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Abstract 

On 26 December 2004 and 28 March 2005 occurred two of the largest earthquakes 
of the last 40 years between the Indo-Australian and the southeastern Eurasian 
plates, with moment magnitudes Mw=9.1 and Mw= 8.6 respectively. Complete data 
(mb > 4.2) of the post-1993 time interval (Fig. 1) have been used to apply Poisson 
Hidden Markov Models (PHMM in identifying temporal patterns in the time series 
of the two main shocks. Each time series consists of earthquake counts, in given and 
constant time units, in the regions determined by the aftershock zones of the two 
main shocks. In PHMM each count is generated by one of m Poisson processes, that 
are called states. The series of states is unobserved and is, in fact a Markov chain. 
The model incorporates a varying seismicity rate; it assigns a different rate to each 
state, and detects the changes of the rate over time. In PHMM, unobserved factors 
related to the local properties of the region, affect the earthquake occurrence rate. 
Estimation and interpretation of the unobserved sequence of states that underlie the 
data contribute to a better understanding of the geophysical processes that take 
place in the region. We applied PHMM to the time series of earthquakes preceding 
the two main shocks, and we estimated the unobserved sequences of states that un­
derlie the data. The results showed that the region of the 26 December 2004 earth­
quake was in state of low seismicity during about 400 days before the earthquake 
occurrence. On the contrary, in the region of the 28 March 2005 earthquake a tran­
sition from a state of low seismicity to a state of high seismicity was observed imme­
diately after the occurrence of the big earthquake of 26 December 2004. 
Key words: Seismicity rate, Markov chains, Hidden states. 

Περίληψη 

Στις 26 Δεκεμβρίου 2004 και στις 28 Μαρτίου 2005 σημειώθηκαν δύο από τις ισχυρό­
τερες σεισμικές δονήσεις των τελευταίων 40 χρόνων ανάμεσα στη Ινδο-Αυστραλιανή 
και στην βορειοανατολική Ευρασιατική πλάκα, με μεγέθη ροπής Mw=9.1 και Mw= 
8.6,αντίστοιχα. Πλήρη δεδομένα (mb > 4.2) της μετά το 1993 χρονικής περιόδου χρη­
σιμοποιήθηκαν για την εφαρμογή των Λανθανόντων Μοντέλων Μάρκοβ με σκοπό την 
αναγνώριση των φάσεων σεισμικότητας στις χρονοσειρές των δύο ισχυρών σεισμών. 
Η κάθε χρονοσειρά αποτελείται από τις μηνιαίες συχνότητες των σεισμών που ση­
μειώθηκαν στις μετασεισμικές ζώνες των δύο κύριων σεισμών. Ο καθορισμός των με-
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τασεισμικών ζωνών των δύο ισχυρών σεισμών βασίστηκε στη χωρική κατανομή των 
μετασεισμών τους. Στα Λανθάνοντα μοντέλα Μάρκοβ η κάθε παρατήρηση παράγεται 
από μία από m κατανομές Poisson οι οποίες οναμάζονται καταστάσεις. Ηχρονοσειρά 
των καταστάσεων είναι μή παρατηρούμενη και στην πραγματικότητα αποτελεί μία 
Μαρκοβιανή αλυσίδα. Το μοντέλο ενσωματώνει μεταβαλλόμενο ρυθμό σεισμικότητας, 
αντιστοιχεί διαφορετικό ρυθμό σεισμικότητας σε κάθε κατάσταση και αναγνωρίζει τις 
μεταβολλές του ρυθμού σεισμικότητας στο χρόνο. Στα Λανθάνοντα μοντέλα Μάρκοβ, 
μή παρατηρούμενοι παράγοντες που σχετίζονται με τις τοπικές ιδιότητες της περιοχής, 
θεωρούνται ότι επενεργούν στο ρυθμό σεισμικότητας. Η εκτίμηση και η ερμηνεία της 
μή παρατηρούμενης ακολουθίας των καταστάσεων που υπόκεινται των δεδομένων 
συμβάλλουν στην καλύτερη κατανόηση των Γεωφυσικών διαδικασιών που λαμβάνουν 
χώρα σε μία περιοχή. Στην εφαρμογή μας εφαρμόσαμε τα Λανθάνοντα Μοντέλα Μάρ­
κοβ στις χρονοσειρές των δύο ισχυρών σεισμών και εκτιμήσαμε την ακολουθία των 
καταστάσεων που υπόκεινται των δεδομένων. Τα αποτελέσματα που εξήχθησαν έδει­
ξαν ότι για περίπου 400 μέρες πρίν από τον ισχυρό σεισμό του Δεκεμβρίου η περιοχή 
βρισκόταν σε κατάσταση χαμηλής σεισμικότητας. Αντιθέτως, στην περιοχή του ισχυ­
ρού σεισμού του Μαρτίου παρατηρήθηκε μεταβολή στην κατάσταση σεισμικότητας, 
από κατάσταση χαμηλής σεισμικότητας σε κατάσταση υψηλής σεισμικότητας, αμέσως 
μετά τον ισχυρό σεισμό του Δεκεμβρίου. 

Λέξεις κλειδιά: Ρυθμός σεισμικότητας, Μαρκοβιανή αλυσίδα, μή παρατηρούμενες 
καταστάσεις. 

1. Introduction 

Seismic events do not occur at regular time intervals, making the use of standard time series rather 
difficult. Time series with zeros can not be analysed with standard time series. An idea that is used 
in practice for the detection of temporal seismicity variations, is to count the number of events in a 
given time period, e.g. one month, and then to examine the resulting series. The Poisson 
distribution is the most adequate one to describe counts. One of the most widely known Poisson 
properties is that the mean of the counts equals the variance. In some cases, however, the mean is 
greater than the variance and the data are ovberdispersed. It is known that Poisson Mixture Models 
(PMM) can be applied to overdispersed heterogeneous data (McLachlan and Peel 2000, 
Titterington et al. 1985). However, data collected from the same area in successive time intervals 
tend to be dependent and, therefore, appropriate models for statistical modeling must 
accommodate this dependent structure. A class of models that allows for dependence between the 
data in addition to overdispersion is that of PHMM. The PHMM are extensions of the well known 
PMM and they decay to PMM in case of independent observations. 

In PHMM each observation is generated by one of m Poisson distributions, called states. These 
states are unobserved (i.e. cannot be observed directly), hence the name PHMM. Each state has a 
different seismicity rate, while the series of states is in fact a Markov chain. Which state will 
generate the next observation depends on which state generated the current observation, through 
the transition probability matrix of the Markov chain. PHMM allow us to estimate the unobserved 
sequence of states that underlie the observation sequence. In this way we may reveal unknown 
properties of the mechanism that generated the data, and classify the observations with precision 
and objectivity. A recent PHMM application in identifying seismicity patterns can be found in 
(Orfanogiannaki 2006). 

PHMM do not assume a constant rate for a long period of time. They incorporate a varying 
seismicity rate which is more realistic than a long-term constant rate. In fact, when a long-term 
constant rate is assumed short-term variations in seismicity are disregarded, although short-term 
variations in seismicity are important for the evaluation of the seismic activity in a region. PHMM 
assign a particular rate to each state. In this way, observations are classified according to the rate 
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based on the rate that was determined for the previous observation. Additionally, changes to 
seismicity rate are detected. 

01.01.73 24.06.78 15.12.83 06.06.89 27.11.94 19.05.00 09.11.05 

Date 

10.0 

Figure 1 - Time-magnitude relationship for events occurring in the entire region examined 
from 01.01.1973 to 14.03.2006. The cut-off magnitude for completeness has been selected 

equal to mb = 4.2 for the post-1993 time interval 

2. Data 

The data sources are the USGS and ISC earth­
quake data files for the region E defined by the 
rectangle with coordinates -1.00°N-15.00°N and 
91.00Έ -100.00Έ. At first, this region was di­
vided into two sub-regions, Ν and S, based on the 
rapture zones of the two big earthquakes of 
26.12.04 and 28.03.05, respectively (Lay et al. 
2005). The solid line in the map (Fig. 2), shows 
the boundary between these two regions; the 
black stars correspond to the epicenters of the two 
main shocks. According to geophysical evidence, 
the rapture in the sub-region Ν was not uniform 
(Ammon et al. 2005). The rapture started in the 
southern part of the region and then propagated to 
the north. Based on the progress of the rapture, 
we divided sub-region Ν into two smaller regions 
Ni and N2 represented by the two dashed lines 
(Fig. 2). Data completeness analysis based on the 
magnitude-frequency relationship showed that the 
data in all regions are complete for Mb > 4.2 for 
the time interval from 1994 onwards. All data sets 
are actually discrete valued time series, since they 
count the number of events in twenty-three day 
time periods. This time unit was selected so as to 
have an integer number of periods covering the 
time between the two big earthquakes of 26.12.04 
and 28.03.05. Figure 2 - Map of the area 
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3. Poisson hidden markov models: definition and notation 

PHMM are discrete time stochastic processes that consist of an unobserved finite state 
Markov chain {Ct: t&N} having m states and an observed sequence of a non-negative 
integer valued stochastic process {St: teN} such that for all positive integers T, 
conditionally on Cfr)={Ct:t=\,...,T} the random variables Si,...,STare independent. 

The marginal distribution of S, is: 

m 

/»(*,)= Σ a f(st\X) 
j = l J ' J 

m ~-λ^ 
where α. > 0, i = l,...,/w, Σ a. = 1 a n d / ( s | X) = ,5 = 0,1,..., A > 0 

ι = 1 Λ · 

The conditional distribution of S, given ÓT) is: 

-λ. 
e ΆΛ 

• The transition probabilities of the Markov chain are: 

i.e. yy is the probability to move from state /, at time t-1, to state y at time t, for any states 
i,j=\,...,m and for anytime t=l,...,T 

4. Estimation of the unknown parameters 

• Estimation of the parameters of interest is obtained via the EM-algorithm (Dempster et al. 
1977). The EM-algorithm, though, may be significantly simplified using the "forward" a,(i) 
and "backward" b,(i) probabilities introduced by Baum et al. ( 1970)(/= 1,... ,m, t= 1,... ,7). 

• The "forward" probability at(i) is the joint probability of the past and present observations 
and the current state of the Markov chain: 

a t ( i ) = P ( s 1 , . . . , s t , C t = i ) 

The "backward" probability b,(i) is the conditional probability of the future observations 
given the current state of the Markov chain: 

*(.>p<. ...,e |c =0 

The computation of the "forward" and "backward" probabilities is based on recursive 
algorithms (Leroux et al. 1992). 

The indicator random variables u/t) and vjk(t), where u/t)=\, if C,=j and 0 otherwise and 
Ojk(t)=\ if Ct.f=j and C,=k are treated as missing data in the EM-algorithm. The EM-
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algorithm is an iterative algorithm that consists of two steps. If we denote as starting values 
the values (A/v..,/lm,y//v>)W), the two steps of the EM-algorithm are: 

Ε-step: Calculate u/t) and vjk(t) using equations 1 and 2, respectively. 

Equation 1 - Calculate u/t) 

J m 
Σβτ(0 

i = ì 

Equation 2 - Calculate ojk(t) 

at_x(i)bt(J)Y^ 
J m 

Σ « Γ ( 0 
Ϊ = 1 

M-step: Update the estimates γβ, i,j=l,...,m, Xj, i=\,...,m using equations 3 and 4, 
respectively. 

Equation 3 - Update yjk 

Z^w 
{new) _ t=2 

'jk ' Τ m 

ΣΣΜ<) 
/=2 /=1 

Equation 4 - Update Àj 

ι 

YjUj(t)st 

t=\ 

If the difference between the starting values and the new estimated values is less than 10-10, 
stop iterating, otherwise set as starting values the new estimated values and go to the E-step. 

The estimation of the unobserved state Ch at time t, that underlies the corresponding 
observed state S, is based on the probability: 

a (i)b(i) 

P(C =i\s ,s ) = -+ t— 
ι ι 1 m 

Σ aT(ì) 
7 = 1 

The state that maximizes the above probability consstitutes an estimate of Ct. 
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5. Analysis 

We applied PHMM to the entire region E, as well as to the sub-regions S, N, N} and N2. The model 
selection for each region was based on the AIC information criterion (Akaike 1974). Once the 
model has been selected (i.e. the number of states was determined), the model parameters 
estimates for each region were obtained via the EM-algorithm (Section 4). The Poisson rates and 
the transition probability matrix are illustrated in Table 1. Additionally, the unobserved sequence 
of states that underlie the data was estimated for each region. 

Table 1- Model Parameters estimates 

Segment 

E 

S 

Ν 

NI 

N2 

Number of 
components 

4 

3 

3 

2 

3 

Component 
Number i 

1 

2 

3 

4 

1 
2 

3 

1 

2 

3 

1 

2 

1 

2 

3 

Aie 

707.7 

344.0 

425.9 

298.9 

347.5 

Log-
likelihood 

-337.877 

-163.016 

-203.985 

-145.493 

-164.782 

Parameters estimates 

Poisson 
Rates 

λι 
4.85 

8.86 

9.61 

28.20 

1.78 

4.13 

13.15 

1.46 
5.21 

19.42 

1.38 

5.17 

1.29 

4.15 

18.15 

Transition Probability 
matrix 

/ 

\ 

0 0.963 0 0.03 

0.465 0.526 0 0.00 

0.104 0 0.658 0.23 

0 0 1 0 

0.966 0.016 0.018 

0.133 0.689 0.178 

0 0.573 0.427 

f 0.490 0.424 0.086^ 

0.406 0.495 0.099 

v0.213 0.787 0 , 

) 

Γ 0.911 0.089^ 

[θ.460 0.540 J 

'0.742 0.206 0.052^ 

0.803 0 0.197 

v0.334 0.666 0 , 

The application of PHMM to the complete data set for the entire region examined showed (Fig. 3) 
that the state of seismicity ranges only from 1 to 2 in the interval 1994 - 2002; that is, the 
seismicity is relatively low. From 2002 onwards a transition to higher states of seismicity is 
observed; that is, to states 3 and 4, with rates 9.61 and 28.20 (events/23days), respectively (Table 
1). To emphasize on the period of the increased seismicity, we narrow the time window examined. 
The seismicity states were further investigated for the time interval 2000 - 25.12.2004 (inclusive) 
for sub-regions N, N} and N2, as well as for the time interval 1.1.2000 - 27.3.2005 (inclusive) for 
sub-region S. 

Sub-region S was characterized by state 2 before the big earthquake of 26.12.04 which occurred in 
sub-regions N} (Fig. 4b). However, a transition from state 2 to state 3 of high seismicity was 
observed immediately after the occurrence of the big earthquake of 26.12.04. This may imply a 
triggering effect due to stress transfer from Nj to S. 

In sub-region Nj no state of high seismicity is observed (Fig. 4d) before the big earthquake of 
26.12.04. On the contrary, during about 400 days before the earthquake occurrence the state of 
seismicity is 1, that is, low seismicity prevails. The low seismicity observed in sub-region Nj is 
due to the fact that only one strong earthquake occurred in the time interval examined. This event 
though was deep and was not followed by aftershocks which would increase the seismicity in the 
region. In sub-region TV as well as in sub-region N2, the state 3 of high seismicity appears at some 
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certain points of time (Figs 4a, c), and these are attributed to aftershock activity associated with 
strong earthquake 

20 40 60 80 100 120 

Time (in 23 day periods) 

Figure 3 - Estimated states, C, that underlie the data against time (in 23-day periods) for the 
entire region (E) examined. The zero point of time is 01.01.1994 
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Figure 4 - Estimated states, C, that underlie the data against time (in 23-day periods): (a) 
sub-region N, (b) sub-region 5, (c) sub-region N2 and (d) sub-region Nh The zero point of 

time is 01.01.2000 for all the sub-regions examined 

6. Conclusions 

PHMM provide a diagnostic tool for identifying changes in seismicity states. The model 
incorporates a varying seismicity rate, detects the changes on the rate over time, and assigns a 
particular rate for each state. Estimation of the sequence of unobserved states that underlie the data 
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is attained with relative easiness. In the region of the 26.12.04 earthquake during about 400 days 
before the earthquake occurrence the state of seismicity is 1 ; that is, low seismicity prevails. On 
the contrary, in the region of the 28.03.05 earthquake, before it occurred, a transition from state 2 
to state 3 of high seismicity was observed immediately after the occurrence of the big earthquake 
of 26.12.04. Our analysis was based on the assumption that the time unit in which we count the 
number of events is fixed. It would be interesting to examine how the selection of alternative time 
units can change the estimated patterns. 
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