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Abstract

The main objective of the present study was to develop a landslide susceptibility model
by combining Fuzzy logic and Information Theory in order to estimate the spatial
probability of landslide manifestation, in the mountains of central Tzoumerka,
Greece. Specifically, Fuzzy logic was enabled for weighting the landslide related
variables based on expert knowledge and in respect to landslide susceptibility, while
the Shannon’s entropy index, an index from Information Theory, was calculated to
weight the significance of each landslide related variable based on the available data.
The final landslide susceptibility map was produced by applying the weighted sum
method. Engineering lithological units, slope angle, slope aspect, distance from
tectonic features, distance from river network and distance from road network were
among the six landslide related variables that were included in the landslide database
used in the training phase. The landslide inventory map was constructed by
interpreting aerial photographs, satellite images and field surveys and was separated
into two datasets, one for training and one for validating the model. The outcomes of
the validation process illustrated that the developed methodology efficiently provided
the most susceptible areas and was in good agreement with the actual landslide
locations. The area under the curve was estimated to be for the training and validating
datasets 0.7575 and 0.7828 respectively. The produced landslide susceptibility map
could be regarded from local and national authorities as a valuable mean to evaluate
strategies or to prevent and mitigate the impact of landslides.

Keywords: slope stability, fuzzy weighting, Shannon’s entropy index, Tzoumerka,
Greece.

Mepiinyn

O kvp1og o10)0S THS TOPOobOOS UEAETNS HTay N avamTocy piog pebodoloyiag yia v
EKTIUNON THG KATOAMOONTIKNG EMIOEKTIKOTHTOG 1 OTOL0, GOVOLALEL THY AoO.PH AOYIKI KOl
m Ocwpia e IAnpopopiag, oro. Povve. tng kevipikng mepioyns twv T ovuéprwv.
LOYKEKPIUEVQ, N OOOPRHS LOYIKY YPHOWOTOONKE YIa. TNV EKTIUNON TWV GUVIEAETTHOV
Popitnras twv Kldoewv twv ustofintov mwov emiAéyOnkayv oty omoio ektiunon
Aoufavetar vmown n yvaon twv sumeipoyvoudvov. O deiktng eviporiag tov Shannon,
XPNOIUOTOINONKE Y10, TOV DTOAOYIOUO TV GUVTEAETTAV PopbTnTog TS Kabe ueTofinTne
ue Paon o owabéoyo dedouéva. O xoptng KaToMoONTIKNG  EMIOEKTIKOTHTOS
KOTOOKEVAOTHKE UE EQopuoyy s ueBodov tov otabuicuévov abpoicuaros. Oi
TEYVIKOYEWAOVIKES €VOTHTESG, N ywvio. kAiong, n dievboven e ywviag kiiongy
OTOOTO0N ATO TO. TEKTOVIKG, XOPOKTHPIOTIKG, 1] OTOGTOCH OO0 TO VOPOYPAPIKO JIKTVO
KOl 1] OTOGTO0N 00 TO 001KO OIKTVO NTAY UETOLD TV ECT HeTafANT@V mov emiAeyOnKav.
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H faon dedouévav ue m katoypopn twv KoToloOnTikdy goivouévwy Eyive UETG amo
T OYETIKN EPUNVEIQ OEPOPOTOYPOPIDV, OOPLPOPIKWDY EIKOVOV KOS Kol TH
oieoywyn epevvary mediov. Xwpiotnke oe 500 advolo dedousvav, éva yio, ekmaidcoon
Ko évo. yio. emkpwan tov poviélov. To amoteléopota g O10dIKaoiog ETKOPLONS
goeiCav ot n peBodoioyio mov avortdyOnke Nrav oe Kaln ocouPwVIo Ue TNV TPOYUOTIKH
Oson TV KaToyEYPOUEVWV KOTOMGONOEWY. Z0YKekpIUEVQ, 1] TEPIOYN KOTW OO THV
kourdln (AUC curve), évag otatiotikdg deixtng, extyinre ot eivoa yia v
exmaiocvon 0.7575 wkor yio v emkvpwon kor 0.7828. O mapayouevog yaptng
kotolio0nTikic emidextikotnTas Qo umopovoe va BewpnBei omo T1g TOMIKES Kot eOVIKES
OPYES WG EVO. TOAVTIUO UECO YL TNV all0)0YNON TWYV TIPOTHYIKDYV 1] VIO, THV TPOINYN
KOl TOV UETPLACUO TWYV ETTTDTEDY TWV KOTOAGONGEWY.

Aééarg wieowa: KarolioOntiky  emidextikotyra, aocapns Aoyiky, Ocwpio e
Inpogopiag, Tlovuépra, ElLdda.

1. Introduction

Landslides involve a wide variety of processes that result in the gravitational movement of slope-
forming materials that may occur in offshore, coastal or/and inland areas. They are considered
among the most frequent natural hazards with significant consequences to human life and
incalculable social - economic consequences. Its general accepted that natural hazards cannot be
prevented; however their impacts can be reduced. In this context, the spatial distribution of future
landslides that is estimated during a landslide susceptibility analysis provides information and
knowledge that aids land — use planning, decision making and overall landslide risk reduction. Thus,
the estimation of the likelihood of a landslide occurring in an area is a fundamental process defined
by a set of geological, tectonic and hydrologic conditions, morphological characteristics, soil and
vegetation features, land use and human practices. The analysis of landslide phenomenon is
attempted through qualitative or expert - driven models and quantitative or data - driven models.
Relatively recently, new techniques and methods derived from the domain of Machine Learning and
Data Mining where utilized as promising tools to evaluate the susceptibility and risk against
landslides (Korup and Stolle, 2014). These methods are characterized by the ability of learning and
discovering hidden and unknown patterns from large multi-thematic databases. Numerous papers
could be found through the scientific literature that take advantage of their ability to sufficiently
assess data, including: the logistic regression approach (Pourghasemi et al., 2013a; Regmi et al.,
2014), fuzzy logic method (Pourghasemi et al., 2012a; Tien Bui et al., 2012a; Feizizadeh and
Blaschke, 2013; Zhu et al., 2014), artificial neural network method (Ermini et al., 2005; Ferentinou
and Sakellariou 2007; Yilmaz 2010; Tien Bui et al., 2012b; Conforti et al., 2014; Tsangaratos and
Benardos, 2014), Bayes theorem based on weights of evidence (Regmi et al., 2010a, 2010b; Kouli
et al., 2014; Ilia and Tsangaratos 2015), neural-fuzzy method (Vahidnia et al., 2010; Oh and
Pradhan, 2011), support vector machines (Yilmaz 2010; Tien Bui et al., 2012c; Pourghasemi et al.,
2013b; Pradhan 2013), index of entropy (Bednarik et al., 2010; Constantin et al., 2011; Pourghasemi
etal., 2012b; Devkota et al., 2013; Youssef et al., 2015) and decision tree method (Saito et al., 2009;
Yeon et al.,2010; Nefeslioglu et al., 2010; Tien Bui et al., 2012c; Pradhan, 2013; Tsangaratos and
Ilia, 2015). The main objective of the present study is to produce a landslide susceptibility map based
on the combination of Fuzzy logic and Information Theory. The Fuzzy logic approach was applied
in order to weight the variables according to expert opinion, while the Information Theory was
applied to estimate the influence of each variable has on the landslide susceptibility calculation based
on the data. The study area covers the mountains of Central Tzoumerka, which are located at the
administrative unit of Epirus Greece, where serious landslides events have been encountered. The
computation process was carried out using SPSS 16.0 (SPSS, 2007) for validating the model, while
ArcGIS 10.1 (ESRI, 2013) was used for compiling the data and producing the landslide
susceptibility maps.
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2. Study area

The main research area is located at the eastern part of the Pindus administrative unit covering
approximately an area of 222 km? clarified as the Kallaritikos watershed, a sub - basin of the Greek
Water District Epirus (Fig. 1a).
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Figure 1a - The study area, 1b - The geology of the area.

Concerning the topography of the area it’s characterized as mountainous, with the highest altitude
observed in the area reaching 2354m while the lowest point is at 325m above sea level. The
geological profile of the wider region consists of formations that are part of the lonian tectonic zone,
mainly constituted by Upper Eocene - Lower Miocene sedimentary sequences, as well as part of the
Pindus tectonic zone, where Upper Cretaceous - Eocene sedimentary sequences outcrop (Brunn,
1956; Aubouin, 1959). About 43.40% of the research area is covered by chert formations with
limestone interbeds, 37.20 % covered by limestone formations and about 17.35% covered by flysch
formations. The area is characterized by a dense dendritic drainage pattern, while large successive
anticlines and synclines overthrusts to the west.

3. Materials and Methods
3.1. The developed methodology

The developed methodology consisted of a four phase procedure; (a) classifying and weighting
the predictor variables based on fuzzy logic and expert knowledge, (b) calculating the weight of
each variable based on the Shannon’s entropy index, (c) applying the weighted sum model to
produce the landslide susceptibility map and (d) validating the produced model. Details of each
phase are provided in the following paragraphs. The first phase, involves the application of a
fuzzy logic approach in order to estimate the weight of each predictor variable. The developed
methodology collects the opinions of a group of experts in reference to the importance each
predictor factor has to the estimation of landslide susceptibility. Each expert assigns a linguistic
value (very important, quiet important, important, neutral, unimportant, quite unimportant and
very unimportant) when asked about the importance of the factor that is transformed into a
triangular fuzzy number (Table 1).
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Table 1 - Scale of importance.

Intensity of importance | Fuzzy triangular number
Very important (V1) 1,2,3)
Quiet important (QI) (2,3,4)
Important (1) (3.4,5)
Neutral (N) (4,5,6)
Unimportant (Unl) (5,6,7)
Quite unimportant(QUnl) (6,7,8)
Very unimportant (VUnl) (7,8,9)

The aggregated triangular fuzzy number is calculated using the geometric mean model of mean
general model proposed by Klir and Yuan (1995). The computing formula is illustrated as follows:

Assume the linguistic value assigned to the j™ predictor factor (j=1, 2... n) by the i"" expert (i=1,2,..k)
and the equivalent triangular fuzzy number that corresponds to that linguistic value vi; = (a;.0;. ¢;)

The aggregated triangular fuzzy number for the j™ predictor factor is \;j=(aj,bj,cj) where,

k 1 k
a, =Minga,} b, =;Zbu ¢; = Max{c,}
i=1

The next step is to use the simple centre of gravity method to defuzzify the aggregated triangular
fuzzy number of each predictor factor and to estimate the Intensity of importance (l;) (Equation 1),
while the weighting of each predictor variable is obtained by the equation 2.

Equation 1 - Intensity of importance
_a;+b;+cy
e 3
Equation 2 - Weight of variables
max{l ;}-1; +1

>omax{l }-1, +1
k=1

Wi =

The next phase involves the estimation of weight of influence of each variable based on Shannon’s
entropy index. The Shannon’s entropy index has been used in the Information Theory as a measure
originally proposed by Claude Shannon to quantify the entropy, uncertainty or information content
in strings of text (Shannon, 1948). It proposes that the more information one has the more certain
one becomes, likewise we can postulate that the more diverse something is the more uncertain we
become in knowing its decision or outcome. The information coefficient is an index that ranges
between 0 and 1, with values closer to 0 indicating less influence of the variable while values closer
to 1 indicating more influence. The equations used to calculate the information coefficient Wj
representing the weight value for the parameter as a whole (Bednarik et al., 2010; Constantin et al.,
2011) are given in Table 2.
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Table 2 - Equation for determining the Weight coefficient based on Shannon’s entropy

index.
Number of Explanation Equation
equation
Equation 3 Landslide probability b = L
ij A”'
Equation 4 | Landslide Probability density _ R
[
2P
j=1
Equation 5 Entropy value il
H;=->.P, ®log, R,
i=1
Equation 6 Maximum entropy value H; e =—100,¢;
Equation 7 Information coefficient |- Hijma —H;
J Hj
Equation 8 | Weight coefficient of each class of j™ factor 1-(P; ®log, R)
Wy=—71—""
Hjma —H;

The third phase involves the application of the weighted sum method in order to calculate the
landslide susceptibility index, according to equation 9:

Equation 3 - Landslide susceptibility index
. 13 .
LSiy == w, * Wi,
=

The result of the summation is a continuous interval of values which represent the various levels of
susceptibility and forms the landslide susceptibility map that is reclassified according to the natural
break method for the determination of the class intervals (Feizizadeh and Blaschke, 2013). Classes
identified are described as follows: very high susceptibility (VHS), high susceptibility (HS),
moderate susceptibility (MS), low susceptibility (LS) and very low susceptibility (VLS). The final
phase involves the validation of the developed model by means of the success-rate and prediction-
rate methods (Fawcett, 2006). Using the landslide grid cells in the training dataset, the success-rate
results were obtained, while the validation dataset were used for the construction of the prediction-
rate curves (Chung and Fabbri, 2003). The area under the ROC curve (AUC) has been used as a
metric to access the overall quality of the predictive models by evaluating the models ability to
anticipate correctly the occurrence or non-occurrence of predefined events (Hanley and McNeil,
1982; Fawcett, 2006). If AUC is close to 1, the outcomes of the analysis are excellent, while if the
AUC is closer to 0.5, the less accurate the result of the analysis is.

3.2. Data

Concerning the landslide inventory which includes information about the location, features and
abundance of landslide areas, it was based on historical information concerning landslide incidence,
the interpretation of aerial photos, the use of satellite imagery and extensive field observations. A
total of 116 sites where identified and partitioned into two datasets, one for training and one for
validating purpose, containing 93 and 23 sites, respectively. The landslide related variables that was
selected for the assessment of the landslide susceptibility of the research area are described by the
following six variables: engineering geological units, slope angle, slope aspect, distance from
tectonic features, distance from river network and distance from road network. Particular, the
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geological formations that cover the research area were grouped into four categories based on their
engineering geological behavior, the spatial distribution of failures identified in the region, but also
the experience and knowledge that has been recorded in related studies. Specifically, the following
were found and classified: A) quaternary loose, fine grained deposits that consist mainly of cobbles,
pebbles, grits and sands with low proportions of fines, such as clayey silts and sandy silts; B)
limestones formations, that are characterized as Pelagic, thin to medium — bedded, often micro -
brecciated with nodules or lenticular silica layers and local thin intercalations of shales; C) flysch
formations with alternating siltstones and sandstones and frequent participation of conglomerates
and intermediate lithological types, and D) chert formations with limestone interbeds. The fault
density maps were also constructed based on the geological map (IGME, 1961) and was classified
into three zones of influence: A) < 250m, B) 251-500m and C) > 501m. A digital elevation model
(DEM) with a spatial resolution of 20x20m was generated from national topographic maps in scale
1:50.000. Based on the DEM data, slope angle, slope aspect and distance from the river network
were constructed. Specifically, five classes for slope angle have been identified and classified: A)
0°-15°, B) 16°-30°, C) 31°-45° D) 46°-60° and E) slopes greater than 61°. In accordance to the
previous, five classes for slope aspect have been identified and classified: A) 226°-270°, B) 46°-90°,
C) 9101359, 271°-315°, and D) 316°-45°, 136°-225° (Fig.4d). Concerning the river network density
map, it was formed using the DEM data and further classified into three zones of influence: A) <
100m, B) 101-300m, and C) > 301m. Finally, the distance from the road network was constructed
based on the national topographic maps and classified into three zones of influence, characterizing
the distance of landslide incidence from the road network: A) < 100m, B) 101-300m, and C) > 301m.

4. Results

According to the weighting process conducted in the first phase (Table 2), that was based on fuzzy
logic and expert knowledge, the most susceptible class was estimated to be class A (<100m) in the
variable Distance to road network (0.5714), followed by the class A (<100m) in the variable
Distance to river network (0.5000). The least susceptible class was class A (<15°) in the variable
Slope (0.0667), followed by the class A (226°-270°) in the variable Aspect (0.1000). From the
analysis performed during the second phase (Table 3), that was based on the Information Theory
and the Shannon index, the most uncertain variable was estimated to be Distance to river network
(0.0133), followed by Aspect (0.0307), Engineering lithological units (0.0490), Slope (0.1426),
Distance to tectonic features (0.3995 ) and Distance to road network (0.4087).

Table 4 - Weight of variables according to expert knowledge and Information Theory.

Fuzzy Logic Information Theory
W, Wij

0.1176 0.0490
0.1765
0.3529
0.3529
0.0667 0.1426
0.1667
0.2000
0.3000
0.2667
0.1000 0.0307
0.1667
0.2000

Landslide related variable Class

>

Engineering lithological units

Slope

Aspect

O|lm|>IMO|O|w|>|o|lo|wm
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Landslide related variable Class Fuzz\;;vlj_oglc Informatx:jn Theory

D 0.2667
E 0.1333

Distance to tectonic features <250m 0.4737 0.3995
251- 500m 0.4211
>501m 0.1053

Distance to river network <100m 0.5000 0.0133
101-300m 0.3571
>301m 0.1429

Distance to road network < 100m 0.5714 0.4087
101-300m 0.4286
>301m 0.2143

The third phase involved the application of the weighted sum method in order to calculate the
landslide susceptibility index, according to equation 9. The outcome of the estimation is illustrated
in Figure 2a in which the various levels of susceptibility are presented and reclassified according to
the natural break method for the determination of the class intervals. Following the developed
methodology five classes of susceptibility where identified. Very high susceptibility (VHS) that
covered approximately 8.59%, high susceptibility (HS) covering 20.42%, moderate susceptibility
(MS) covering 29.65%, low susceptibility (LS) covering 27.29% and very low susceptibility (VLS)
covering 14.05% of the total research area. As illustrated in figure 2b, the landslide probability
density within the zones high and very high susceptibility was calculated to be over 81.00%, while
within the zones very low and low susceptibility was calculated to be less than 5%. The results of
the implementation of the developed methodology was validated using the training and validation
dataset through the use of the ROC graphs and the success and prediction rate curves, which are
summarized by the calculation of AUC values. Figure 2b shows the results indicating that the model
has good prediction capabilities. In particular, the AUC value for the training and validating datasets
was calculated to be 0.7575 and 0.7828 respectively.

5. Discussion and conclusion

It is well established that for the assessment of landslide phenomena, the majority of the applied
methods are based either on the experience and knowledge provided by experts or on statistical or
probabilistic theories or even the use of deterministic models (Aleotti and Chowdhury, 1999). Each
procedure has advantages and disadvantages that are influenced by the quality and quantity of the
available data and also the experience, judgment and the time engagement of the expert. In this
context, the development of a hybrid method that combines the two procedures can be thought as a
valuable tool in order to produce more accurate predictive models. Particularly, in the present study
a landslide susceptibility map was produced by applying Fuzzy logic and Information Theory. The
Fuzzy logic approach was applied in order to weight the variables according to expert opinion, while
the Information Theory was applied to estimate the influence of each variable has on the landslide
susceptibility calculation based on the data.
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Figure 2a - The landslide susceptibility map, 2b - VValidation graphs.

The study area covers the mountains of Central Tzoumerka, an area considered as one of the
historical centres of the Vlach culture in Pindus, Greece, with a cluster of significant historical
villages, such as Sirako, Killarites and Pramanda. From the visual inspection of the produced
landslide susceptibility map it is obvious that the spatial pattern of susceptibility mainly follows the
spatial distribution of the landslide conditioning variable, Distance to tectonic features. Furthermore,
major sections of the road network that connect those historical villages intersect areas of very high
landslide susceptibility. Concerning the accuracy of the developed model, the combination of the
two procedures produced highly accurate predictive models. Specifically, the AUC value for the
training and validating datasets was 0.7575 and 0.7828 respectively. In conclusion, the produced
landslide susceptibility map could be regarded from local and national authorities as a valuable mean
to evaluate strategies or to prevent and mitigate the impact of landslides.
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