed by Aspect (0.0307), Engineering lithological units (0.0490), Slope (0.1426), 

Distance to tectonic features (0.3995 ) and Distance to road network (0.4087).   

Table 4 - Weight of variables according to expert knowledge and Information Theory. 

Landslide related variable Class 
Fuzzy Logic  

Wj  

Information Theory  

wij 

Engineering lithological units A 0.1176 0.0490 

 B 0.1765  

 C 0.3529  

 D 0.3529  

Slope A 0.0667 0.1426 

 B 0.1667  

 C 0.2000  

 D 0.3000  

 E 0.2667  

Aspect A 0.1000 0.0307 

 B 0.1667  

 C 0.2000  
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Landslide related variable Class 
Fuzzy Logic  

Wj  

Information Theory  

wij 

 D 0.2667  

 E 0.1333  

Distance to tectonic features < 250m 0.4737 0.3995 

 251- 500m 0.4211  

 > 501m 0.1053  

Distance to river network < 100m 0.5000 0.0133 

 101-300m 0.3571  

 > 301m 0.1429  

Distance to road network < 100m 0.5714 0.4087 

 101-300m 0.4286  

 > 301m 0.2143  

The third phase involved the application of the weighted sum method in order to calculate the 

landslide susceptibility index, according to equation 9. The outcome of the estimation is illustrated 

in Figure 2a in which the various levels of susceptibility are presented and reclassified according to 

the natural break method for the determination of the class intervals. Following the developed 

methodology five classes of susceptibility where identified. Very high susceptibility (VHS) that 

covered approximately 8.59%, high susceptibility (HS) covering 20.42%, moderate susceptibility 

(MS) covering 29.65%, low susceptibility (LS) covering 27.29% and very low susceptibility (VLS) 

covering 14.05% of the total research area. As illustrated in figure 2b, the landslide probability 

density within the zones high and very high susceptibility was calculated to be over 81.00%, while 

within the zones very low and low susceptibility was calculated to be less than 5%. The results of 

the implementation of the developed methodology was validated using the training and validation 

dataset through the use of the ROC graphs and the success and prediction rate curves, which are 

summarized by the calculation of AUC values. Figure 2b shows the results indicating that the model 

has good prediction capabilities. In particular, the AUC value for the training and validating datasets 

was calculated to be 0.7575 and 0.7828 respectively. 

5. Discussion and conclusion  

It is well established that for the assessment of landslide phenomena, the majority of the applied 

methods are based either on the experience and knowledge provided by experts or on statistical or 

probabilistic theories or even the use of deterministic models (Aleotti and Chowdhury, 1999). Each 

procedure has advantages and disadvantages that are influenced by the quality and quantity of the 

available data and also the experience, judgment and the time engagement of the expert. In this 

context, the development of a hybrid method that combines the two procedures can be thought as a 

valuable tool in order to produce more accurate predictive models. Particularly, in the present study 

a landslide susceptibility map was produced by applying Fuzzy logic and Information Theory. The 

Fuzzy logic approach was applied in order to weight the variables according to expert opinion, while 

the Information Theory was applied to estimate the influence of each variable has on the landslide 

susceptibility calculation based on the data. 
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Figure 2a - The landslide susceptibility map, 2b - Validation graphs. 

The study area covers the mountains of Central Tzoumerka, an area considered as one of the 

historical centres of the Vlach culture in Pindus, Greece, with a cluster of significant historical 

villages, such as Sirako, Killarites and Pramanda. From the visual inspection of the produced 

landslide susceptibility map it is obvious that the spatial pattern of susceptibility mainly follows the 

spatial distribution of the landslide conditioning variable, Distance to tectonic features. Furthermore, 

major sections of the road network that connect those historical villages intersect areas of very high 

landslide susceptibility. Concerning the accuracy of the developed model, the combination of the 

two procedures produced highly accurate predictive models. Specifically, the AUC value for the 

training and validating datasets was 0.7575 and 0.7828 respectively. In conclusion, the produced 

landslide susceptibility map could be regarded from local and national authorities as a valuable mean 

to evaluate strategies or to prevent and mitigate the impact of landslides. 
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