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ABSTRACT 

Monitoring of tunnel deformation during their excavation is based on measurements of dis­
placements of either single points or contraction of selected distances across the tunnel section. 
Such data, however, due to measurement errors and local effects may not be consistent with each 
other, and cannot describe precisely the real behavior of the ground/support shell. In the present 
study, a theory introduced to estimate the ground surface strain field on the basis of surveying 
measurements is adopted in order to estimate the average strain of tunnel sections. This theory is 
based on the assumption of uniform deformation across the tunnel section and of measurements 
affected by random errors only and uses repeated monitoring data (displacements or distance 
changes). 

The proposed theory was applied to deformation data from representative sections of the Ach-
eloos Diversion Tunnel (Western Thessaly, Greece), subject to nearly uniform strain. Mean strain 
changes were estimated for various time intervals following the excavation. About one year after 
the excavation, maximum horizontal strain of -1.3%, accompanied by practically negligible vertical 
strain, was computed. 

1 INTRODUCTION 

Deformation is a main factor controlling the failure and cost-effectiveness of underground exca­
vations. For this reason deformation monitoring has become a fundamental requirement for assess­
ing the stability of underground openings (Kaiser 1993). Deformation data are based on in situ geo-
technical measurements (extensometers etc.) and tape measurements of selected distance 
changes, both providing information on local or relative dislocations only, or optical, geodetic re­
cords, which define absolute displacements of selected control points of tunnel sections (Konto­
gianni & Stiros 2001). 

A main characteristic of the observed tunnel deformation through soft rocks and soils, however, 
is that it does not correspond to uniform radial section closure (Fig. 1a) that could be accurately 
measured by any of the above methods. On the contrary, strain in many tunnels is uniform across 
the deforming area, but the amplitude of radial displacement is variable along the tunnel periphery 
(non-radial deformation, Fig. 1b; Schubert & Schubert 1993; Kontogianni & Stiros 2003); further­
more, in many cases non-uniform and non-radial deformation is observed (Fig. 1c) and occasionally 
causes instabilities and failures (i.e. Tymfristos tunnel and Kallidromo tunnel, Greece, Kontogianni 
et al. 2004). However, in the case of non-radial deformation (either uniform or not, Figs. 1b,c), the 
strain of tunnel sections cannot be directly calculated. 

In addition, deformation data are usually affected by measurement errors and local instability ef­
fects, and hence, where redundant observations are available, observations are not compatible with 
each other (Fig. 2b) and the deformation tensor cannot be estimated. In the past, there have been 
efforts at solving this problem on the basis of graphical techniques (Moosavi and Khazaei 2003). 

In the present paper, we present an analytical solution inspired from the studies of seis­
mic/tectonic deformation in areas of strike slip faulting. This approach is justified from the fact that 
in strike slip faulting environments, deformation is nearly planar, as is also assumed to be the case 
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with most tunnel sections; in general, a 2-dimensional model (i.e. on the basis of plane strain condi­
tions) is assumed to simulate tunnel excavation (Hoek 2000; Leca et al. 2000). 

The basic assumption of the proposed method is that deformation is uniform, i.e. that strain (i.e. 
the ratio of the distance change to the distance between two control points) is simply a function of 
the orientation of the line defined by two control points. 

radial, uniform non-radial, uniform non-radial, non-uniform 
deformation deformation deformation 

Figure 1. A sketch to show different types of strain field across tunnels (simplified from Kontogianni et al. 2004). 

Figure 2. a) Observed line length changes across a tunnel section, using a tape, b) sketch of the deformed sec­
tion (exaggerated): observations are not compatible with each other, and extended lines do not fit to an ellipse, 
mainly due to measurements errors. 

2 ESTIMATION OF AVERAGE STRAIN IN TECTONICALLY ACTIVE AREAS 

Frank (1966) based on the fact that strike-slip and transform faults produce two-dimensional 
uniform strain on the ground surface, was the first to compute the average strain field across such 
seismic regions. His study was based on repeated measurements of triangulation networks cross­
ing fault zones and he estimated the average principal strains of his study areas. A basic require­
ment for this analysis is that measurements include random errors only. This analysis was later 
generalized and applied to several studies of surface deformation of the San Andreas, California, 
fault zone (Prescott et al. 1979; Savage 1983; Fig.3) and other regions. 

In this analysis, it is assumed that a certain network of η lines covers a study area, for instance 
that of figure 3. Between two surveys the length of line i of initial length Li was increased by an 
amount AL,. Strain along this line is defined by the equation ε, = ΔΙ_,/Ι_ί. Assuming a uniform strain, 
the observed strain ε, along this line is related to En, E22 and E12, i.e. the tensor components of 
strain along the χ and y axes and the shear component of strain in a direction of the χ axis (Fig.4), 
by the equation: 

ε, = Ει ] · sin2 Θ; + E12 · sin 2Θ, + E22 · cos2 9j eq 1 

where Θ, is the approximate azimuth of the line (measured clockwise from north). 
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Figure 3. Map of a triangulation network at San Andreas Fault zone, California established for studying the 
strain tensor. Major faults are shown in black lines. Despite faulting, strain is assumed uniform, i.e. depending 
on the azimuth of the observation line only. After Savage (1983) simplified. 

Figure 4. Geometric representation of our model, a circle (corresponding to a part of the earth's surface) de­
formed to an ellipse. All parameters for calculating the strain field based on the Frank's (1966) theory are 
shown. 

Each observation of line length change contributes with one equation of this type, and finally a 
system of η linear equations is formed. In this system En, E22 and E12 are unknowns. Solving this 
system using standard least square techniques, En, E22 and E12 as well as their uncertainties, can 
be estimated. At a second step, the principal (maximum and minimum) strains and their directions 
are calculated based on the equations: 
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where φ is the azimuth of direction of maximum principal strain (£max). 

eq2 

eq3 

eq4 

3 ESTIMATION OF T H E A V E R A G E STRAIN IN A T U N N E L 

The approach of Frank (1966) permits to estimate the average deformation (average strain ten­
sor) of a horizontal area in the earth's surface assuming that this deformation is associated with in­
significant vertical deformation (plane strain conditions). There are lines of evidence indicating that 
in most cases deformation of tunnel sections can also be described by plane strain conditions, i.e. 
that deformation is limited to a vertical plane, and deformation along the tunnel axis is a second-
order effect (Hoek 2000; Leca et al. 2000). 

Furthermore, it can be assumed that the deformation of the tunnels sections is uniform (i.e. par­
allel lines in the same section have the same strain) and monitoring data of at least a number of 
tunnels are not contaminated by systematic errors and blunders. Hence, the approach described 
above for horizontal surfaces can be adopted for the vertical surfaces of tunnel sections and their 
average strain can be computed, using the equations described above. 

Schematically, this approach can be described as the computation of the parameters of an el­
lipse resulting from the deformation of a circle (i.e. of a tunnel section) of unit diameter (Fig. 5). 

Figure 5. Due to strain, a circle of unit radius is transformed to an ellipse. Equations and techniques described 
above permit to calculate the length and orientation of the main axes of this ellipse. 

4 A CA SE STUDY 

The approach described above was applied to the analysis of the deformation of a segment of 
the Acheloos Diversion Tunnel, western Thessaly, Greece. This tunnel was selected as a case 
study because it satisfies the requirements of the method explicitly analyzed above. In particular, 
the deformation of the tunnel sections is assumed uniform along long distances, the quality of 
measurements is high, and redundant measurements for a number of sections (see below) were 
available. This monitoring record covered a period of >400 days. 

4.1 The Acheloos Diversion Tunnel, western Thessaly, Greece 

The Acheloos River Diversion Tunnel, is designed to be 17.4 km long with an internal diameter 
after lining of least 6 m. Excavation is still active (May 2004) with a full face open shield TBM (con­
struction from WIRTH) with an excavation diameter of 7.1m. Tunneling commences from water out­
let station towards inlet with an upwards inclination of 0.3% mean value. During the first 3.5km up­
stream, tunneling advanced through high strength limestones, interchanges of cherts, marly cherts 
and cherty siltstones and members of the Pindos Flysch (silt-clay and sand-stones, Sfeikos & Mari-
nos 2004). 

However, along a distance of 30m, when the tunnel entered to a zone of flysch (siltstones 

1921 



and sandstones) probably corresponding to a thrust zone (ch.16+250m to 16+280m, at ~400m 
overburden), observed displacements were about one order higher than in the adjacent limestone 
sections, despite the relatively stiff support (steel ribs HEB140/75cm, wire mess T140, 12cm shot-
Crete shell). Deformation continued for more than 12 months after excavation and led to cracking 
and detachment of shotcrete, additional contraction of ~6cm, floor heave and lateral displacement 
of preconstruction invert. The support measure lining was subsequently repaired (new steel ribs 
HEB140 and repairs to the shotcrete shell) and deformation was finally stabilized. No significant de­
formation to the adjacent sections was, however, observed. 

Deformation monitoring of Acheloos Diversion Tunnel was based on measurements of dis­
tances across tunnel section with a tape extensometer of high accuracy (0.13mm/10m, Dunnicliff, 
1993). Five pins were fixed at each control section and 6 different distances were measured (Fig.6). 
The complete set of measured distances for 8 different control sections covering a distance of more 
than 1.5km along the tunnel axis and ~400days were available for our study. In the following 
paragraph we analyze the estimation of the strain field in one of these sections (ch. 16+276m), lo­
cated in the weak zone of increased deformation. 

Figure 6. Drawing of a typical control section of Acheloos Diversion Tunnel. The 6 distances repeatedly meas­
ured with a convergence tape are marked L1 to L6. 

4.2 Computation of the final strain tensor 

The cumulative (final) deformation of the 6 control lines (for instance 0.0033 for line L1, corre­
sponding to a total length change of 6.8mm along a distance of 2.086m), surveyed for a period of 
~400days after section excavation, and the azimuth of each line (for instance 253° for line L1, 116° 
for line L2 etc.) were the input parameters to the equation for the strain tensor estimation (eq.1). 
One equation was written for each line; thus, the following system of 6 linear equations with 3 un­
known parameters (strains En, E12 and E22) was formulated as below: 

0.0033 = En · sin2(253°)+ E12 · sin(2· 253°) + E22 · cos2(253°) 

0.0136 = E„ · sin2(116°) + E12 · sin(2· 116°)+ E22 ·cos2(l 16°) 

0.0172 = E„ ·sin2(99°) + E12 · sin<2·99°) + E22 ·cos2(99°) 

0.0007 = E,, ·sin2(201°)+ E12 ·sin(2·201°)+ E22 ·cos2(201°) 

0.0000 = Ei 1 · sin2(l72°)+ E12 ·sin(2· 172°)+ E 2 2 · cos2(l72°) 

0.0150 = E,, · sin2(94°)+ E12 · sin(2· 94°) + E22 · cos2(94°) 

Solving the above system on the basis of the least squares method and the Mathematica soft­
ware, the following strain tensor parameters and their uncertainties were obtained: 
En = 0.0105 ±0.0023 
E12 = -0.0054 ±0.0034 
E22 =-4.07*10~5± 0.0032 

It is obvious that E22 (strain value at the vertical direction) is statistically not significant, in con­
trast to the En and E12 strain tensor components. The principal strain values were subsequently 
calculated from eqs. 2, 3 and 4: £max = 0.013, Emm = 0 and φ = 0.4°. Finally, the deformed section 
was designed using AUTOCAD software (Fig.7). 
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Figure 7. Schematic comparison of the initial and of the final (exaggerated) form of a representative section of 
Acheloos Diversion Tunnel (ch. 16+276m), 400 days after the excavation. 

Similar calculations were made using deformation data collected at various times since the 
section excavation. This analysis revealed that the strain field of the study sections was gradually 
changing with time, as is schematically shown in figure 8, and that deformation was accumulating 
until the initially circular section was transformed to an ellipse. 

initial section 

deformation 

scale 

2 % 

t = 15 days t = 40 days t = 75 days 

t = 120 days t = 250 days t = 400 days 

Figure 8. Progressive change of the section strain field along time. Horizontal strain (εχ) accumulates gradually 
to 1.3% (corresponding to maximum strain), whereas vertical strain remains 0. 
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5 CONCLUSIONS 

The Frank's (1966) methodology for calculating ground surface strains across several seismic 
regions on the basis of repeated geodetic measurements is adopted for the estimation of the aver­
age strain of tunnel sections during excavation. The analysis uses the deformation monitoring data, 
either geodetic or geotechnical (extensometers etc.), and estimates the strain tensor parameters by 
least squares calculations. The only requirements are first, uniform deformation across the section 
and second, measurements influenced by random errors only. Both these requirements are fulfilled 
by several tunnels cut through homogeneous ground conditions and following careful monitoring 
programs. 

The application of this methodology on the Acheloos Diversion Tunnel data showed that the de­
formed section corresponds to an ellipse, with major axis at the vertical direction; the horizontal 
contraction reaches 1.3% after ~400 days after excavation but no vertical deformation is calculated. 
Furthermore, the calculation of the strain field parameters for several time periods after excavation 
reveals the kinematic response of the tunnel section to the excavation along time. 
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