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Abstract 

A relevant hazard in mountainous regions is the steep rock slopes concentrating rock 

falls. Although rock falls are characterized by smaller rock volumes compared to 

other landslide types, can also provoke severe damage to buildings, infrastructures 

and human life due to their sudden and highly fast movement. The key to understand 

the processes that result in rock fall onset is an integrated study of the major causing 

parameters that affect slope stability. A rock slope may be subjected to many forms of 

triggering factors including tectonic, geomorphic, seismic, climatic or even human 

induced damages. This contribution provides an overview of the previous and current 

research related to rock falls and uses case studies of North Peloponnese in order to 

prove the usefulness of these methods in the Greek territory. Collecting data and 

production of thematic maps by means of field and remote sensing investigations can 

yield far more updated results incorporated in hazard assessment techniques and 

protection measures. 
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Περίληψη 

Στις ορεινές περιοχές ένας κίνδυνος που ενσκήπτει είναι οι απότομες βραχώδεις 

κλιτύες, οι οποίες σε μεγάλο βαθμό ελέγχονται από πτώσεις βράχων. Αν και οι πτώσεις 

βράχων χαρακτηρίζονται από μικρούς όγκους ολισθαίνουσας μάζας πετρωμάτων σε 

σύγκριση με τους υπόλοιπους τύπους κατολισθήσεων, μπορούν να προκαλέσουν 

σημαντικές βλάβες σε κτήρια, υποδομές εξαιτίας της ξαφνικής και της πολύ γρήγορης 

κίνησής τους. Βασική παράμετρος στην κατανόηση της διεργασίας που οδηγεί στην 

εκδήλωση πτώσεων βράχων αποτελεί η μελέτη των κυριότερων αιτιών που επηρεάζουν 

την ευστάθεια της κλιτύος. Η εξέλιξη της βραχώδους κλιτύος μπορεί να συσχετίζεται με 

πολλά γενεσιουργά αίτια όπως τεκτονικά, γεωμορφολογικά, σεισμικά, κλιματολογικά ή 

ανθρωπογενή. Η παρούσα εργασία παραθέτει σε σύνοψη μεθοδολογίες που σχετίζονται 

με το φαινόμενο της πτώσης βράχων. Επιπλέον χρησιμοποιεί παραδείγματα από την 

περιοχή της Βόρειας Πελοποννήσου ώστε να καταστεί σαφής η χρησιμότητα των 

μεθόδων ανάλυσης του φαινομένου στην ελληνική επικράτεια. Συλλέγοντας δεδομένα 

και παράγοντας θεματικούς χάρτες και συνδυάζοντας την υπαίθρια παρατήρηση με την 

τηλεπισκόπηση, είναι δυνατή η απόδοση βέλτιστων αποτελεσμάτων τα οποία μπορούν 

να ενταχθούν σε τεχνικές σκιαγράφησης της επικινδυνότητας και τη λήψη 

προστατευτικών μέτρων. 

Λέξεις κλειδιά: ευστάθεια βραχωδών κλιτύων, γενεσιουργές αιτίες, προσδιορισμός 

επικινδυνότητας αστοχίας βραχωδών κλιτύων. 
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1. Introduction 

Landslides are located on a variety of lithological and geological domains throughout the world. 

They encompass a variety of failure types, can be very slow to very fast moving, and pose different 

hazards and risk. Their impacts on structures, human activity and loss of life can be substantial, 

ranging from slow deformation of buildings and roads, to sudden damage of developed areas. 

Geological evolution (Ballantyne, 2002), lithology and structure (Ambrosi and Crosta, 2006), slope 

relief and shape (Molnar, 2004), weather and climate (Ballantyne, 2002), seismicity (Keefer, 1984; 

Crosta et al., 2005) and human activity (Cruden, 1976) are the most important causative factors of 

slope stability in general (Fig. 1). Geomorphology, structural and engineering geology enable the 

specification of the main characteristics of a slope in distinct ways that can be combined to provide 

a complementary view of the operative slope processes. 

Slope tectonics as an earth science discipline focuses on gravity - driven mass wasting processes 

caused by unique rock and soil fabrics, internal and external structures of the moving landmasses 

and topographic features. Although the studies of deformation features related to slope failure have 

been century old, integrated approaches employing methods from engineering geology, structural 

geology, geodesy and geomorphology emerged only recently as the scientific community introduced 

the digital ages. A key issue in the studies of slope tectonics is to distinguish the features related to 

active tectonics (driven primarily by tectonic forcing) to features that were purely generated by 

gravity and climatic conditions and its induced rock failure on topographic slopes. 

Aim of this paper is to present and discuss the inventory of distribution of slope instabilities in the 

north Peloponnese area with respect to some of the most important geological and geomorphological 

features and variables. Note that this area is prone either to tectonic (Koukouvelas et al., 1996, 2015) 

or meteorological forcing (Lainas et al., 2015). This will give the chance to discuss the most 

important features associated with these phenomena and their criteria for their recognition and to 

provide a broad, even though not complete, overview of the predisposing and controlling factors, as 

well as the relationships of sliding distribution with the main landscape topographic characteristics. 

In addition, we will evaluate the actual impact of such phenomena at a regional scale correlated with 

field evidence and the various suggested models from the world experience. Especially, in the Greek 

literature only few inventories have been presented (i.e. Antoniou and Lekkas, 2010; Papathanassiou 

et al., 2013; Sabatakakis et al., 2013; Koukouvelas et al., 2015; Lainas et al., 2015; Saroglou et al., 

2015). Finally, we will test the applicability of rock fall models in two Greek case studies where 

climatic and tectonic forcing is acting at constantly developed and populated areas of the Northern 

Peloponnese. 

2. Rock fall process 

Rockfall is a slope process in which a rock mass detaches from a steep face of a rock cliff and 

descends extremely fast by falling and subsequently rolling, sliding or bouncing and finally stopping 

(Varnes, 1978). Commonly rockfalls are concentrated where screes are developed. Rockfall activity 

depends primarily on geological, tectonic and topographical factors but commonly these processes 

are sensitive to the meteorological conditions (Fig. 1). Rockfalls are common in mountain areas and 

represent a serious threat due to their high propagation velocity that, independently from the volume 

involved, can be extremely dangerous to buildings, roads and people. Therefore, it is necessary to 

preliminarily identify those areas, most vulnerable to this type of process, in order to pursue a 

territorial planning with consciousness of hazards and risks. Rockfall hazard analysis over wide 

territories is rather difficult, because many variables, which are difficult to identify at that scale, 

have to be taken into account (i.e., rock fracturing, water presence etc.). Hence, there is a need for 

identifying methodologies capable of reproducing complex processes involved in rockfall 

occurrence and propagation and to preliminarily identify the areas prone to this type of hazard. 

Methodological contributions contain rockfall susceptibility together with hazard assessment and 

zoning, rockfall initiation and runout modeling, design and performance evaluation of rockfall 
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protection systems such as fences, ditches or forests (Piacentini and Soldati, 2008). Although 

rockfalls involve smaller rock volumes compared to other landslide types (e.g. deep gravitational 

slides), rock fall events also cause severe damage to buildings, infrastructures and lifelines due to 

their unexpected frequency, their easily release and high kinetic energy (Rochet, 1987). 

 

Figure 1 - a) Basic parameters influence slope stability (modified after Volkwein et al., 2011). 

b) Slope failures related to geological structures (modified after Clastonburry and Fell, 2000; 

Stead and Wolter, 2015). 

To highlight that local geology is one of the major factors for slope instabilities, the individual 

characteristics of two selected sites are presented, the Skolis Mt and the Acrocorinthos study-sites. 

These localities can represent a prominent risk for inhabitants and infrastructure and have therefore 

been the subject for field analyses (Koukouvelas et al., 2015; Zygouri and Koukouvelas, 2015). Both 

areas are controlled by large scale tectonic features and have experienced strong earthquake shaking 

and consist of similar lithological units. 

3. Material and Methods 

Classification of slope mass movements is mainly based on materials and types of mechanism. The 

study of slope instabilities requires a complete collection, organization and interpretation of 

historical, geomorphological and geological data, both from field and remote sensing surveys. There 

have always been two different kinds of approach in the study of slope instabilities: the 

geomorphological and the structural prospect (Fig. 1). By the integration of these two kinds of 

approach it is possible to describe their geometry and their controlling factors in order to evaluate 

susceptibility of rock slope instabilities and estimate the hazard originated from such phenomena. A 

detailed characterization and interpretation of slope instability phenomena is possible through 

analysis and synthesis of a complete series of field data integrated with remote sensing information. 

The comparison of different data sources (archival searches, eye - witness accounts and aerial or 

satellite photo interpretation) allows enriching the cartographic database and precisely confining a 

certain instability phenomenon verified in the past (Giardino et al., 2004). 

3.1. Rockfall release areas 

Various techniques have been implemented on rock slopes to characterize and examine them, 

ranging from field surveys to remote sensing. Traditional rock slope investigations often initiate 

with field observations of the rock mass, including intact rock descriptions and discontinuity 

measurements and characterization. The simplest way to detect a source area is to use the slope angle 

threshold (Guzzetti et al., 2003) or to add some other criteria as the presence of cliff areas, lithology 

conditions, i.e. lithology alternations, and tectonics (Jaboyedoff and Labiouse, 2003). We emphasize 

also the importance of tectonic damage on rock masses (i.e. Marinos and Hoek, 2002). This damage 

reduces the strength of rock masses and also provides the kinematics required for slope 

displacements (Fig.1b). Hence, the factors affecting a rock fall area are summarized by Jaboyedoff 

and Derron (2005): 
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 Morphology: slope angle, height of slope, exposure 

 Geology: rock types and weathering, variability of the geological structure, bedding, type of 

deposits 

 Fracturing: joint sets and their trace lengths, etc. 

Depending on the material, the morphology and the presence of weakness zones or other external 

factors the scale of rock falls can vary from small to large sections of slope to entire mountain flanks 

and ridges (i.e. Crosta et al., 2006). 

3.2. Rockfall trajectories – Empirical statistical models 

Rock mass commonly breaks up when impacting on the ground during its descent. This breaking 

produces individual rock blocks, or fragmental blocks, which can move independently when the size 

of the detached rock mass is roughly less than 105 m3 (Evans and Hungr, 1993). It is important, for 

practical purposes, to delineate the movement of a falling rock along a slope called its trajectory 

(Fig. 2). The trajectories of falling rocks can be described as an approximation of four types of 

motion free fall, rolling, sliding and bouncing of a falling block (Descoeudres, 1997). The distance 

that the fallen rocks cross, is referring as travel distance. The estimate of this distance is considered 

as important in terms of hazard analysis and is based either on field/empirical statistical or dynamic 

techniques (Okura et al., 2000; Legros, 2002; Corominas et al., 2005; Ruiz et al., 2015). The type 

of model to be applied for estimating travel distance, is chosen according to the mapping scale of 

the area and the purposes of the results. Empirical models suggest an easy way to assess and predict 

travel distances of fallen rocks. There are two basic empirical models widely implemented: the reach 

angle and the shadow angle. 

3.2.1. Reach angle 

The reach angle evaluation introduces the definition of the release point of a rock fall as it is 

described above. The concept of the reach angle is based on an energy line applied from the rock 

fall source point dipping downslope along its trajectory path (Fig. 2). The fallen rock will stop either 

when it loses its kinetic energy or when blocked on a barrier (e.g. a tree cluster), so the path 

constrains its downward course (Heim, 1932; Corominas, 1996; Jaboyedoff and Labiouse, 2003; 

Copons et al., 2009). The reach angle calculated by the H/L ratio (Fig. 2) is equivalent to the 

Fährböschung angle (Heim, 1932; Scheidegger, 1973), and travel angle (Cruden and Varnes, 1996) 

with the term reach angle being the most popular. 

 

Figure 2 - a) Simplified sketch showing the required calculated parameters for the 

determination of reach and shadow angle (modified by Copons et al., 2009). b) Example of 

the determination of both angles in a satellite image. 
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3.2.2. Shadow angle 

The shadow angle method defines the talus apex as the point that a fallen block can either travel down 

slope or can attain a stability mode by accumulating talus scree. Evans and Hungr (1993) proposed that 

the kinetic energy that rock blocks attain during their fall along the steep slope is significantly 

diminished immediately after the first impact on the ground. Thus, the travel distance of the fallen 

block after the ground impact does not depend on the height of the rock fall release point but 

incorporates the point that the farthest fallen blocks stop which shape the minimum shadow angle 

envelope. This angle is determined as a common geometrical problem where the arctangent of angle β 

is calculated (Fig. 2). It is also independent of time since it does not require the study of a single rockfall 

incident but the maximum point that a block can reach whenever and whatever way it occurred. 

4. Application of methods in North Peloponnese 

We selected two case studies in order to apply these two models that comprise a common toolbox 

in literature about rockfall phenomena. The area of North Peloponnese is significant for this kind of 

study. It combines weather conditions that favour flash floods and is dominated by steep slopes due 

to the presence of impressive carbonate fault controlled escarpments. Therefore, it highlights strong 

seismicity both onshore and offshore but on the other hand is constantly developed and populated. 

Thus, it favours the instability phenomena and its growing development assigns them as risk factors 

for its unhindered course. We chose the areas of Skolis Mt and Acrocorinthos in order to study slope 

instabilities. The first area has suffered a strong earthquake over the last decade that make known 

the problem that the west flank of Skolis Mt. is a rockfall terrain. The second area is an area of 

recognised cultural value that suffers from time to time strong earthquakes and from slope instability 

incidents as well. 

4.1. Rockfall release areas 

Heim (1932) suggested that the required treaty for rock fall initiation is the slope steepness. Apart from 

topography, Keefer (1984) charged moderate to strong earthquakes as responsible triggering factors 

for slope failures. Both studied areas present rock fall distribution related to faulting and induced 

seismicity. The steepness of the Skolis Mt. slope reaches up to 70°, whereas the Acrocorinthos cliff’s 

slope is almost 50°. The lithology of the rockfall source areas for both case studies is fractured 

Mesozoic carbonate rocks, whereas the orientation of analogue and digital air photos revealed that the 

rockfall source area elevation range from 450 m το 970 m for the Skolis Mt and from 350 m to 500 m 

for the Acrocorinthos and that both slopes are located within a 300 m buffer as Wagner et al. (1990) 

suggest for fault influence on slopes (Fig. 3). Structural surveys highlight at least three major sets of 

discontinuities for both areas including bedding planes. They form wedges whose axis dip down to the 

slope (Fig. 4). Thus, the geometry of the slope is favourable for slope failures. Especially the height 

and angle of slopes, the presence of convexity on its surface may be responsible for topographic site 

effects (Athanasopoulos et al., 1999; Bouckovalas and Papadimitriou, 2005). The progressive role of 

discontinuities has a major impact on the stiffness of the rock mass and can become potential sliding 

planes for the detachable blocks but is not enough for the initiation of a rockfall (Baillifard et al., 2003; 

Stead and Wolter, 2015; Mavrouli and Corominas, 2015). 

 

Figure 3 - Rock fall release areas in a) Skolis and b) Acrocorinthos steep rock slopes. 
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Figure 4 - Kinematic slope stability analysis accounting for planar and wedge sliding for a) 

Skolis Mt and b) Acrocorinthos. 

4.2. Rockfall trajectories 

The scree slope that is forming beneath the carbonate slope is the place where all fallen blocks are 

concentrated on a resting point. This means that they lose their kinetic energy that has been already 

partially lost since their contact to the ground. During their travel, fallen rock blocks can either break 

down into smaller fragments or bounce on the steep slopes and roll over the scree slope (Fig. 5a). 

During the 2008 earthquake eyewitnesses declared that large blocks of rock with volumes ranging from 

3 to 20 m3, rolled and toppled down at the Santomerion community boundaries with a couple of them 

entering into village (Fig. 5b). In Acrocorinthos as well, rock volumes less than 100 m3 are spread out 

across the scree of moderately to gently inclined slope (Fig. 5c). Several seismic events such as the 

1858, the 1924 and the 1981 events probably motivated the rockfall initiation. Isolated boulders and 

their correlated rockfall source areas recognized in air photo archives and satellite images were used 

in order to estimate reach and shadow angle values. Comparing our values with the values calculated 

in other areas of the Mediterranean area our case studies resembles similar slope behaviors (Fig. 6a, b). 

 

Figure 5 - a) Schematic representation of the travel of a fallen rock block. The inset figure 

shows an example of an isolated boulder bouncing in the recent Lefkas earthquake 

(November 2015). b, c) Propagation of fallen rock block terrains in Skolis Mt and 

Acrocorinthos. 
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Figure 6 - Plots of Mediterranean rock fall sites parameters. a) Plot of rock fall size vs. 

tangent of the reach angle. b) Plot of rock fall volume vs. tangent of the shadow angle. 

Our work revealed that the uniformitarianism, the guiding principle of geology, suggest that the 

same geologic and geomorphic situations that led to past and present instabilities will be responsible 

for future slope instabilities. Therefore, the minimum shadow angle of 24° consists a threshold value 

that captures the farthest travelled boulder and highlights the zone of potential rock fall hazard for 

both the Skolis Mt and the Acrocorinthos area (Fig. 7). 

 

Figure 7 - Shaded relief maps showing the evolution of rock fall sites in different dates for 

Skolis Mt (upper figures) and Acrocorinthos (bottom figures). 

5. Discussion and conclusive remarks 

It is obvious that hazard caused by boulders that spread beyond the talus deposit can be calculated. 

The calculated values can be implemented in GIS platforms. These platforms can become a valuable 

tool in order to estimate the hazard outlined by rockfalls in a given area. The vulnerability of people 

to rockfalls and to any natural hazard is identified by the relationship between the occurrences of 
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extreme events, the proximity of houses or life lines to these occurrences and the degree of public 

awareness and state of preparedness. The concept of the hazard as the intersection of the human 

system and the natural process, in our case the slope instability phenomena, is illustrated in fig. 8. 

The required condition to establish a hazard for public safety is the interaction between the above 

mentioned systems. The analysis by using aerial photography and satellite images comprises a quick 

and valuable technique, because it provides a three –dimensional overview both of the studied terrain 

and the human activities on it. In addition, the application of shadow angle does not require 

correlation of the release points with particular isolated boulders, but needs the identification of the 

farthest boulders that have fallen in the recent past. Today’s rockfall hazard issues and estimation of 

the risk of rock fall are considered essential. Recent earthquakes in Alkyonides islands (Marinos et 

al., 1986), Parnitha Mt (Pavlides et al., 2002), Movri Mt (Koukouvelas et al., 2010, 2015), Lefkada 

(Papathanassiou et al., 2013) and Cephalonia island (Papadopoulos et al., 2014) showed that Greek 

type earthquakes are usually accompanied by small to large scale slope instabilities, including 

commonly rockfalls. Taken together the recent impacts of ground shaking in Greece and the 

preliminary results from two areas of high seismic risk we identify that the method used can give 

reliable results. Our analysis indicates that the rockfall hazard over the north Peloponnese is almost 

homogenous in term of their geology, steepness of slope, and climatic and tectonic forcing. 

Especially, the evolution of the studied rockfall terrains shows that the seismic impact prevail the 

climatic impact in areas encountered tectonic forcing. Considering that more than 12% of the 

instability phenomena recorded in Greece is earthquake induced (Koukis et al., 2015) and their 

mitigation is cost and time consuming the need for objective and accurate tools is absolutely 

necessary. These results can better quantify the risk of rockfall and improve hazard and risk maps. 

However, it is becoming increasingly important that researchers from different disciplines should 

establish close collaboration in order to efficiently provide a supplementary view of the operative 

slope processes, since geomorphology, structural geology and engineering geology can provide 

different aspects in the examination of a rock slope process. 

 

Figure 8 - The impact of natural hazard on a vulnerable system as the human polulation. 
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