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Abstract 

Environmental data are often irregularly collected in the time domain due to 
various reasons which affect the field sampling schedule. As a result, data sets with 
uneven time step and time periods with no measurements are frequently built. Many 
problems occur in such data sets when processed owing to that neither statistical 
nor spectral analysis methods can easily be applied to them without any specific 
pre-treatment. In our study it is demonstrated a unified methodological scheme 
especially designed to deal with incomplete and unevenly sampled temporal data 
sets. This method consists of the CLEAN algorithm and the Factor analysis. The 
proposed methodology is successfully applied to data sets that belong to two 
sampling sites of the Greek river Strimonas. 

Key words: Missing data, Fourier transform, CLEAN algorithm, Factor analysis, 
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Περίληψη 

Οι περιβαλλοντικές βάσεις δεδομένων συχνά αντιμετωπίζουν τα προβλήματα της άτα­
κτης δειγματοληψίας στον χρόνο και της έλλειψης μετρήσεων για κάποιες περιόδους. 
Το γεγονός αυτό εμποδίζει τη χρήση των κλασικών μεθόδων ανάλυσης χρονοσειρών, 
οι οποίες απαιτούν σταθερό χρονικό βήμα ενώ ταυτόχρονα τα χρονικά κενά εισάγουν 
δυσκολίες στην χρήση των περισσοτέρων μεθόδων πολυδιάστατης σταπστικής ανάλυ­
σης. Η παρούσα εργασία προτείνει ένα πλήρες μεθοδολογικό σχήμα ανάλυσης χρονι­
κών περιβαλλονπκών δεδομένων με δειγματοληπτική ανομοιογένεια, στο οποίο γίνε­
ται χρήση του αλγορίθμου CLEAN και της Παραγοντικής ανάλυσης (Factor Analysis). 
Ο αλγόριθμος CLEAN έχει την ικανότητα να αναπλάθει τις αρχικές χρονοσειρές της 
βάσης δεδομένων χρησιμοποιώντας φασματική ανάλυση και να δημιουργεί καινούρ­
γιες με σταθερό χρονικό βήμα και έλλειψη κενών. Λαμβάνει χώρα δηλαδή τόσο συ­
μπλήρωση των κενών τ?/ς βάσης, όσο και «εξυγίανση» της δειγματοληψίας της. Η πα­
ραγοντική ανάλυση ομαδοποιεί τις μεταβλητές, ανάλογα με τον περιβαλλοντικό μηχα­
νισμό από τον οποίο κάθε μια ελέγχεται και επιπλέον αποκαλύπτει τη χαρακτηριστική 
χρονική διακύμανση της κάθε ομάδας. Το συγκεκριμένο μεθοδολογικό σχήμα εφαρ­
μόστηκε με πλήρη επιτυχία σε μια βάση υδροχημικών δεδομένων μεγάλης χρονικής 
περιόδου (1980-94) στον ποταμό Στρυμόνα. 

Λέξεις κλειδιά: Αλγόριθμος CLEAN, μετασχηματισμός Fourier, παραγοντική ανά­
λυση, περιβαλλοντικά δεδομένα. 
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1. Introduction 
Environmental data often suffer from uneven sampling ratio, due to a variety of reasons that 
modify researchers' field planning. Even though a steady sampling ratio intention usually exists, 
rarely can it be followed with precision. In addition, it is probable that the in situ sampling can not 
be effectuated simultaneously for a relatively big number of variables, resulting to time step 
inequalities between them. The above mentioned facts pose great difficulties when attempting to 
mine the collected data, as long as neither time series analysis nor many statistical methods can be 
applied to the later ones. Although methods of time series analysis have been fully developed, only 
a few examples exist regarding the application of these techniques to environmental data. In most 
cases, this is a result of the requirements of the spectral analysis techniques. These techniques are 
based on the fast Fourier transformation (FFT) and their major drawback is the requirement of 
evenly spaced time series. Thus, the environmental data must undergo a pre-processing process 
before study of temporal variation is undertaken. The simplest forms of pre-processing are the 
linear or polynomial interpolation of the dataset and the splines. More specifically for 
hydrochemical data, simple interpolation techniques have been used in order to fill missing values. 
The main disadvantage of those interpolation procedures is that they disregard the general 
periodicities of the time series, as they apply locally mathematical formulas, introducing artefacts 
into the original dataset. A number of methods have been proposed for solving the treatment of 
incomplete and unevenly spaced data problem without dominantly affecting the results. Among 
them the spectral approach using the CLEAN algorithm is the most effective one for 
reconstructing time series with large or occasional gaps and irregularities in their sampling ratio. 
CLEAN algorithm developed by Roberts et al. (1987) is able to recover effectively most of the lost 
information even for a significantly smaller number of data points (Vio et al. 1992). It has been 
successfully applied to the analysis of astronomical and geophysical data (Dreher et al. 1986, 
Duvall et al. 1984, Negi et al. 1990, Tiwari and Rao 2000). Negi et al. (1996) applied the CLEAN 
algorithm to time series of secular variation of dolomite abundance in deep marine sediments in 
order to study the various quasi-periodic earth processes, including mass extinction phenomena. 
Baisch and Bokelmann (1999) used the CLEAN algorithm to investigate temporal changes of 
elastic propagation velocities and more recently Helsop and Dekker (2002) used it in conjunction 
with Monte Carlo simulation to study palaeoclimatic data. 

In this paper we present, for the first time as far as we know, an application of CLEAN algorithm 
to hydrochemical data sets in order to convert them into time series with steady time step and 
study the temporal variation of the governing processes affecting their general form. After the 
transformation of the data sets using the CLEAN algorithm, multivariate statistical techniques can 
be successfully applied in order to group the variables with comparable mechanisms controlling 
their temporal variations. It is essential to mention that these techniques are ineffective or even 
impossible to apply when not dealing with compact databases (blank free) and this makes suitable 
pre-processing of information a high priority issue. Among the multivariate statistical techniques 
the Factor Analysis was chosen, as the most effective one. Thus, we demonstrate a methodological 
scheme consisting mainly of CLEAN algorithm and Factor analysis and show that it can be 
classified as a very important data mining tool which gives great insight into temporal variation of 
hydrochemical processes. The whole procedure is unified and automated using the MATLAB 
programming software. A variety of algorithms and scripts have been deployed to execute all the 
mathematical, statistical and visualizing operations necessary for the proposed methodology. In 
order to test and validate the method, hydrochemical datasets from two sampling sites of 
Strimonas River, northern Greece, were analysed. The data were collected under the inspection of 
the Greek ministry of agriculture. 
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2. Materials and Methods 

2.1. Study area 

River Strimonas has been monitored intensively for 14 years (1980 to 1994). Over 300 samples 
were collected for each one of the two sites, Mirtinos and Sidirokastro, at approximately one-
month intervals. All the samples were analyzed for nineteen different physical and chemical water 
parameters, common for both sites, such as conductivity (EC), pH, chloride (CI), sulphate (S04), 
acidic carbonic (HC03), total of anions and kations (ΤΑΚ), sodium (Na), magnesium (Mg), 
calcium (Ca), SAR, degree of alkalinity of sodium (Alk), total hardness (TH), dissolved oxygen 
(DO), rate of saturation (SAT), nitrite (N02), nitric (N03) ammonium (NH4) total phosphorus 
(TP), temperature of water (Tw). These two datasets were collected with the same procedures and 
protocol and were analysed using the standardised methods for water quality analysis. 

2.2. Methodology overview 

The proposed methodological scheme consists of three main parts: 1) Quality testing and 
preparation of the data. This part includes testing of the sampling conditions and detrending of the 
variables with significant trend, 2) application of the CLEAN algorithm in order to cleanse the 
time series by making their time step regular and the sampling points common for all variables, 3) 
application of Factor Analysis to the "CLEANed" data sets. This step includes a) extraction of the 
Factor loadings in order to group the variables and to investigate the major processes that control 
the data structure, b) calculation of the factor scores in order to study the temporal variations of the 
factors and 4) visualization and interpretation of the results. 

2.3. Quality testing and pre-treatment of the data 

2.3.1. Sampling conditions 

Prior to the application of the analysis procedures a more detailed study of the sampling conditions 
is needed. As to visualize the ordinance of the sampling points within the time domain and judge 
whether they are intentional or not, the indicator function is used (Stefanakos and Athanasoulis 
2001). This function is defined by: 

Equation 1 - Indicator function 

il, if variable value at r is obtained 
u(r) = \ 

[0, if variable value at r is missing 
and describes the existing value pattern of the measured data. Plotting of the former function offers 
a clear view of the sampling ratio intensions in real time and furthermore the percentage of the 
missing values can be estimated after averaging, using a steady time window, equal to the ap­
proximate sampling frequency. The reasons why the indicator function is a basic part of the pro­
posed method will be analytically discussed in paragraph 2.4.2. 

Moreover, in order to study the correlation between missing values and seasons, an existing-value 
diagram is also constructed. The existing-value diagram represents the existing-value seasonal 
averaging, plotted against time. The existing-value function is defined as: 

Equation 2- Existing-value function 

where u(j,ra): is the indicator function reindexed using the Buys-Ballot double index 
j : seasonal index (3 months) 
ra : ranges within a calendar year. 
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2.3.2. Detrending process 

Before continuing with the data mining procedure i.e. application of the CLEAN algorithm and the 
Factor analysis technique, it is necessary to detrend the time-series properly. Detrending process 
provides a suitable dataset for factorial analysis. The application of factor analysis to the detrended 
data correlates time-series with similar periodicities rejecting the correlation between time-series 
on the basis of their similar trends. It is also generally accepted that detrending improves spectral 
analysis results. There is a variety of methods to perform detrending processes. Notwithstanding, 
the dominant trend of the data can be removed just by fitting simple linear regression (Raike et al. 
2003). We choose the linear regression for our detrending process in view of its simplicity and 
suitability concerning our purpose. A main issue of that particular procedure is to detect variables 
with significant trends. Judgeless detrending of all our temporal data, according to their linear re­
gression, would be baseless without knowing whether their trends are reliable or not. In our case, a 
trend is defined as the presence of a non parametric rank correlation between a variable and the 
relevant time. As a correlation coefficient we use Kendall's tau-b, which examines only whether 
the temporal change is positive or negative, and disregards the magnitude of the change. Ranging 
from -1 to +1 it is a measure of the consistency of a monotonie relationship (Mitikka and Ekholm 
2002). A value of exactly -1 or +1 is obtained only if there is a consistent decrease or increase 
throughout the time series. A confidence level of PO.01 is used. Thus, there is a risk of 1 % that 
the test indicated a trend when actually there was no trend. The Kendall's Tau-b statistical test is 
especially suitable for environmental data because (i) it is not particularly sensitive to the missing 
values or outliers, and (ii) requires no assumption of normality (Helsel and Hirsch 1992, Raide et 
al. 2003). 

2.4. Application of the CLEAN algorithm 

As we mentioned in paragraph 2.2, we use the CLEAN algorithm in an effort to modify our data 
so that all variables have regular time step and their sampling points are common. After this kind 
of cleansing and compacting of the data set, it is ready to be treated as a set of time series. These 
time series can be compared to each other straight forward, without the need of any assumption, 
e.g. to consider a value representative for the period it belongs or average per month etc. 

2.4.1. Short description of the CLEAN algorithm 

CLEAN algorithm is an effective tool for spectral analysis especially appropriate for unequally 
spaced time series which was introduced by Robert et al. (1987). This technique is based on a 
complex one-dimensional version of the CLEAN deconvolution algorithm widely used in image 
reconstruction. The main advantages of the algorithm are (i) it removes artifacts related to missing 
data; (ii) it provides clean stable peaks (Tiwari and Rao 2000) and (iii) does not require a formal 
statistical test (Negi et al. 1996). Furthermore, Vio et al. (1992) showed that CLEAN algorithm is 
able to recover effectively most of the lost information even for significantly fewer number of data 
points. In CLEAN method, a raw (dirty) frequency spectrum is calculated using DFT, which 
contains real peaks and sidelobes. This dirty spectrum is then iteratively cleaned. The largest 
spectral peak is found and is subtracted with its side lobes from the original dirty spectrum. In the 
next iteration, the now largest peak is detected in the residual dirty spectrum and compensated for. 
The iterations are repeated until a defined noise level or number of iterations is reached. After the 
CLEANing of the dirty frequency spectrum, all side-lobes are removed. The final CLEAN 
spectrum is constructed from the accumulated clean spectral components, which are produced by 
the iterations. Inverse discrete fourier transform is then applied to reconstruct the time-series, using 
a predefined time step interval. Usually the time step interval for the IDFT is defined as the 
minimum time difference between the samples, but in our case we will use a -At- equal to that 
defined by the harmonic analysis of the indicator functions, as it will be explained in paragraph 
2.4.3. The detailed computational procedure governing CLEAN algorithm is given in Robert et al. 
(1987). A briefly description of the equations incorporating CLEAN algorithm has been presented 
and discussed by Negi et al. ( 1990, 1996). 
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2.4.2. Set up and convergence of the CLEAN algorithm 

A compatible program was built in MATLAB 7, in order to execute the CLEAN algorithm to all 
the variables of a data set. Three inputs are needed to run the CLEAN algorithm. These are: 1) a 
matrix of the raw data (with blanks), 2) the time step interval that the time series will have after 
applying Inverse Discrete Fourier Transform (iDFT) to the "CLEANed" spectrum and 3) a number 
indicating how many iterations will be done before the spectrum is considered "CLEAN" enough 
(see paragraph 2.4.1.). 

2.4.3. Determining the output time step interval 

After the DFT spectrum of a particular variable has been CLEANed, inverse Discrete Fourier 
Transform (IDFT) procedure converts the original data to time series with steady time step. The 
reconstruction (inverse transform) is done for a predefined time step output, as far as the input data 
had not a particular sampling ratio but in the best case an approximate one (see indicator func­
tion's spectrum of fig. l.d. ) . In our method, we propose determination of the time step according 
to the indicator function described in paragraph 2.3.1. in a way that will be discussed below. Fast 
Fourier Transform (FFT) analysis is applied to the indicator function that belongs to the best vari­
able's time series (i.e. the variable with the least gaps and irregularities) and thus the prevailing 
sampling frequency intention according to the field planning is defined. According to the Nyquyst 
criterion, the output time series should have at least double the frequency that the raw ones have. 
This frequency is to be used as the time step interval output of the IDFT, when applied to the 
CLEANed spectrum. 

The choice of the output time step is particularly essential because a time step output smaller than 
half the sampling intension would be pointless and would induce artefacts and noise to the original 
time series. On the other hand, time step output bigger than sampling intension would produce 
coarse time series and would cause loss of information. 

2.4.4. Determining the number of iterations 

An easy way to define the number of the iterations that will provide the best results in our analysis 
is to repetitively execute CLEAN algorithm to a specified variable by progressively increasing the 
iterations number and then plot the iterations number against the misfit of the CLEANed data to 
the raw data. Misfit values are calculated according to the formula: 

Equation 3 - Misfit function 

M(%) = 100-(\-arc) 
Where: orcis the correlation coefficient between the raw and the CLEANed data of a variable. As 
far as the matrices of the CLEANed and raw data are not of the same length, a new matrix has to 
be created with the same sampling scheme as the raw data by suitably interpolating to the 
CLEANed one. Thus the orc refers to the correlation coefficient between the raw samples of the 
variable and the matching ones extracted by interpolating to the CLEANed variable. After a num­
ber of iterations the above equation reaches to convergence. This means that the error induced to 
the data because of their reconstruction has been minimized. Hence, the iterations number that 
corresponds to the convergence point can be safely used as the appropriate one for the CLEAN 
algorithm. 

Applying the above method to the best and to the worst sampled variable of the dataset on the ba­
sis of their indicator functions, will give a clue about the reliability of the method in view of the 
particular data set. We choose to determine the iterations number according to the worst variable 
so that no possibility that the algorithm has not reached to convergence for a variable exists. 
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2.5. Application of Factor Analysis to the CLEANed data 

Having applied the CLEAN algorithm to the data sets, a compact dataset has been created, the de­
pendent variable of which is the time step and the independent ones are the hydrochemical meas­
urements. Grouping of the variables on the basis of their temporal variations is a very useful task 
towards the data mining process. 

2.5.1. Short description of the Factor Analysis method 

Factor analysis is a generic term that describes a variety of mathematical procedures applicable to 
the analysis of data matrices. The most important feature of factor techniques is their ability to 
reduce a large number of variables down to a smaller number of factors (data reduction technique). 

Six main stages or steps in the application of R-mode factor analysis can be recognized: (i) a data 
matrix (η χ m) as basic input is required (where n: observations, m: variables), (ii) the correlation 
coefficients matrix among the variables (m χ m) are computed, (iii) the -m- eigenvalues and ei­
genvectors are extracted from the correlation matrix, (iv) the selection of the number of factors 
using certain criteria, (v) the rotation of factor axes in order to achieve the "simple structure" of 
factor loadings matrix, and (vi) the matrix of factor scores is computed (Papatheodorou et al. 
2006). 

Table 1 - Centralized presentation of main quantitative parameters. ( + , ) indicates variables 
with significant (sig. level < 0.01) increasing or decreasing trends 
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0.26% 

0.22% 

0.30% 

0.31% 

0.21% 

0.22% 

0.12% 

0.27% 

0.28% 

0.13% 

0.13% 

0.26% 

0.15% 

0.27% 

0.20% 

0.28% 

0.64% 
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2.5.2. Calculation and interpretation of the factor scores 

After the number of the factors is decided and the factor loadings are determined, factor scores 
were calculated by applying matrix multiplication between the mxn CLEANed data set (D) and the 
nxf matrix of the factor loadings (L), 
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Equation 4 - Factor scores definition function 

S (m χ f) = D(m χ η) • L(n χ / ) 

where -m- is the number of time steps, -n- is the number of the variables and -f- is the number of 
factors. In order to emphasize the variables with high loadings and ignore the variables with com­
parably low loadings, the CLEANed data matrix is multiplied by the 3nd power of the factor load­
ings. Use of the third power ensures that the sign of the loadings will not be altered. This is done 
bearing in mind that remarkably high positive or low negative loadings in a particular factor indi­
cate variables that are controlled by the same environmental mechanism which however affects 
them quite the opposite. Multiplication of a standardized variable with its negative factor loading 
causes inversion of its values and thus the corresponding time structure will be emphasized when 
added to the variables with high loadings, of the same factor. The formula for calculating the fac­
tor scores finally used is the following: 

Equation 5 - Factor scores used function 

S(m x / ) = std std[(D(m χ «)] χ [L(n χ / ) ] 

where -std- indicates the standardization process. As far as we know, no scientific works using the 
factor scores of temporal data in such a manner for temporal data has ever been done. 

a) c) 

b) 

-

Τι (,.:- Ί l . m 

«) 

; 

Figure 1 - Sampling structures for Mirkinos site, a) and c ) indicator functions diagram of 
Ca and E.C. respetively, b) existing-value diagram of Ca and d) FFT spectrum of the indica­

tor function for E.C. 

3. Results 

3.1. Sampling inspection and pre-treatment of the data 

Mirkinos and Sidirokastro sampling sites were examined for their sampling scheme according to 
the indicator and existing-values functions, described in paragraph 2.3.1. Figure l.a and b show 
characteristic indicator and existing-value diagrams that were created for Ca of Mirkinos site. 
Black vertical lines of the indicator function diagram correspond to successfully sampled values 
while spaces refer to periods of no sampling. At the existing value diagram the number of samples 
is defined for each season (3 months period) and is plotted against the corresponding time window. 
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It is obvious that the sampling scheme is quite irregular through the field survey period and there 
are time gaps without measurements that lasted even 3 to 6 months. These diagrams offer great 
insight to the data and define the variables to be pre-treated. Figure l.c shows the indicator 
function of E.C. (Mirkinos site) that is the variable with the best sampling scheme for the 
particular site. Even in this case the sampling rate is not even but varies slightly. 

Number Of iterations frequency (cycles^ay) 

Figure 2 - Set up and convergence of the CLEAN algorithm: a) Centralized misfit diagram 
for ten variables of Sidirokastro site and b) "CLEANed" (solid black line) versus "dirty" 

spectrum (dashed gray line) of variable E.C, Mirkinos site 

Both datasets of Strimonas River were examined for their trends as described in paragraph 0.. Nine 
variables with significant trends were located in Mirkinos and thirteen in Sidirokastro sampling 
site (see Table 1, Kendal's Sig. level field). These variables were detrended by subtracting their 
fitted linear trend. Detrending process is not essential however it ensures that Factor Analysis will 
not correlate variables with similar trends but it will concentrate on periodic similarities. 

3.2. Spectral analysis results 

Two main steps are essential for the application of the CLEAN algorithm (see paragraph 0). These 
are a) determination of the output time step of the inverse discrete Fourier transform applied to the 
CLEANed spectrum and b) choice of the iterations needed for the misfit (see Equation 3) to reach 
convergence. FFT spectrum was created (see. Figure 2 Id) for the indicator function of the most 
completely sampled variable (i.e. E.C, Mirkinos site), in order to determine the time series' time 
step. Figure 2d suggests a month's (frequency 0.033 corresponds to 30 days period) main sampling 
intension, although smaller periodicities are also apparent in the indicator function's spectrum (e.g. 
7 days). Thus, a Fifteen days' time step output is chosen to comply with the Nyquyst criterion. To 
determine the iterations number 10 randomly selected variables (from Mirkinos site) were used to 
create a misfit plot as shown in Figure 2a. An iterations number equal to 3.000 is considered com­
pletely suitable to all the variables while it provides almost perfect match between the raw and the 
CLEANed data. 

To further validate the method results, diagrams plotting the initial data versus the processed ones 
were created. Figure 3 demonstrates the relation between the CLEANed and the raw data for two 
characteristic variables of Mirkinos site (N03 and Ca) that have a sufficient number of periods 
characterized by missed samples. These time windows are marked in the figures with transparent 
grey regions and they include the values predicted by the CLEAN algorithm for the particular pe­
riods. Since environmental data are controlled by periodic phenomena it is secure to consider in­
terpolated data close enough to reality. As far as all raw data points are identified with the pre­
dicted ones, it is certain that the interpolated values reflect the truth. 
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6/9/82 19/1/84 2/6/85 15/10/86 27/2/88 11/7/89 23/11/90 6/4/92 19/8/93 

Figure 3 - Initial time series plotted versus the CLEANed ones (15 days time step output). 
a) NO3 and b) Ca, Mirkinos site 

3.3. Factor analysis results 

Factor analysis was applied to both datasets of Strimonas River and the prevailing relations 
between the variables have been investigated. For both Mirkinos and Sidirokastro sites a six 
factors model was decided to be used as the most appropriate. For brevity reasons we will examine 
analytically only the two factors with the greater total variance explained. For both sites in the first 
factor variables E.C., HC03, T.A.K. and T.H. share significantly high positive loadings while the 
second factor is characterized by the variables: Na, S.A.R. and Alk (Alcalinity of sodium). The 
former represents more than 20 % of the total variance of the data and the latter represents more 
than 15 % of the total variance. The first factor corresponds to the mechanisms that control the 
salinity and total hardness of the river while the second factor corresponds to human pollution 
caused by agricultural activities and urban wastes. 

The scores of the two major factors for each site were calculated according to Equation 5. A 
comparison between the first two factors of each site and the variables that they represent is 
illustrated in Fig. 4. It is obvious that factor scores can reveal the temporal expressions of the 
variables that they represent with remarkable accuracy. This is a very useful tool when data mining 
is to take place for a data set that consists of a great number of variables. The variables can be 
easily grouped according to the mechanisms that they are controlled from and then a characteristic 
temporal variation can be visualized for each group. 
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Figure 4 - Factor scores plotted versus the variables that they represent, a) and b) first and 
second factor of Mirkinos site, c) and d) first and second factor of Sidirokastro site 
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