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ABSTRACT 
Significant lithostratigraphical and micropaleontological signatures, of Milankovitch-
scale climatic changes are recorded in Miocene deep-sea sediments. As a case 
study, the Metochia Section, in Gavdos Island, which covers the time interval from 
9.7 to 6.6 Ma, is used. This study emphasizes the sedimentological and micropa­
leontological characteristics of the section, attributed to Milankovitch-scale climatic 
changes. 
The short-term variations in climate and faunal composition are related to preces­
sion-controlled sedimentary cycles and the long-term trend in climate is related to 
eccentricity and obliquity cycles. Regional changes in sea surface temperature in 
combination with variations of solar insolation have caused the cyclical astronomi­
cal controlled pattern of Globorotalia species. 

ΠΕΡΙΛΗΨΗ 
Στην παρούσα μελέτη πραγματοποιείται εφαρμογή της κυκλοστρωματογραφικής 
προσέγγισης και αστροχρονολόγησης στην τομή Μετόχια (νήσος Γαύδος) η οποία 
καλύπτει το χρονικό διάστημα από 9.7-6.6 εκατομμύρια χρόνια και αποτελείται 
εναλλαγές ματγών και σαπροπηλών (καφέ ιζήματα πλούσια σε οργανικό 
υλικό). Η μελέτη επικεντρώνεται στα ιζηματολογικά και μικροπαλαιοντολογικά 
χαρακτηριστικά της τομής τα οποία συσχετίζονται με τους κλιματικούς κύκλους 
του Milankovitch. Αποδεικνύεται ότι οι ιζηματογενείς κύκλοι που συνιστούν την 
τομή αντικατοπτρίζουν κλιματικές αλλαγές οι οποίες ελέγχονται από τις τροχιακές 
παραμέτρους της Γης, και κατά συνέπεια χρησιμεύουν στην εκτίμηση του 
χρονικού διαστήματος που αντιπροσωπεύουν. Από τη μελέτη της περιεχόμενης 
μικροπανίδας αποδεικνύεται ότι οι μικρής κλίμακας διακυμάνσεις τόσο στο 
κλιματικό αρχείο όσο και στη σύνθεση της πανίδας των μικροαπολιθωμάτων 
συσχετίζονται με τις διακυμάνσεις στη μετάπτωση των ισημεριών όπως και οι 
ιζηματογενείς κύκλοι. Μεταβολές στην επιφανειακή θαλάσσια θερμοκρασία 
τοπικού χαρακτήρα, σε συνδυασμό με τις διακυμάνσεις της ηλιακής ακτινοβολίας 
προκάλεσαν την κυκλικά ελεγχόμενη κατανομή στα είδη του γένους Globorotalia. 
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1. Introduction 
In the Eastern Mediterranean sendimen-
tary record, since Last Glacial Maximum, 
major and minor climate changes are 
amplified and perfectly preserved, as 
for example, the déglaciation itself, the 
Younger Dryas cold episode and the 
Holocene climatic optimum. 
Evidence concerning the Mediterranean 
climate is available from historical and 
fossil records and several signatures of 
the Eastern Mediterranean Sea evolu­
tion have been detected. However, part 
from geodynamical evolutions which 
refer to large time-scale (million years), 
in the sedimentary record includes sig­
nificant signatures of past changes in 
climate, hydrology, fauna, oxygen, and 
biological production (e.g. the peculiar 
example of the sapropel layers over the 
last half million years (Bethoux, 1993). 
It is now over twenty years since it was 
first demonstrated that orbital cycles 
are preserved in the climatic records 
of deep-sea sediments (Shackleton & 
Opdyke, 1973; Hays eia/., 1976). 
There are clear and distinct effects of 
orbital parameters (obliquity, eccentric­
ity, and precession) on intermediate to 
short-term climate change. Orbital cli­
mate forcing is an important control on 
variation in sediment supply, because 
orbital parameters have a marked effect 
on the seasonality of incoming solar 
radiation (insolation), which results in 
variations in the seasonality of rainfall. 
As a result, orbital climate forcing plays 
a major role in sedimentation and stra­
tigraphy. 
The Miocene basins of eastern Medi­
terranean have been developed in 
geographic latitude roughly 35°, which 
intensely received the effects of climatic 
fluctuations, due to the differentiations of 
the orbital behaviour of the Earth. These 
climatic oscillations, cycles, are clearly 

reflected in sedimentary cycles and an 
excellent example is the Milankovitch 
cyclicity of the prodelta turbidites, of 
the Eastern Mediterranean Basin, since 
the early Late Miocene (Postma et al., 
1993) and early Pliocene (Weltje & De 
Boer, 1993). 
These turbidites arise in successions 
of alternating hemipelagic (bioturbated 
marls) and sapropelic (lam-initic) sedi­
ments, the latter being a mixture of well-
layered siliciclastic and organic mate­
rial. According to Krijgsman et al. (1995) 
and Hilgen ef al. (1995), the origin of 
the laminate marl couplets is due to 
astronomical forcing, in view of the fact 
that the occurrence and thickness of the 
sapropelic layer are roughly correctable 
with the insolation curve of Laskar et al. 
(1993), (Fig. 1). 
Rohling (1994) stated that the abun­
dance of preserved organic material 
in the sapropels can be attributed to 
a combination of anoxic conditions 
at the sea bottom on the one hand 
and high organic production on the 
other. Moreover, Van der Zwaan & 
Gudjonsson (1986), in their work con­
cerning stable isotopes on planktonic 
foraminifera, demonstrated that sapro­
pel formation was simultane "ith 
periods of increased conti* run 
off. Prell & Kutzbach (1987) ana nilgen 
(1991) correlated the latter periods with 
an intensified Indian Ocean SW sum­
mer monsoonal system, influencing the 
eastern Mediterranean via the Nile River 
and by increased continental activity of 
Mediterranean depressions as an ele­
ment of the westerly Atlantic system. 
Conclusively, the sapropels provide 
important clues concerning the ori­
gin, the timing and the duration of cli­
mate-related turbidite deposition in this 
basin. 
A case study, which represents the afore-
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mentioned assumptions is the Metochia 
section, in Gavdos Island, which covers 
the time interval from 9.7 until 6.6 Ma 

(Krijgsman et al., 1995; Antonarakou, 
2001) (Fig. 2, 3). In the present paper, 
we attempt to highlight the intimate 

total 
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Fig. 1. Insolation curve of Laskar et al. (1993) 
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Fig. 2. Geological map of Gavdos Island, indicating the location of the Metochia section. 

relation of the sedimentological and 
micropaleontological characteristics 
of the section, with the Late Miocene 
Milankovitch-scale climatic changes. 

2. Lithostratigraphic Signal 
Metochia section, a Late Miocene hemi-
pelagic marl succession, is located at 
the northeast part of the Gavdos Island 
and contains 96 (L1 to L96) rhythmic 
alternations of poorly to non bioturbat-
ed brown-grey, organic-rich laminated 
beds (the so called "sapropels") and 
bioturbated, light grey-blue, homoge­
neous, hemipelagic marl beds (Fig. 
3), deposited in approximately 850 m 
water depth (Postma et al. 1993). The 

sapropelic intervals become dominated 
by sandy turbidites from L7-13 (Fig. 3). 
The turbidite sequences are character­
ized by multiple events of thinly bed­
ded, wedging turbidites, each turbidite 
sequence being covered by a marl 
layer. For instance, the L7 turbidite suc­
cession (Fig. 4) contains at least 100 
separate turbidite events recorded as 
thinly layered fine sandy to silty turbi­
dites ranging in thickness from 0.5 to 
3 cm. The fine-grained intervals have 
a typical brown to yellow colour and 
contain organic plant material, which 
contrasts markedly with the blue-grey 
colours of the overlying homogeneous, 
hemipelagic marl interval. Turbidite 
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Fig. 3. Lithostratigraphica! column of the Metochia Section and age time control derived from the astro­
nomical calibration of the sedimentary cycles and planktonic foraminifera bioevents. 
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Fig. 4. The L7 turbidite succession. 
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sequences L8-L11 display crude thick­
ening and coarsening of upward trend. 
In the central and upper part of these 
sequences, the sand/clay ratio increas­
es, with turbidite beds becoming thicker 
and coarser upwards. 

The strong association between turbi-
dites and laminites suggest that growth 
of the prodelta lobes occurred dur­
ing precession punctuated periods of 
increased precipitation and increased 
run-off. Tectonic tilting, seismic shock 
and sediment overloading due to sea 
level lowering are believed to be far less 
important triggering mechanisms for 
the L7-L13turbidites. 
The described turbiditic sequence is 
characterized by fluctuations of the 

thickness of the turbiditic layers. The 
absence of channel deposits, the 
fact that the sequence is coarsening 
upwards and finally, the lobe geometry 
of the layers, indicate deposition in rela­
tively small-sized sandy lobes. These 
lobe deposits were created probably 
due to local scale palaeoclimatic fluc­
tuations owing to precession and not to 
glacio-eustatic sea-level fluctuations. 
This interpretation is supported: 
1. by the obvious predominance of 
local scale climatic effects in the Medite­
rranean. Detailed analysis of the sedi­
mentary record that has been affected 
by climatic and océanographie fluc­
tuations, due to precession, showed 
that they represent changes in the 
discharge, in the sediment supply and 

SST 

Fig. 5. Distribution pattern of Globorotalia species Fig. 6. The SST proxy record of the Metochia section 
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in the primary productivity. This fact is 
well-documented for the Late Miocene 
and the Lower Pliocene of the central 
and eastern Mediterranean. 
2. by the tectonic setting of the basin 
which excludes the presence of a shelf, 
implying that the effect of possible sea 
level fluctuations in the sediments was 
of small importance. 
On the contrary, the fluctuations in river 
run-off, which in turn, influence precipi­
tation, constitute the responsible mech­
anism for the creation of the described 
turbiditic system. The periodical alterna­
tions between relatively dry and humid 
climatic conditions, with simultaneous 
change in the flow and in the sediment 
supply, appear to be the most likely 
explanation for the creation of this sedi­
mentary setting. 

3. Micropaleontological Signal 
The aforementioned assumptions were 
further supported by micropaleonto­
logical analysis based on planktonic 
forami η if era. 
The distribution pattern of the plank­
tonic foraminifera species identified in 
the Metochia section has been ana­
lyzed and used for the orbital con­
figuration of the climatic changes and 
the sedimentary cyclicity of the section 
(Antonarakou, 2001). 
According to Antonarakou et al. (2004), 
one of the most significant events which 
can be correlated with Millankovitch-
scale climatic changes is the replace­
ment of the Globorotalia menardii group 
by the Globorotalia miotumida group, 
characterizing the Tortonian/Messinian 
boundary (7.12 Ma). 
Due to the fact that during the Miocene, 

PCA1 PCA2 Eccentricity PCAl(41pt) PCA2{41 pt) 
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Fig. 7. PCA analysis and correlation to orbital parameter (eccentricity) 
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the Globorotalia menardii group was 
restricted to the tropical and subtropical 
region, whereas the Globorotalia mio-
tumida group was present in temperate 
areas, their presence determine differ­
ent climatic zones (Sierroef al., 1993). 
The distribution pattern of the keeled 
globorotaliids throughout the section 
reveals short-term recurrent variations 
of the G. menardii group, being pre­
sented from the lower part of the sec­
tion. Whereas, Globorotalia miotumida 
appears later at the section and marks 
the Tortonian/Messinian boundary (Fig. 
5). 
Keeled globorotaliids display an inter­
mittent distribution pattern. This holds 
in particularly for the sinistrally coiled 
G. menardii 4 in the lower part of the 
section (cycles L1-L45, 3-53m). This 
species occurs more regularly between 
L46-L68 (54-78m) but then vanishes 
until a short but prominent influx in L69 
(82m). The top of this brief reoccur­
rence is equated with the LCO of G. 
menardii 4 (7.5 Ma) even though this 
species shows a final and extremely 
brief influx at the upper part of the range 
of G. menardii 5. Keeled globorotaliids 
then become absent again up to the 
first occurrence (FO-7.3 Ma) level of the 
right-coiled G. menardii 5 directly above 
the L72 (88m). The interval in which G. 
menardii 5 is the dominant keeled glo-
borotaliid is punctuated by a very short 
but distinct influx of G. menardii 4. At 
about L73 (90m), G. menardii 5 is defini­
tively replaced by left-coiled assem­
blages of keeled globorotaliids, charac­
terized by a reniform chamber outline 
in spiral view. These assemblages are 
termed Globorotalia conomiozea group 
by Zachariasse (1979) and Globorotalia 
miotumida group by Sierro (1985) and 
Sierro et al. (1993). The earliest rep­
resentatives of G. conomiozea group 

show flat tests typical of G. miotumida, 
while the regular occurrence of the 
conical types (G. conomiozea) starts in 
cycle L76 (92m). 
Variations in their relative abundance 
reflect variations in sea surface tem­
peratures with G. menardii correlated 
with warmer intervals and G. miotumida 
with cooler intervals. This replacement 
is used to identify regional short-term 
climatic fluctuations in the Tortonian / 
Messinian boundary. This interpretation 
is further supported by the SST curve 
based on temperature sensitive spe­
cies, using the habitat characteristics of 
all the identified planktonic foraminifera 
species (Fig. 6). 
The Principal Component Analysis 
applied on the total data set of the 
containing fauna revealed that PCA 1 
variations correspond to Sea Surface 
Temperature and PCA 2 to the Sea 
Surface Productivity (SSP curve, 
Antonarakou er al., 2004) and are cor­
related to eccentricity cycles. SSP varia­
tions reflect the sedimentary cycles for 
the studied section (Fig. 7). 
Both the proxy records of the micro-
paleontogical characteristics and the 
statistical analysis suggest that during 
the Late Miocene, the climate was quite 
stable. Long-term changes reflected by 
the abundance fluctuations pattern are 
determined by a cooling trend, from 9.7 
Ma to 7.6 Ma, a warmer period from 
7.6 to 7.2 Ma and then a cooling trend 
which finishes at the Messinian. At 7.6 
Ma specimens of G. miotumida start to 
exist but the replacement takes place 
at 7.2 Ma, where the climate seems 
to be ameliorated. In spite of the fact 
that all these proxy curves simplify 
the original and highly complex faunal 
patterns of the individual taxa, short 
term variations still remain. To establish 
both the frequencies of these short-term 
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variations and the possible influence of 
astronomical forcing, spectral analysis 
was performed on the proxy curves on 
individual taxa based on their quantita­
tive data. 
The spectral analysis shows that in 
Metochia section sedimentary cycles 
(sapropel cycles) are astronomically 
forced by precession and eccentricity 
cycles while sea surface temperature 
variations are controlled by precession 
and obliquity variations (Fig. 8). This 
orbital configuration during sapropel 
formation indicates strongly seasonal 
contrast.lt is remarkable that, in the 
studied sequence, for the time interval 
between 9.7 to 8 Ma, sea surface cycles 
and SST are also related to obliquity 
cycles. However, this orbital configura­
tion is strongly determined by fluctua­
tions in the distribution of several spe­
cies (Fig. 9). In particular, the relative 
abundance fluctuations of G. menardii 
are related to obliquity (41 Kyr) cycles 
and precession (23 kyr) cycles together 
with N. acostaensis d. G. falconarae and 
G. glutinata. This is a mixed association 
of eutrophicate and tropical species. 
These species are more abundant in 
the lower part of the section for the time 
interval 9.7 to 8 Ma. 

4. Conclusions 
This work represents a review of the 
most significant lithostratigraphical 
and micropaleontological signatures 
of Milankovitch scale climatic changes 
overprinted on Late Miocene. 
Lithostratigraphical signatures of Milan-
kovitch-scale climate changes are detec­
table on the Late Miocene section of 
Metochia, in Gavdos island (an interval 
between 9.7 to 6.6 Ma) Identification and 
documentation of the lithostratigraphic 
signature was not possible without a 
detailed, micropaleontological analysis 

based on planktoni foraminifera which 
enables us to reconstruct the small-
scale climate changes recorded in the 
studied section. 
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