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Abstract

Every year landslides cause many fatalities and destroy numerous infrastructures
around the world. Due to their catastrophic results, scientific research studies are
conducted, on a continuous basis, trying to determine the controlling and triggering
. . factors, and to evaluate their contribution-weight to that phenomenon. In this direction,
Publication History: ] o o ) ]

many of these studies use multicriteria decision analysis methods as they are quite
effective and can be applied rather quickly. However, a large percentage of the new
studies that use these methods, is usually devoted to the analysis of many previous
research studies and the validation of their results, which usually leads to serious
delays and requires significant resources. In this research, 82 relevant past studies are
evaluated, and their results are integrated into a worldwide geospatial database, to
present its potential as a decision-making tool, during the landslide susceptibility
assessment. As it is revealed the results of its statistical and spatial correlation with the
examined region’s prevailing parameters in a geographical information system
©2022. The Authors environment, can provide critical indications- suggestions to a researcher and along
with the applicability of the multicriteria decision analysis methods, that contain the
use of other experts’ knowledge and experience, to lead to the rapid identification of
the most critical landslide causal factors and the initial evaluation of their contribution-
weight. These indications accelerate significant the whole process and reduce the risk
for possible biased conclusions, which can render the whole method ineffective.
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Moreover, this study highlights the geodatabase’s potential to incorporate open-acCcess
data, from external spatial databases and to use them, during the process of the
landslide susceptibility assessment.

Keywords: Landslides, GIS, Geodatabase, MCDA, LSA.

Iepidnyn

KdBe ypovo o1 karolicOnoeisc mpokadody moAlovs Bovarovg kou KOTATTPEPODY UEPGAO
oap1fuo Epywv vmodouns oe olo tov koauo. Eloutioc twv karaotpemtin@dv TovS
OTOTELEGUOTWY, ETIOTHUOVIKES EPEVVNTIKES UEAETEC TPOYUATOTOIODVTOL GUVEXG,
TPooToHDVTOS VO TPOTOLOPITOVY TOVS TAPEYOVTES TOV TPOKAAODY KOl EVEPYOTOLODY U0,
KatoAioOnon kot va. Ipoodlopicovy ) oVVEIGPOPD, — LAPOS TOVS GE ADTO TO PAIVOUEVO.
e ovth ™V KOTEDOVVOY, TOAES OO QVTES TIC UEAETES Ypnoyomoloty uedodovg
TOAVKPITHPLOKNG OVOAVONGS, KOOGS VOl OPKETO OTOTEAECUOTIKES KOI UTOPOVV VO
EQaPUOTTODY OpKETA Yypnyopa. Tlapola avta éva peydAo mTOGOTTO TV VEWV UEAETMV IOV
XPNooTo100V  téTo1eg  uebodovg, ovvibwe apiepwverar oty avalvon ToAAwv
TPONYOVUEVOV UEAETOV KOL OTHV EMPELOIWON TWV ATOTEAETUATWV TOVG, YEPOVOS TOV
ovvibwg oonyel oe onuavtikes KaBvotepRoels kol omaitel avinUEVovs Topovs. Xe avth
mv épevva, 82 oyeTIKES TPONYOVUEVES UEAETES O.L10A0YODVTOL KOI TO, OTOTEAECUOTA TOVS
EVOUOTMOVOVTOL O€ UIOL TOYKOOUIO. YEWYWPIKY SAoH OEOOUEVMV, VIO, VO TOPOVOIATTODY
01 OVVOTOTNTES YPHONS THS PAOHS WS EPYALEI0 AWNG AmOPATEWY KOTC TV EKTIUNOH
KotolioOntikng emdektikotnTog. ORmG AmoKoADTTETOL 1 OTOTIOTIKY KOL YWPIKY THG
OVGYETION UE TOPCYOVIES TOV ETIKPATOVY OTHY ECETOLOUEVH TEPLOYN GE £V, TEPLBAALOV
yewypopixod cvathuozog tAnpopopiawv (I’ 2X11), uropei va ypnooron el yio va mopéyet
Kplolueg evoeilelc — mpotdoelc oe &vav epevvnth koi poli pe TV EQapUoyn
TOAVKPITHPIOKWOV UEBOOWV OVAIDGNS, TOV TEPILOUPAVOVY TH XPHON THS YVDGHS KOl THS
EUTEIPIAG KO GALWV EIOIKDV, VO. TOV OONYNOEL GTHY TOXELQ OVOYVOPIOH TWV WO KPIGIUDY
TOPOYOVIWV EKONAWONS UIOG KATOAGONONS KoL TNV OpYIKH EKTIUNCN THS COVELGPOPLS-
Papovg Tovg. AvTES 01 eVOEICEIS- TPOTATEIS EMITOYDVOVY GVVOAIKG, TH OLOOIKACIA KOL VO
HELOVOVY TO pioko Y10, TOAVE UEPOANTTIKG CUUTEPGOUOTO, TO OTOLO. UTOPOVY VA
katootioovy ™ usdodo ovamoteAeouatixy. Emmpocteta avth n ueAétn avodsikvoer Tig
OVVOTOTNTES THS VEWPOONS VO, EVOWUATOVEL QVOLYTHS TPOCLOATNS OE00UEVO, OO
eEWTEPIKES YWPIKES YEWPAOEIS KOL VO, TA YPHOLUOTOIEL KOTA. T OLOOIKAOLO0, TG EKTIUNONG

KaToAMoONTIKAG EMOEKTIKOTNTAG.
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Extiunon xorolioOntikng emdexnixotnrog.
1. INTRODUCTION

Due to climate change, natural phenomena tend to have an increasing influence in
peoples’ everyday life (Hesmati, 2020; Papanikolaou and Diakakis, 2011). Their
intensity, sometimes combined with man-made factors, leads to enormous natural
disasters which in turn cause the loss of many human lives and the destruction of a great
number of critical infrastructures (Papanikolaou and Diakakis, 2011; Sauerborn and
Ebi, 2012). Among these natural disasters, landslides have a significant worldwide
impact (IGOS, 2004; Kirschbaum et al., 2015) and are of scientific interest due to their
catastrophic results. As it is proved by previous (Dilley et al., 2005) and more recent
studies (Kirschbaum et al., 2015), the landslides are happening all over the world, in

nearly every country, sometimes caused by completely different reasons.

The causal factors that influence the stability of a slope are generally divided into two
main categories, the preparatory factors, which degrade the stability of the slope
preparing the failure and the triggering factors, which activate the landslide (Cruden
and Vandine, 2013). Most common causal factors are the unfavorable slope angle, the
slope aspect, the geology and the land use/ land cover, while the most common
triggering factors are the intense or prolonged rainfall, the earthquakes and the various
erosion processes and human activities (Westen et al., 2006; Ladas et al., 2007a; Ladas
et al., 2007b; Rozos et al., 2010; Kouli et al., 2014). The assessment of the propensity
of soil or rock in a region to create a landslide, according to the local characteristics, is
expressed with the landslide susceptibility assessment (LSA) (Chalkias et al. 2014). A
serious problem during the LSA, is that there are no universal guidelines about the
selection of the appropriate causal factors (Shahabi and Hashim (2015)). Thus, the
researchers sometimes spend a significant part of their research on analysing relevant
previous research studies and validating their results, which can lead to serious delays,
especially in case that they concern a great number of research studies. As Guzzetti
(2005) points out about the LSA, the difficulty mostly lays in the availability of the
relevant information, and on the complexity and the amount of it, especially when the
research concerns large areas. Moreover, the results’ validation can be also a quite
difficult task, especially in cases where the researcher does not provide or pose

restricted access to the initial data (Lin et al. (2017).
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In general, the methods that the researchers use to perform an LSA, can be distinguished
to quantitative and qualitative ones. The quantitative methods are usually based on
numerical expressions between the prevailing factors and the probability of the
occurrence of a landslide (Guzzetti, 2005; Reichenbach et al., 2018). More specifically,
the researcher through a mathematical model, tries to simulate the landslide’s
mechanism and to calculate the Landslide Susceptibility of the area. However, the
applicability of this method often requires significant processing resources and an
extended historical landslide record (inventory), which in many areas is not available.
Moreover, these methods have been proved to be ineffective for places where large
environmental changes took place in the recent past or are expected to happen in the
near future (Westen et al., 2006).

On the other hand, the qualitative methods use qualitative criteria and terms to evaluate
the landslide susceptibility of a region (Westen et al., 2006; Chalkias et al., 2014;
Anbalagan et al., 2015). They are based on the opinion of a scientific team, called the
“experts”, to identify the critical characteristics of an area that can render it prone to a
landslide (Chalkias et al., 2014; Tavoularis et al., 2015). The experts are usually people
with strong academic background who are rather familiar with the specific features of
the examined region. An example of qualitative methods are the multicriteria decision
analysis (MCDA) methods, such as the Analytical Hierarchy Process (AHP). In AHP,
the selected experts, by following a specific process determine the weight- contribution
of each factor and conduct the relevant LSA (a hypothetical example, which has been
developed for the needs of this study, analyses the steps followed during the APH and
is presented in Supplementary Material Tables 1,2 and 3 (SM- Tables 1, 2 and 3)).
MCDA methods can risk of being ineffective if the experts are not selected properly by
the researcher (e.g., in Kil et al. (2016), it is presented how the profession of each expert,
can lead to completely different judgements of the most critical causal factors’ selection
and on the relevant weights’ attribution) or if the selected experts, proceed to biased
judgements (Nicu 2018, Xiong et al.,2018 and Moradi and Rezaei, 2014). However,
MCDA methods can produce susceptibility maps with high reliability, provided that the
use of experts will not lead to biased conclusions (Gorsevski et al., 2006), in
contradiction to the nowadays increasing trend in LSA, to replace the opinion of experts

with computer algorithms (Westen et al., 2006).

The main objective of this research is to analyze and organize spatially, the knowledge
gained by the MCDA methods, used in previous studies, and to provide their results

directly to a researcher, reducing that way, the time and sources needed for a new study
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and improving this new study’s efficacy. This is achieved by creating a geospatial
database (geodatabase), which integrates spatially the results of 82 scientific studies
that use MCDA methods, and by using their statistical analysis, to the standardization
of the whole process. By using this geodatabase, a researcher can decide to use a smaller
number of experts, to propose to the experts a variety of potential landslide causal
factors, to compare and validate the results of the conducted study with the relative ones
of the geodatabase’s and to identify and therefore to exclude possible outlier values.
The experts also, by using the proposed geodatabase, have direct and immediate
information- suggestions on the potential landslide causal factors that they can use,
along with their relative importance-weight which can be applied during the MCDA

method of the conducted new study.

The proposed procedure does not introduce a new method, and, a researcher cannot
conduct an LSA, based exclusively on the geodatabase’s results. Therefore, it does not
eliminate the need for experts, and their contribution to the conduction of the LSA
remains indispensable. The experts due to their personal knowledge and experience, are
the only capable ones, that can evaluate if they should accept all, some or none of the
results of the geodatabase, according to the particular characteristics of the examined
area. Nonetheless, this judgement should be justified. Thus, through the geodatabase’s
use, the risk for possible biased conclusions and the necessary time for selecting the
most critical causal factors and determining their relative importance, can be
significantly reduced. However, it is significant to note that the use of the geodatabase,
limits but does not eliminate the possibility for biased conclusions. As it happens with
every tool used in LSA (Guzzetti, 2005), this geodatabase is going to be efficient only

if it is used by experienced researchers- professionals.

The potentiality of the geodatabase also emerges by its statistical and spatial analysis in
a broader level, with GIS techniques, and its interconnection with spatial data derived
from external open access sources. Hence, correlations of the causal factors’ weights
included into the geodatabase with local characteristics, such as the climate of a region,
are revealed, which can be subsequently used in areas not spatially covered by the

geodatabase.
2. METHODOLOGY

As it is shown in Figure 1, the proposed geodatabase integrates the results of 82

scientific research studies, that use MCDA methods for the LSA, spatially covering a
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large part of the world, which mainly includes Europe and Asia but also contains Africa
(Ethiopia, Morocco, Rwanda), Australia (New Papua Guinea) and America (Canada,
Chile, USA) (SM-Figure 1).
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Fig. 1: Geodatabase’s Landslide Research Studies, focused on Europe, Asia, and

Africa.

The geodatabase’s inputs, contain the spatial characteristics of each research study
(such as the region, the country and the coordinates of the examined landslide events
included in each research study), the landslide causal factors, their relevant weights,
and other characteristics, such as the author’s name, the year of the research, the method
used and the use or not of validation methods. It is significant to note that some
scientific research studies (such as Rozos et al. 2010), apply two or more MCDA
methods in the same area or apply a MCDA method in two different areas (such as
Tavoularis and Kirkos, 2019), and therefore, these results are included in the
geodatabase as distinct records. Table 1 summarises the research studies used as sources
in the geodatabase, grouped per country and region (a more detailed version of this table
is provided in SM-Table 4). The location of each researcher (e.g., the institution that

the first author belongs to), is not recorded in the geodatabase.
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ID | Country Region Reference Method
1 Austria Vorarlberg - Eastern Alps Ruff and Czurda (2008) Heuristic
2 Bulgaria Simitli Ivanova (2014) AHP
3 Canada British Columbia’s Coast Mountains Blais-Stevens et al. (2012) Fuzzy Logic
4 Chile Socoroma, Arica Parinacota Rodriguez et al. (2013) AHP
5 Anyuan County Chenetal. (2019) SWARA
6 China Zhen'an County, Shan’xi Province Zhao et al. (2017) Fuzzy-AHP
7 Zhangzha town Jiuzhaigou Yietal. (2019) AHP - FR
8 Cyprus Western Cyprus Myronidis et al. (2015) AHP
9 Ethiopia Tarmaber District Abay et al. (2019) AHP -WLC
10 North Messinia Ladas et al. (2007a) AHP
11 East Messinia Ladas et al. (2007b) AHP
12 Peloponnese Chalkias et al. (2014) Fuzzy Weighting
13 Perfection of Xanthi Tsangaratos and Rozos (2013) AHP
14 Perfection of Xanthi Tsangaratos and Rozos (2013) RES
15 North-eastern part of Achaia prefecture Rozos et al. (2010) AHP
16 Greece North-eastern part of Achaia prefecture Rozos et al. (2011) RES
17 Tsakona area, Arcadia Tavoularis et al. (2015) RES
18 East Achaia prefecture Rozos et al. (2010) AHP
19 East Achaia prefecture Rozos et al. (2011) RES
Kavoura and Sabatakakis -
20 North Peloponnese (2020) Modified LSI
21 West Crete Island Kouli et al. (2014) WLC
22 Kithira island Tavoularis and Kirkos (2019) RES
23 Ydra island Tavoularis and Kirkos (2019) RES
24 West Bengal Roy and Saha (2019) Fuzzy-AHP
25 Maharashtra Patil and Panhalkar (2019) AHP
26 Coonoor and Ooty Rahaman et al. (2014) AHP
27 Tehri Kumar and Anbalagan (2016) AHP
o8 southern Western Ghats, Kerala Achu and Reghunath (2017) AHP
29 Eastern Darjeeling Himalaya Mandal and Mandal (2018) AHP
30 ) Kottayam District, Kerala Ajin et al. (2016) Heuristic
31 India Lachung Basin, Sikkim Anbalagan et al. (2015) Field Knowledge
. . Lallianthanga and .
3 Saitual Town, Mizoram Lalbiakmawia (2013) Field Knowledge
. Lallianthanga and .
33 Kolasib Lalbiakmawia (2014) Field Knowledge
34 Aizawl city and Aibawk town Laldintluanga et al. (2016) Field Knowledge
35 Wayanad Jishnu et al. (2017) WOA
. . o Laltlankima and Lalbiakmawia
36 Aizawl City and Lengpui Airport (2016) AHP
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37 analysis
38 Shiv-Khola watershed, West Benghal Mandal and Maiti (2011) AHP
39 Indonesia Yogyakarta Xiong et al. (2018) AHP
40 Kaligesing Bachri and Shresta (2010) AHP
41 Khorramabad Mokarram and Zarei (2018) Fuzzy-AHP
. Mijani and Neysani Samani
42 Sari (2017) Fuzzy-AHP
Lorestan Abedini and Tulabi, 2018 AHP
43 province
44 Golestan province north Tazik et al. (2014) Fuzzy-AHP
45 Mazandran Province Arabameri et al. (2019) AHP
46 Iran Mazandran Province Arabameri et al. (2019) LDA
47 Mazandran Province Arabameri et al. (2019) AHP - SI
48 Dena Moradi et al. (2012) AHP
49 Zanjan Province Boroumandi et al. (2015) AHP
50 Alborz Moradi and Rezaei (2014) AHP
51 Tehran metropolitan Pourghasemi et al. (2013) AHP
52 Kermanshah Maleki et al. (2014) AHP
53 Italy Rupinaro catchment Liguria Cignetti et al. (2019) AHP
54 Cameron Highlands Shahabi and Hashim (2015) AHP
55 Malavsia Cameron Highlands Shahabi and Hashim (2015) SMCE
56 y Sarawak, Borneo Vijith and Dodge-Wan (2019) AHP
57 Penang Island Khodadad and Jang (2015) AHP
58 Oum Er Rbia high basin, El Jazouli et al. (2019) AHP -WLC
59 | Morocco Oued Laou basin Semlali et al. (2019) AHP
60 Safi El Bchari et al. (2019) AHP
61 Nepal Kaski district Bhatt et al. (2013) AHP
62 North North Macedonia Milevski et al. (2019) AHP
63 | Macedonia North Macedonia Milevski et al. (2019) FR
64 Pakistan Karakoram Highway Ali et al. (2019) AHP-WLC
Papua
New Eastern highlands province Jana et al. (2015) Undefined
65 Guinea
66 Romania Barlad Plateau, East Romania Grozavu et al. (2017) AHP
67 Rwanda Karongi Nahayo et al. (2019) AHP
68 Jeju Island Quan and Lee (2012) AHP
S. Korea . .
69 South Korea (national scale) Kil et al. (2016) AHP
Saudi Abha Watershed Mallick et al. (2018) Fuzzy-AHP
70 Arabia '
71 Fruska gora mountain Marjanovic et al. (2013) AHP
Serbi . . - .
22 eria Ljubovija Municipality western Serbia Krusi¢ et al. (2017) AHP
73 Slovenia Sava and Sora River Komac (2006) Fuzzy-AHP
74 Slovenia (national scale) Komac and Zorn (2009) WOE
75 Spain Tirajana, Gran Canaria Hervas de Diego et al. (2001) AHP
76 | Srilanka Kegalle District Perera et al. (2018) SMCE
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77 Taiwan Chen-Yu-Lan Watershed Nguyen and Liu (2019) AHP

Thailand Mae Chem , Northern Thailand Intarawichian and Dasananda AHP-WLC
78 (2010)

Western Black Sea region, Abdipasa,

2o | Turkey Abdipasa/Ulus/Bartin Ercanoglu et al. (2008) AHP
80 Ayvalik Akgun et al. (2011) AHP
81 USA Idaho, Salmon - Challis Sprague- Wheeler (2003) Undefined
82 Rocky Mountains in north central Idaho Gorsevski et al. (2006) Fuzzy-AHP

where AHP: Analytic Hierarchy Process, LDA: linear discriminant analysis, LSI:
landslide susceptibility index, Sl: statistical index, SMCE: spatial multicriteria
evaluation, SWARA: stepwise weight assessment ratio analysis, WOA: weighted

overlay analysis, and WLC: weight linear combination.

Figure 2 illustrates the structure of the database, constructed in MySQL, using the
phpMyAdmin tool, with two tables, named as “studies” and “factors_weight”. The
value “ID” is the primary key for the table “studies” and the foreign key for the table
“factors weight”, and the “Factors ID” is the primary key for the table factors_weight.

Figure 3 displays the environment of the database. For the development of the database,
the MySQL workbench software is used. The two tables are inserted in a GIS
environment, and the “studies” are represented as a distinct GIS layer. For that purpose,

QGIS software, is used.
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studies factors_weight

Creator Precipitation/ Rainfall

Year Slope
Country Slope Morphology
Region Slope Length (LS)
N Slope Curvature
E Bedding
GIS Altitude/ Elevation
Method Relief Amplitude
CR Aspect
Lithology
Geomorphology
Soil Texture

Soil Hardness

Soil Thickness/Depth

Soil acidity

Salt concentration

Porosity

Organic matter

Tensile strength

Permeability coefficient
Landform/ Topographical Shape
Distance From Streams/Rivers
Distance- Hydrological borders
TWI (Topographic Wetness Index)
Hydrology (Surface Water Present)
Stream Power Index (SPI)
Drainage Density

Dinstance from Drainage
Sediment Transport Index (STI)
Lineament

Lineament Intensity

Lineament Buffer

Distance From Road

Land Use/ Land Cover (LU/LC)
NDVI

Distance From Fault

PGA / Seismic Accelaration

Burn Severity

Elapsed year (since revegetation)
Cover type Diversity

Distance to Geological Boundary
Geometry of main discontinuities
Lithology Diversity

Thickness of Weathering mantle
Fracturation

Erosion/ Erodibility

Convergence Index

Reservoir Buffer

Landslide's Type

Landslide's Activity

Vegetation Proportion (VP)
Vegetation Community

Number of Trees

Number of Herbs

Curvature

Upslope Contributing Area (UCA)
Settlement Density

Solar Radiation

Fig. 2: Database Diagram presenting the tables of the database and the different fields
of each table.
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€ C ( @ localhost/phpmyadmin/db_structure. php?db=test&table=&server=18&target=&token=9d98884ec2d8051b33e3c0ac0b94984#PMAURL- 10:sql.php?db=pape.. @ @

A localnost / 127001 / paper2020 X = =+

P 5 Soer 157.0,0.1 > ) Databace: paperoU20 s i Table- Sidics:

Browse W Structure sQL \ Search 3¢ Insert (1= Export [S) Import =7 Privileges = J” Operations # Tracking 2 Triggers

1v/| Showall > >> | Numberofrows: |25 W Filter rows: | Search this table

v

¥ D Creator Year Country i CR

2267|8758 |YES |Fuzzy-A 0.078

33.49 4336 0

L4 lands|_researches

L mysq
|7 ¢ paper2020
3 New
#Lil factors_weight
+L 1 studies
_ . performance_schema

L& phpmyadmin t Ratio Analysis) | 0

L+ review_pzper

L4 webauth

2019

2014 iran n t uzzy-AHP 0.04
i Patil | 2010 india M 7 0.0318
2019 Pakistan way 36.21 WLC less than 0.1

0.04

0.0068

Fig. 3: Research Table in phpMyAdmin.

3. RESULTS AND DISCUSSION

3.1. GIS Techniques and the geodatabase as a decision-making tool

The following results that emerge from the statistical processing of the geodatabase,
reveal good practices and common weaknesses that most researchers do during the
MCDA, and can be used as part of the process standardization. Figure 4 shows the most
common factors used worldwide, in the LSA research studies, according to the
geodatabase’s records. As it can be noted the most frequent ones are the slope angle (or
slope in brief), the lithology, the land use/ land cover, the slope aspect (or aspect in

brief) and the precipitation.

Another interesting statistical result that arises from the geodatabase, is about the
number of the causal factors that is used in the research studies. It is significant to note
that in many of these studies, the selection of that number, which is decided by the
experts, is not further analytically explained. Thus, in these cases, the selection of the
number of the causal factors, seems to be arbitrary or empirical which leads to the

conclusion that the whole process needs to be standardized about this procedure.
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Fig. 4: Most Frequent causal factors for LSA in the geodatabase.

Figure 5 illustrates the number of the geodatabase’s research studies, according to the
number of the causal factors that they choose to use during the AHP. As it can be
observed, the number of the causal factors varies from 4 (e.g., Cignetti et al., 2019) to
25 (e.g., Kil et al., 2016), while most of the research studies use from 5 to 10 causal
factors, during the LSA, which seems to be a good practice in general. Relevant Charts
can be produced for a local or a national level, according to the requirements of the
research (SM- Figures 2, 3, 4 and 5).

In the following paragraphs the potential capabilities of the proposed geodatabase
(created for this research study), when used along with GIS techniques as a decision-
making tool during the LSA, are briefly presented.

The database can be used to illustrate how often a landslide causal factor is being
selected. For example, for the precipitation factor, the database shows that in a
worldwide basis, the 60.98% of the research studies select it as causal factor, whereas
over a particular country, such as Greece, the results are significantly differentiated and
the relative percentage rise to 85.71%. This is achieved, through the ability of the GIS,
to combine two or more criteria (SM- Figure 6 and SM— Figure 7). The relatively big
weight of the precipitation, that is usually attributed to areas in Greece, creates the
indication for a potential correlation of this causal factor with the climate of the area.

Similar indications, also arise for the “distance from faults” causal factor (the relative
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percentage worldwide is 50% and for Greece is 85,71%). Therefore, these indications

are going to be further explored in the following paragraphs of this study, in a bigger
spatial level.

4

Number of the Research
Studies

Number of Landsllde Causal Factors used in the
AHP

Fig. 5: Number of the Geodatabase’s Research Studies according to the Causal Factors, in a
worldwide level.

Additionally, the geodatabase can be used to determine the causal factors that are
frequently selected as the most critical ones, over a particular region. As it was
mentioned before, the experts in order to apply an MCDA method, primarily have to
identify the landslide causal factors and to determine their relative contribution to the
landslide mechanism, based on their personal judgement. By using the geodatabase, the
experts have directly some initial suggestions-indications concerning the causal factors
that they can use, along with a relative range of their weights. The justification of the
acceptance, editing or rejection of these suggestions, according to the experts’ personal
judgement, can lead to the reduction of the risk for possible biased conclusions.
Additionally, because of the direct supply of the geodatabase’s results and its ability to
be easily modified to include one or a combination of new search criteria-filters (e.g.,
to include a bigger area, to provide the results only of the research studies that use the
RES method and/or of the research studies that were conducted after 2015), the process
can be significantly accelerated and at the same time the resources that are required, to

be reduced. It is the experts, however, who based on these results-suggestions, other
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spatial characteristics that are provided by GIS techniques (e.g., variance of the weight
along with the distance from the examined area) and their personal judgement (e.g.,
about the examined area’s special characteristics), have the necessary knowledge to
decide if they should keep, alter, or reject these suggestions. Thus, in a hypothetical
example, where the investigated area was affected recently by wildfires that did not
affect the neighboured areas (where the geodatabase’s records derive from), the experts
can decide to use the causal factor “NDVI” or “burned severity” instead of the others

proposed by the geodatabase.

Moreover, in case that a dispute arises between the experts (e.g., about which causal
factors should be selected) the geodatabase can be used supportively to an expert’s
choices. Thus, the use of the geodatabase can reduce the possibility of biased
conclusions resulted by the experts’ subjectivity and at the same time to act supportively
to their decisions. In the following paragraphs relative examples are analyzed, focusing
on the use of the geodatabase in the Peloponnese peninsula of Greece, which is

randomly selected for that purpose (SM- Figure 8 and SM- Figure 9).

In this example, the user can use QGIS tools (e.g., box plot, polar chart, scatter plot or
ternary plot) to find out the distribution and the extreme values of a weight of a causal
factor, such as the precipitation, limiting the results only to the research studies of the
geodatabase, which have been conducted in the area of interest. These tools, used in a
GIS environment, can provide a clear illustration to the user, about the statistical
variance of the values of a magnitude. As an example, figure 6 displays the weight
attributed to the causal factor precipitation, limiting the results only to the research
studies that are included in the area of interest. The spots represent the different research
studies, the y axis the precipitation’s weight, and the x axis the ID of each study. As it
can be observed the weight of the precipitation has one extreme maximum value, which
is over 0.2 (20%), two extreme minimum values that are lower than 0.04 (4%), while
most of the values range from 0.0868 to 0.18. For that purpose, the scatter plot tool, of

plotly plugin of QGIS is used.
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Fig. 6: Precipitation's Weight as a causal factor in LSA over Peloponnese peninsula, Greece.

Furthermore, the QGIS tools, mentioned in the previous paragraph, can be used to
illustrate the variance of the weights of the causal factors used in a research study,
compared with the rest of the studies, conducted in the area of interest. Figure 7
illustrates a characteristic example where for a certain region (Peloponnese peninsula),
nine (9) research studies are included in the geodatabase, and each one of them is
presented separately in vertical layout. The most common (between these 9 studies)
landslide causal factors (slope, rainfall/precipitation, altitude/elevation, aspect and
lithology) are illustrated with different colors (e.g., the slope is illustrated with the blue
color). The x axis contains the fid of each research study and the y axis the relevant
causal factor’s weight. For the first research study (fid 1 in the x axis), the weights of
the most common causal factors are: Wsigpe = 0.209, Wrainfan = 0.033, Waspect = 0.021,
Wiitology = 0.269 while the altitude is not contained as a causal factor. This Figure (7)
provides to the users, a clear illustration of the variance of the weights of the most
common causal factors in the area of interest. By using that, the users can easily
compare the causal factors’ weights attributed by the research studies and afterwards to
examine, if it is required, to exclude some of them, according to the region’s special
characteristics and their personal judgement. For example, the density of the spots in

the y axis for the research study with id 4, compared with the relevant density of the
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spots of the research study with id 5, is rather small, which leads to the conclusion that
in the research study with id 4 some of the causal factors are favored, while at the same
time in the research study with id 5, the causal factors have similar contribution to the
LSA. It is significant to note that for the examined area of interest, the “slope”, the
“rainfall”, the “aspect”, the “lithology” and the “altitude” are the most common causal
factors, used in the 9 different research studies, revealing a relative homogeneity,
concerning the LSA, in the area of interest. The rest of the causal factors differ between
the research studies and are not included in the graph as they would not provide any
critical information and they would increase the complexity of the graph (Graphs have

been made by using the Scatter plot tool of plotly plugin of QGIS).
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Fig. 7: Graph with 5 most common causal factors and their weights’ variance.

Also, many times the researcher needs to examine if the weight of a causal factor (e.g.,
the precipitation, the slope), change in relation with the distance from the examined
area. In that case, the researcher needs to evaluate if the local parameters differentiate
the terrain or the hydrological conditions over a certain distance (e.g., Starkel and Sarkar
2002, where the rainfall was correlated with the distance from the mountain front) and
therefore the geodatabase’s records that are over that distance (buffer) need to be further
excluded from the processing. GIS contributes significantly to that purpose because of
its ability to spatially combine different characteristics of the geodatabase and of the
prevailing parameters to the area of interest (a relevant hypothetical example, is
presented in SM- Figure 10 and in SM- Figure 11, where the results of the geodatabase

are limited by applying a distance- buffer of 60km of the examined area).
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The main purpose of this analysis is to present the potentiality of the geodatabase when
it is used with GIS and not to include every possible GIS technique. It is evident that
other, similar techniques may also be used, for the same or similar purposes (e.g., using
boxplots to identify possible outlier values, using the inverse distance weighted (IDW)
tool to evaluate the potential weight of a causal factor according to the relative distances
of the geodatabase’s research studies (geodatabase’s records), using multiple buffer

rings tool to create distance zones from the examined area).

As it was shown in the previous paragraphs, the proposed geodatabase significantly
reduces the risk of potential biased conclusions, as it combines the results of different
research studies, which were conducted by different researchers in the broader area,
with the experts’ knowledge and experience. Thus, an expert that want to perform an
initial LSA, can use the provided geodatabase as a decision-making tool, to determine
the causal factors, that are usually selected in the broader area of interest, along with
the relative range of their weights. However, it is significant to note that the experts still
need to use a MCDA method and their personal judgements, to adjust these data,
according to the area’s special characteristics. Moreover, the experts can also use the
geodatabase to identify possible extreme values used during previous research studies,
which if they do not arise from the areas’ special characteristics should be excluded
from the conducted LSA. Additionally, in some cases, the geodatabase can be used for
an initial rapid LSA, especially in areas where the landscape has changed recently or
where a landslides’ inventory does not exist, or it is incomplete. However, it is
significant to note that even in these cases (that an initial rapid LSA is required), MCDA
methods still need to be used and the experts should take the final decisions about the

use, modification, or rejection of the geodatabase’s results-indications.

3.2  Statistical and Spatial Processing of the Geodatabase in a broader level

Many interesting results also emerge from the statistical and spatial processing of the
Geodatabase by expanding its results, so as not to be limited in a local region, such as
Peloponnese peninsula (which was presented in the previous paragraphs), but to include
a broader spatial level, such as a country. Thus, the geodatabase can be used to
determine the most common causal landslide factors in a national level, using a similar
procedure, to the one followed in a regional level. These findings, as happens with all
the geodatabase's results, are aiming to aid the researcher-experts, and their use or not

is a decision that should be based exclusively on their judgement. Also, the geodatabase
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can be used to enrich a national inventory of a country, by extracting the location of the
landslides examined in the research studies of the geodatabase. This can be achieved
because most of the research studies of the geodatabase, study and analyze the most
significant landslides occurred in a country, in the recent past. It is significant to note
though, that a complete national inventory, requires a great number of landslides and
therefore the geodatabase can be used only complementary to a national inventory. As
an example, Figure 8 illustrates the research studies of the geodatabase that analyze

areas where landslide occurred in Iran, from 2008 to 2019.

45.000 50.000 55.000 60.000
| D l I 'l l - I
T

Cartographic Inﬂ%ﬁqn

—

40.000

Geographic Coordination
System: GCS WGS 1984

35.000

Datum: D WGS 1984

Basemap: OpenStreet Ma

Legend
Q Landslide Research Studies
0 250 500 km
[ | [ ran
K . ®
L

Fig. 8: Database’s use in national level (Iran).

By running a relative query or by counting directly the number of the research studies
that correspond to each country of the geodatabase, it becomes apparent that India is the
country with the most records in the geodatabase (15 out of 82 that corresponds to
18,29% of the total geodatabase’s records). This location refers only to the landslide
event examined in each research study and not to the location of the researchers or their
institutes (which is not recorded in the geodatabase). This result (of India recording the
majority of research studies) highlights the high interest of the scientific community for

the landslides occurred in that country, which is mainly because India is the second
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country in the worldwide ranking on the landslide reports, and the first one on the
landslide fatalities (Kirschbaum et al., 2015).

Furthermore, GIS offers to the researcher the ability to simultaneous display the statistical
and spatial characteristics of a landslide causal factor in a local and in a broader level.
For example, the researcher can illustrate the spatial variance of the values of the weight
of a causal factor, such as the “Land Use/Land Cover”, in a worldwide level, and at the
same time to check this value in a specific location and to access its overall statistics
(e.g., min, max, mean value) (SM- Figure 12). By using similar GIS techniques, the

researcher can also limit the results over a specific location (e.g., a peninsula).

In addition, the GIS offers the opportunity to interconnect the geodatabase with global
spatial data gathered from external open access sources- geodatabases. Thus, the
researcher can identify possible patterns about the LSA and to apply them, in areas that
are not spatially covered by the geodatabase or to modify the geodatabase’s results, based
on the observed correlations. Figure 9 presents an example where the values of the
landslide causal factor "distance from faults” of the geodatabase, are illustrated
simultaneously with the worldwide "active faults" lines (the spatial data for “active
faults” lines derived by Styron and Pagani, 2020 and are not part of this study). The
research studies that do not consider this factor to be a critical causal factor during their
LSA, are only symbolized with the “research study” symbol (there is not a symbol for
the “Distance from Faults” weight, next to it). As it can be observed, according to the
geodatabase’s results, in countries, such as Greece, the factor “Distance from Faults” is
common in many LSA research studies while at the same time the “active faults” lines,
according to Styron and Pagani (2020) spatial data, are also dense for that area. On the
other hand, in areas, such as the South of India, where the relative active faults lines are
sparse, the “Distance from Faults”, is also rarely used as a causal factor in the
geodatabase. Thus, in this hypothetical example, that a researcher wants to perform a
LSA in the country of “Georgia”, (where, as it shown in Figure 9, it is not spatially
covered from the geodatabase but where the active faults lines, according to Styron and
Pagani (2020) geodatabase, are dense), by using the proposed geodatabase, the
researcher has the indirect indication- suggestion that the “Distance from Faults” can be
a potential landslide causal factor. Subsequently, the expert can also use the geodatabase
to receive potential initial suggestions (derived from areas covered from the geodatabase)
that can help him with the relevant weight attribution of that causal factor (“distance from
faults™). As it happens with all the outputs of the geodatabase, these correlations with the

spatial data gathered from external open access sources, can be used only as indications-
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suggestions and the final decisions about their use should be made exclusively by the
experts, who are going to evaluate them along with the other characteristics of the area.
Furthermore, the expert can investigate possible further correlations in a more detailed
level (e.g., about the attributed weight of a causal factor and the density of the “active
faults” lines), by examining the geodatabase along with national or local open access
external geodatabases, such as the Ganas et al. (2013) “active faults” geodatabase, which
is more precise and detailed, but it is spatially limited in a national level (Greece) — (SM-
Figure 13).
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Fig. 9: Projecting the weight of the Geodatabase’s causal factor “Distance from faults”
along with the open access external worldwide geodatabase of Styron and Pagani

(2013) about active faults lines.

Also, the geodatabase can be dynamically correlated with spatial data gathered from
other external open access sources which are regularly updated. Figure 10, presents an
example, where the weight of the causal factor “precipitation”, is illustrated along with
Koppen — Geiger Climate Classification data. Koppen — Geiger Climate Classification
is a method that divides the climate of the world in 5 main classes, using a capital letter,
and 30 subclasses, using a small letter. Due to the climate crisis the final map is
regularly updated by scientists (Kottek et al., 2006; Beck et al., 2018). As it can be
observed in Figure 10, the attributed precipitation’s weight is rather big in places

3P L)

characterized by the letters “s” or “w”, which relatively corresponds to dry summer (S)
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or dry winter (w). The identification of such patterns is rather significant as it can lead
the researcher to spatially correlate the geodatabase with data derived from external
sources, and afterwards to use their updates to relatively adjust the geodatabases’
results. Hence, the future modifications of the Koppen — Geiger Climate Classification,

e 9
S

such as the change of some areas’ characterization from the letter “s”, or “d”, to another
letter or vice versa, can be used by the researcher to relatively adjust the weight of the
precipitation in these areas, incorporating to the LSA, the upcoming changes, due to
climate change. Thus, in a hypothetical example, due to a modification of a Koppen —
Geiger Climate Classification, the climate of a region that nowadays is characterized
with the letter “s” (dry summer), changes, because of the climate crisis, with the letter
a (hot summer). In this example, a researcher who wants to perform a LSA in that
region, by using the above conclusion, about the correlation of the precipitation’s
weight with the areas characterized by the letter “s” or “d”, and the information that the
climate of the examined region is going to change from “s” to “a” (derived by the
external open access geodatabase), has the initial indication- suggestion to consider
reducing the weight of the precipitation as a causal factor for that region, during the
LSA.
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Fig. 10: Using Geodatabase and Koppen -Geiger Climate Certification Map
(classification data derived from Kottek et al., (2006)).

Likewise, the geodatabase can be easily connected with other geodatabases or other
landslide studies’ results in order to study in general the landslide mechanism and the
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methods used worldwide for the LSA. Hence, Figure 11 displays the geodatabase
focused on Europe, Africa, Asia and Australia along with the global landslide catalog
(GLC) provided by the USA - National Aeronautics and Space Administration’s
(NASA'’s) Open Data Portal, as has been compiled since 2007 and have been afterwards
regularly updated, at NASA Goddard Space Flight Center (Kirschbaum et al., 2015)
(SM- Figure 14 presents the relative geodatabase’s results focused in America). As it
can be observed, a great part of the distribution of the research studies of the
geodatabase is following the relevant distribution of the recorded landslides of the GLC.
This means that the interest of the scientific community, as it is illustrated by the
published scientific studies of the geodatabase, is mainly focused in areas where

landslides are frequently happening, as it is also illustrated in the GLC.
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Fig. 11: Spatial distribution of the research studies contained in the geodatabase along
with the global landslide catalog (GLC) provided by USA-NASA open data portal,

focused on Europe, Africa, Asia and Australia.

Nevertheless, there are some regions, where the recorded landslides, according to the
GLC, are frequent but are not included in the geodatabase. This is happening because
some countries, such as the US, UK, Canada, France, and Italy have developed, over
the years, relative national landslide inventories (Malamud et al., 2004; Westen et al.,
2006; Lin et al., 2017) and these large volumes of these landslide inventories, which in

some cases can been easily accessible through internet (Westen et al. 2006), has led to
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a more frequently use of the statistical methods in that areas (Lin et al..2017) compared
with other methods, such as of the MCDA methods. Thus, the MCDA methods are
usually rare in some of these countries, such as the UK, while in some others, such as
Italy, are used more often, as they can provide direct and efficient results, especially in
areas with special geomorphological characteristics (such as hilly-mountainous and
highly human-influenced areas - Cignetti et al. (2019)). On the contrary, in countries,
where a national landslide inventory does not exist at all or it is not considered to be as
a complete one, the MCDA methods are more frequently used, and therefore the
geodatabase’s research studies are illustrated more frequently there, as it shown in

Figure 11.
4. CONCLUSIONS

Landslides are over time in high scientific interest due to their devastating results and
their complex nature. Nowadays, the scientific community has available, advanced
technological tools, such as the Geographic Information Systems (GIS) and the
geodatabases, which, when combined, can significantly assist its efforts to understand
and analyze the landslide mechanism.

Multi-Criteria Decision Analysis (MCDA) methods are widely used in landslide
susceptibility assessment (LSA), as they can be applied rapidly and with a very good
accuracy, even in areas where a landslides inventory does not exist, or the landscape
has changed recently. Their main disadvantage is that their efficacy depends
significantly on the experts’ personal judgements, about the determination of the most
critical landslide causal factors and the evaluation of their relative weights and is not
guaranteed. These personal judgements can render the MCDA method to be either
efficient, (when the expert combines successfully the knowledge in LSA gained through
his personal experience with the knowledge of the area’s special characteristics) or
inefficient (when the judgements are not justified and are based exclusively on biased

conclusions).

During this research a geodatabase is created by integrating the results of 82 research
studies that use MCDA methods to perform a LSA. These results contain spatial
characteristics of the examined landslide, the causal factors, their weights, and the
verification methods used in each research study. By that way, the previously
knowledge in LSA generated by the previous studies, which also integrate the broader

area’s special characteristic, is gathered and spatially provided to the future researcher,
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as a decision-making tool, reducing the risk of possible biased conclusions and the time
required for the method’s applicability. Besides the advantages that the geodatabase is
offering, the use of experts, remains indispensable. Moreover, the statistical analysis of
the geodatabase offers interesting results, which can be part of the standardization of
the process while at the same time its spatial analysis and correlation with other spatial
data reveals patterns concerning the correlation of the LSA causal factors with local and
worldwide parameters. Finally, the geodatabase, can be used along with external
databases that are regularly updated, such as the future climate projections of the
Koppen — Geiger Climate Classification data, to provide updated indications-
suggestions concerning the LSA, such as the use of precipitation as a causal factor or
not. Finally, it is significant to note that according to the authors’ knowledge, a similar
geodatabase, that integrates spatially the results of previous LSA research studies, does

not exist in the scientific literature.

5. DATA AVAILABILITY

All data used have been derived from open access sources. The basic functions of the
geodatabase are presented in the following geoportal: http://geoland.metal.ntua.gr (SM-
Figures 15 and 16). However, a GIS environment is required, to apply all the functions
of the geodatabase which are described in this study, and therefore the geodatabase can
be also provided via email, upon request.
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