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Abstract 

 

Every year landslides cause many fatalities and destroy numerous infrastructures 

around the world. Due to their catastrophic results, scientific research studies are 

conducted, on a continuous basis, trying to determine the controlling and triggering 

factors, and to evaluate their contribution-weight to that phenomenon. In this direction, 

many of these studies use multicriteria decision analysis methods as they are quite 

effective and can be applied rather quickly. However, a large percentage of the new 

studies that use these methods, is usually devoted to the analysis of many previous 

research studies and the validation of their results, which usually leads to serious 

delays and requires significant resources. In this research, 82 relevant past studies are 

evaluated, and their results are integrated into a worldwide geospatial database, to 

present its potential as a decision-making tool, during the landslide susceptibility 

assessment. As it is revealed the results of its statistical and spatial correlation with the 

examined region’s prevailing parameters in a geographical information system 

environment, can provide critical indications- suggestions to a researcher and along 

with the applicability of the multicriteria decision analysis methods, that contain the 

use of other experts’ knowledge and experience, to lead to the rapid identification of 

the most critical landslide causal factors and the initial evaluation of their contribution-

weight. These indications accelerate significant the whole process and reduce the risk 

for possible biased conclusions, which can render the whole method ineffective. 
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Moreover, this study highlights the geodatabase’s potential to incorporate open-access 

data, from external spatial databases and to use them, during the process of the 

landslide susceptibility assessment.  

 

Keywords: Landslides, GIS, Geodatabase, MCDA, LSA. 

 

Περίληψη 

 

Κάθε χρόνο οι κατολισθήσεις προκαλούν πολλούς θανάτους και καταστρέφουν μεγάλο 

αριθμό έργων υποδομής σε όλο τον κόσμο. Εξαιτίας των καταστρεπτικών τους 

αποτελεσμάτων, επιστημονικές ερευνητικές μελέτες πραγματοποιούνται συνεχώς, 

προσπαθώντας να προσδιορίσουν τους παράγοντες που προκαλούν και ενεργοποιούν μία 

κατολίσθηση και να προσδιορίσουν τη συνεισφορά – βάρος τους σε αυτό το φαινόμενο. 

Σε αυτή την κατεύθυνση, πολλές από αυτές τις μελέτες χρησιμοποιούν μεθόδους 

πολυκριτηριακής ανάλυσης, καθώς είναι αρκετά αποτελεσματικές και μπορούν να 

εφαρμοστούν αρκετά γρήγορα.  Παρόλα αυτά ένα μεγάλο ποσοστό των νέων μελετών που 

χρησιμοποιούν τέτοιες μεθόδους, συνήθως αφιερώνεται στην ανάλυση πολλών 

προηγούμενων μελετών και στην επιβεβαίωση των αποτελεσμάτων τους, γεγονός που 

συνήθως οδηγεί σε σημαντικές καθυστερήσεις και απαιτεί αυξημένους πόρους. Σε αυτή 

την έρευνα, 82 σχετικές προηγούμενες μελέτες αξιολογούνται και τα αποτελέσματά τους 

ενσωματώνονται σε μία παγκόσμια γεωχωρική βάση δεδομένων, για να παρουσιαστούν 

οι δυνατότητες χρήσης της βάσης ως εργαλείο λήψης αποφάσεων κατά την εκτίμηση 

κατολισθητικής επιδεκτικότητας. Όπως αποκαλύπτεται η στατιστική και χωρική της 

συσχέτιση με παράγοντες που επικρατούν στην εξεταζόμενη περιοχή σε ένα περιβάλλον 

γεωγραφικού συστήματος πληροφοριών (ΓΣΠ), μπορεί να χρησιμοποιηθεί για να παρέχει 

κρίσιμες ενδείξεις – προτάσεις σε έναν ερευνητή και μαζί με την εφαρμογή 

πολυκριτηριακών μεθόδων ανάλυσης, που περιλαμβάνουν τη χρήση της γνώσης και της 

εμπειρίας και άλλων ειδικών, να τον οδηγήσει στην ταχεία αναγνώριση των πιο κρίσιμων 

παραγόντων εκδήλωσης μίας κατολίσθησης και την αρχική εκτίμηση της συνεισφοράς-

βάρους τους. Αυτές οι ενδείξεις- προτάσεις επιταχύνουν συνολικά τη διαδικασία και να 

μειώνουν το ρίσκο για πιθανά μεροληπτικά συμπεράσματα, τα οποία μπορούν να 

καταστήσουν τη μέθοδο αναποτελεσματική. Επιπρόσθετα αυτή η μελέτη αναδεικνύει τις 

δυνατότητες της γεωβάσης να ενσωματώνει ανοιχτής πρόσβασης δεδομένα, από 

εξωτερικές χωρικές γεωβάσεις και να τα χρησιμοποιεί κατά τη διαδικασία της εκτίμησης 

κατολισθητικής επιδεκτικότητας.  
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Λέξεις Κλειδιά: Κατολισθήσεις, ΓΣΠ, Γεωβάση, Πολυκριτηριακές Μέθοδοι Ανάλυσης, 

Εκτίμηση κατολισθητικής επιδεκτικότητας. 

 

1. INTRODUCTION 

 

Due to climate change, natural phenomena tend to have an increasing influence in 

peoples’ everyday life (Hesmati, 2020; Papanikolaou and Diakakis, 2011). Their 

intensity, sometimes combined with man-made factors, leads to enormous natural 

disasters which in turn cause the loss of many human lives and the destruction of a great 

number of critical infrastructures (Papanikolaou and Diakakis, 2011; Sauerborn and 

Ebi, 2012). Among these natural disasters, landslides have a significant worldwide 

impact (IGOS, 2004; Kirschbaum et al., 2015) and are of scientific interest due to their 

catastrophic results. As it is proved by previous (Dilley et al., 2005) and more recent 

studies (Kirschbaum et al., 2015), the landslides are happening all over the world, in 

nearly every country, sometimes caused by completely different reasons.  

 

The causal factors that influence the stability of a slope are generally divided into two 

main categories, the preparatory factors, which degrade the stability of the slope 

preparing the failure and the triggering factors, which activate the landslide (Cruden 

and Vandine, 2013). Most common causal factors are the unfavorable slope angle, the 

slope aspect, the geology and the land use/ land cover, while the most common 

triggering factors are the intense or prolonged rainfall, the earthquakes and the various 

erosion processes and human activities (Westen et al., 2006; Ladas et al., 2007a; Ladas 

et al., 2007b; Rozos et al., 2010; Kouli et al., 2014). The assessment of the propensity 

of soil or rock in a region to create a landslide, according to the local characteristics, is 

expressed with the landslide susceptibility assessment (LSA) (Chalkias et al. 2014). A 

serious problem during the LSA, is that there are no universal guidelines about the 

selection of the appropriate causal factors (Shahabi and Hashim (2015)). Thus, the 

researchers sometimes spend a significant part of their research on analysing relevant 

previous research studies and validating their results, which can lead to serious delays, 

especially in case that they concern a great number of research studies. As Guzzetti 

(2005) points out about the LSA, the difficulty mostly lays in the availability of the 

relevant information, and on the complexity and the amount of it, especially when the 

research concerns large areas. Moreover, the results’ validation can be also a quite 

difficult task, especially in cases where the researcher does not provide or pose 

restricted access to the initial data (Lin et al. (2017).  
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In general, the methods that the researchers use to perform an LSA, can be distinguished 

to quantitative and qualitative ones. The quantitative methods are usually based on 

numerical expressions between the prevailing factors and the probability of the 

occurrence of a landslide (Guzzetti, 2005; Reichenbach et al., 2018). More specifically, 

the researcher through a mathematical model, tries to simulate the landslide’s 

mechanism and to calculate the Landslide Susceptibility of the area. However, the 

applicability of this method often requires significant processing resources and an 

extended historical landslide record (inventory), which in many areas is not available. 

Moreover, these methods have been proved to be ineffective for places where large 

environmental changes took place in the recent past or are expected to happen in the 

near future (Westen et al., 2006). 

 

On the other hand, the qualitative methods use qualitative criteria and terms to evaluate 

the landslide susceptibility of a region (Westen et al., 2006; Chalkias et al., 2014; 

Anbalagan et al., 2015). They are based on the opinion of a scientific team, called the 

“experts”, to identify the critical characteristics of an area that can render it prone to a 

landslide (Chalkias et al., 2014; Tavoularis et al., 2015). The experts are usually people 

with strong academic background who are rather familiar with the specific features of 

the examined region. An example of qualitative methods are the multicriteria decision 

analysis (MCDA) methods, such as the Analytical Hierarchy Process (AHP).  In AHP, 

the selected experts, by following a specific process determine the weight- contribution 

of each factor and conduct the relevant LSA (a hypothetical example, which has been 

developed for the needs of this study, analyses the steps followed during the APH and 

is presented in Supplementary Material Tables 1,2 and 3 (SM- Tables 1, 2 and 3)). 

MCDA methods can risk of being ineffective if the experts are not selected properly by 

the researcher (e.g., in Kil et al. (2016), it is presented how the profession of each expert, 

can lead to completely different judgements of the most critical causal factors’ selection 

and on the relevant weights’ attribution) or if the selected experts, proceed to biased 

judgements (Nicu 2018, Xiong et al.,2018 and Moradi and Rezaei, 2014). However, 

MCDA methods can produce susceptibility maps with high reliability, provided that the 

use of experts will not lead to biased conclusions (Gorsevski et al., 2006), in 

contradiction to the nowadays increasing trend in LSA, to replace the opinion of experts 

with computer algorithms (Westen et al., 2006). 

 

The main objective of this research is to analyze and organize spatially, the knowledge 

gained by the MCDA methods, used in previous studies, and to provide their results 

directly to a researcher, reducing that way, the time and sources needed for a new study 
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and improving this new study’s efficacy. This is achieved by creating a geospatial 

database (geodatabase), which integrates spatially the results of 82 scientific studies 

that use MCDA methods, and by using their statistical analysis, to the standardization 

of the whole process. By using this geodatabase, a researcher can decide to use a smaller 

number of experts, to propose to the experts a variety of potential landslide causal 

factors, to compare and validate the results of the conducted study with the relative ones 

of the geodatabase’s and to identify and therefore to exclude possible outlier values. 

The experts also, by using the proposed geodatabase, have direct and immediate 

information- suggestions on the potential landslide causal factors that they can use, 

along with their relative importance-weight which can be applied during the MCDA 

method of the conducted new study. 

 

 The proposed procedure does not introduce a new method, and, a researcher cannot 

conduct an LSA, based exclusively on the geodatabase’s results. Therefore, it does not 

eliminate the need for experts, and their contribution to the conduction of the LSA 

remains indispensable. The experts due to their personal knowledge and experience, are 

the only capable ones, that can evaluate if they should accept all, some or none of the 

results of the geodatabase, according to the particular characteristics of the examined 

area. Nonetheless, this judgement should be justified. Thus, through the geodatabase’s 

use, the risk for possible biased conclusions and the necessary time for selecting the 

most critical causal factors and determining their relative importance, can be 

significantly reduced. However, it is significant to note that the use of the geodatabase, 

limits but does not eliminate the possibility for biased conclusions. As it happens with 

every tool used in LSA (Guzzetti, 2005), this geodatabase is going to be efficient only 

if it is used by experienced researchers- professionals. 

 

The potentiality of the geodatabase also emerges by its statistical and spatial analysis in 

a broader level, with GIS techniques, and its interconnection with spatial data derived 

from external open access sources. Hence, correlations of the causal factors’ weights 

included into the geodatabase with local characteristics, such as the climate of a region, 

are revealed, which can be subsequently used in areas not spatially covered by the 

geodatabase. 

 

2. METHODOLOGY 

 

As it is shown in Figure 1, the proposed geodatabase integrates the results of 82 

scientific research studies, that use MCDA methods for the LSA, spatially covering a 
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large part of the world, which mainly includes Europe and Asia but also contains Africa 

(Ethiopia, Morocco, Rwanda), Australia (New Papua Guinea) and America (Canada, 

Chile, USA) (SM-Figure 1). 

 

 

Fig. 1: Geodatabase’s Landslide Research Studies, focused on Europe, Asia, and 

Africa. 

 

The geodatabase’s inputs, contain the spatial characteristics of each research study 

(such as the region, the country and the coordinates of the examined landslide events 

included in each research study), the landslide causal factors, their relevant weights, 

and other characteristics, such as the author’s name, the year of the research, the method 

used and the use or not of validation methods. It is significant to note that some 

scientific research studies (such as Rozos et al. 2010), apply two or more MCDA 

methods in the same area or apply a MCDA method in two different areas (such as 

Tavoularis and Kirkos, 2019), and therefore, these results are included in the 

geodatabase as distinct records. Table 1 summarises the research studies used as sources 

in the geodatabase, grouped per country and region (a more detailed version of this table 

is provided in SM-Table 4). The location of each researcher (e.g., the institution that 

the first author belongs to), is not recorded in the geodatabase. 
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Table 1. Research Studies used in the Geodatabase 

 

ID Country Region Reference Method 

1 Austria Vorarlberg - Eastern Alps Ruff and Czurda (2008) Heuristic 

2 Bulgaria Simitli Ivanova (2014) AHP 

3 
Canada British Columbia’s Coast Mountains Blais-Stevens et al. (2012) Fuzzy Logic 

4 
Chile Socoroma, Arica Parinacota Rodriguez et al. (2013) AHP 

5 

China 

Anyuan County Chen et al.  (2019) SWARA 

6 
Zhen'an County, Shan’xi Province Zhao et al. (2017) Fuzzy-AHP 

7 Zhangzha town Jiuzhaigou Yi et al. (2019) AHP - FR 

8 Cyprus Western Cyprus Myronidis et al. (2015) AHP 

9 Ethiopia Tarmaber District Abay et al. (2019) AHP -WLC 

10 

Greece 

North Messinia Ladas et al. (2007a) AHP 

11 East Messinia Ladas et al. (2007b) AHP 

12 Peloponnese  Chalkias et al. (2014) Fuzzy Weighting 

13 Perfection of Xanthi Tsangaratos and Rozos (2013) AHP 

14 Perfection of Xanthi Tsangaratos and Rozos (2013) RES 

15 
North-eastern part of Achaia prefecture Rozos et al. (2010) AHP 

16 
North-eastern part of Achaia prefecture Rozos et al. (2011) RES 

17 Tsakona area, Arcadia Tavoularis et al. (2015) RES 

18 East Achaia prefecture Rozos et al. (2010) AHP 

19 East Achaia prefecture Rozos et al. (2011) RES 

20 
North Peloponnese 

Kavoura and Sabatakakis 

(2020) 
Modified LSI 

21 West Crete Island Kouli et al. (2014) WLC 

22 Kithira island Tavoularis and Kirkos (2019) RES 

23 Ydra island Tavoularis and Kirkos (2019) RES 

24 

India 

West Bengal Roy and Saha (2019) Fuzzy-AHP 

25 Maharashtra Patil and Panhalkar (2019) AHP 

26 Coonoor and Ooty Rahaman et al. (2014) AHP 

27 Tehri   Kumar and Anbalagan (2016) AHP 

28 
southern Western Ghats, Kerala Achu and Reghunath (2017) AHP 

29 Eastern Darjeeling Himalaya Mandal and Mandal (2018) AHP 

30 Kottayam District, Kerala Ajin et al. (2016) Heuristic 

31 Lachung Basin, Sikkim Anbalagan et al. (2015) Field Knowledge 

32 
Saitual Town, Mizoram 

Lallianthanga and 

Lalbiakmawia (2013) 
Field Knowledge 

33 
Kolasib 

Lallianthanga and 

Lalbiakmawia (2014) 
Field Knowledge 

34 Aizawl city and Aibawk town Laldintluanga et al. (2016) Field Knowledge 

35 Wayanad Jishnu et al. (2017) WOA 

36 
Aizawl City and Lengpui Airport 

Laltlankima and Lalbiakmawia 

(2016) 
AHP 
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37 
Nadugani, Gudalur Taluk, Saranathan and Mani (2016) 

Multi-criterion 

analysis 

38 
Shiv-Khola watershed, West Benghal Mandal and Maiti (2011) AHP 

39 
Indonesia 

Yogyakarta Xiong et al. (2018) AHP 

40 Kaligesing Bachri and Shresta (2010) AHP 

41 

Iran 

Khorramabad Mokarram and Zarei (2018) Fuzzy-AHP 

42 
Sari 

Mijani and Neysani Samani 

(2017) 
Fuzzy-AHP 

43 

Lorestan 

province 
Abedini and Tulabi, 2018 AHP 

44 Golestan province north   Tazik et al. (2014) Fuzzy-AHP 

45 Mazandran Province Arabameri et al. (2019) AHP 

46 Mazandran Province Arabameri et al. (2019) LDA 

47 Mazandran Province Arabameri et al. (2019) AHP - SI 

48 Dena Moradi et al. (2012) AHP 

49 Zanjan Province Boroumandi et al. (2015) AHP 

50 Alborz Moradi and Rezaei (2014) AHP 

51 Tehran metropolitan Pourghasemi et al. (2013) AHP 

52 Kermanshah Maleki et al. (2014) AHP 

53 
Italy Rupinaro catchment Liguria Cignetti et al. (2019) AHP 

54 

Malaysia 

Cameron Highlands Shahabi and Hashim (2015) AHP 

55 Cameron Highlands Shahabi and Hashim (2015) SMCE 

56 Sarawak, Borneo Vijith and Dodge-Wan (2019) AHP 

57 Penang Island Khodadad and Jang (2015) AHP 

58 

Morocco 

Oum Er Rbia high basin, El Jazouli et al. (2019) AHP -WLC 

59 Oued Laou basin Semlali et al. (2019) AHP 

60 Safi El Bchari et al. (2019) AHP 

61 Nepal Kaski district  Bhatt et al. (2013) AHP 

62 North 

Macedonia 

North Macedonia Milevski et al. (2019) AHP 

63 North Macedonia Milevski et al. (2019) FR 

64 Pakistan Karakoram Highway Ali et al. (2019) AHP-WLC 

65 

Papua 

New 

Guinea 

Eastern highlands province Jana et al. (2015) Undefined 

66 
Romania Bârlad Plateau, East Romania Grozavu et al. (2017) AHP 

67 Rwanda Karongi Nahayo et al. (2019) AHP 

68 

S. Korea 

Jeju Island Quan and Lee (2012) AHP 

69 
South Korea (national scale) Kil et al. (2016) AHP 

70 

Saudi 

Arabia 
Abha Watershed Mallick et al. (2018) Fuzzy-AHP 

71 

Serbia 

Fruška gora mountain Marjanović et al. (2013) AHP 

72 
Ljubovija Municipality western Serbia Krušić et al. (2017) AHP 

73 
Slovenia 

Sava and Sora River  Komac (2006) Fuzzy-AHP 

74 Slovenia (national scale) Komac and Zorn (2009) WOE 

75 Spain Tirajana, Gran Canaria Hervas de Diego et al. (2001) AHP 

76 Sri Lanka Kegalle District Perera et al. (2018) SMCE 
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77 Taiwan Chen-Yu-Lan Watershed Nguyen and Liu (2019) AHP 

78 
Thailand Mae Chem , Northern Thailand 

Intarawichian and Dasananda 

(2010) 
AHP-WLC 

79 Turkey 

Western Black Sea region, Abdipaşa, 

Abdipaşa/Ulus/Bartın 
Ercanoglu et al. (2008) AHP 

80 Ayvalik Akgun et al. (2011) AHP 

81 
USA 

Idaho, Salmon - Challis Sprague- Wheeler (2003) Undefined 

82 Rocky Mountains in north central Idaho Gorsevski et al. (2006) Fuzzy-AHP 

 

where AHP: Analytic Hierarchy Process, LDA: linear discriminant analysis, LSI: 

landslide susceptibility index, SI: statistical index, SMCE: spatial multicriteria 

evaluation, SWARA: stepwise weight assessment ratio analysis, WOA: weighted 

overlay analysis, and WLC: weight linear combination. 

 

Figure 2 illustrates the structure of the database, constructed in MySQL, using the 

phpMyAdmin tool, with two tables, named as “studies” and “factors_weight”. The 

value “ID” is the primary key for the table “studies” and the foreign key for the table 

“factors_weight”, and the “Factors_ID” is the primary key for the table factors_weight. 

 

Figure 3 displays the environment of the database. For the development of the database, 

the MySQL workbench software is used. The two tables are inserted in a GIS 

environment, and the “studies” are represented as a distinct GIS layer. For that purpose, 

QGIS software, is used.  
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Fig. 2: Database Diagram presenting the tables of the database and the different fields 

of each table. 
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Fig. 3: Research Table in phpMyAdmin. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. GIS Techniques and the geodatabase as a decision-making tool 

 
The following results that emerge from the statistical processing of the geodatabase, 

reveal good practices and common weaknesses that most researchers do during the 

MCDA, and can be used as part of the process standardization. Figure 4 shows the most 

common factors used worldwide, in the LSA research studies, according to the 

geodatabase’s records. As it can be noted the most frequent ones are the slope angle (or 

slope in brief), the lithology, the land use/ land cover, the slope aspect (or aspect in 

brief) and the precipitation. 

 

Another interesting statistical result that arises from the geodatabase, is about the 

number of the causal factors that is used in the research studies. It is significant to note 

that in many of these studies, the selection of that number, which is decided by the 

experts, is not further analytically explained. Thus, in these cases, the selection of the 

number of the causal factors, seems to be arbitrary or empirical which leads to the 

conclusion that the whole process needs to be standardized about this procedure.  
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Fig. 4: Most Frequent causal factors for LSA in the geodatabase. 

 

 

Figure 5 illustrates the number of the geodatabase’s research studies, according to the 

number of the causal factors that they choose to use during the AHP. As it can be 

observed, the number of the causal factors varies from 4 (e.g., Cignetti et al., 2019) to 

25 (e.g., Kil et al., 2016), while most of the research studies use from 5 to 10 causal 

factors, during the LSA, which seems to be a good practice in general. Relevant Charts 

can be produced for a local or a national level, according to the requirements of the 

research (SM- Figures 2, 3, 4 and 5). 

 

In the following paragraphs the potential capabilities of the proposed geodatabase 

(created for this research study), when used along with GIS techniques as a decision-

making tool during the LSA, are briefly presented.  

 

The database can be used to illustrate how often a landslide causal factor is being 

selected. For example, for the precipitation factor, the database shows that in a 

worldwide basis, the 60.98% of the research studies select it as causal factor, whereas 

over a particular country, such as Greece, the results are significantly differentiated and 

the relative percentage rise to 85.71%. This is achieved, through the ability of the GIS, 

to combine two or more criteria (SM- Figure 6 and SM– Figure 7).  The relatively big 

weight of the precipitation, that is usually attributed to areas in Greece, creates the 

indication for a potential correlation of this causal factor with the climate of the area. 

Similar indications, also arise for the “distance from faults” causal factor (the relative 
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percentage worldwide is 50% and for Greece is 85,71%). Therefore, these indications 

are going to be further explored in the following paragraphs of this study, in a bigger 

spatial level.  

 

 

Fig. 5: Number of the Geodatabase’s Research Studies according to the Causal Factors, in a 

worldwide level. 

 

 

Additionally, the geodatabase can be used to determine the causal factors that are 

frequently selected as the most critical ones, over a particular region. As it was 

mentioned before, the experts in order to apply an MCDA method, primarily have to 

identify the landslide causal factors and to determine their relative contribution to the 

landslide mechanism, based on their personal judgement. By using the geodatabase, the 

experts have directly some initial suggestions-indications concerning the causal factors 

that they can use, along with a relative range of their weights. The justification of the 

acceptance, editing or rejection of these suggestions, according to the experts’ personal 

judgement, can lead to the reduction of the risk for possible biased conclusions. 

Additionally, because of the direct supply of the geodatabase’s results and its ability to 

be easily modified to include one or a combination of new search criteria-filters (e.g., 

to include a bigger area, to provide the results only of the research studies that use the 

RES method and/or of the research studies that were conducted after 2015), the process 

can be significantly accelerated and at the same time the resources that are required, to 

be reduced. It is the experts, however, who based on these results-suggestions, other 
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spatial characteristics that are provided by GIS techniques (e.g., variance of the weight 

along with the distance from the examined area) and their personal judgement (e.g., 

about the examined area’s special characteristics), have the necessary knowledge to 

decide if they should keep, alter, or reject these suggestions. Thus, in a hypothetical 

example, where the investigated area was affected recently by wildfires that did not 

affect the neighboured areas (where the geodatabase’s records derive from), the experts 

can decide to use the causal factor “NDVI” or “burned severity” instead of the others 

proposed by the geodatabase. 

 

Moreover, in case that a dispute arises between the experts (e.g., about which causal 

factors should be selected) the geodatabase can be used supportively to an expert’s 

choices. Thus, the use of the geodatabase can reduce the possibility of biased 

conclusions resulted by the experts’ subjectivity and at the same time to act supportively 

to their decisions. In the following paragraphs relative examples are analyzed, focusing 

on the use of the geodatabase in the Peloponnese peninsula of Greece, which is 

randomly selected for that purpose (SM- Figure 8 and SM- Figure 9).  

 

In this example, the user can use QGIS tools (e.g., box plot, polar chart, scatter plot or 

ternary plot) to find out the distribution and the extreme values of a weight of a causal 

factor, such as the precipitation, limiting the results only to the research studies of the 

geodatabase, which have been conducted in the area of interest. These tools, used in a 

GIS environment, can provide a clear illustration to the user, about the statistical 

variance of the values of a magnitude. As an example, figure 6 displays the weight 

attributed to the causal factor precipitation, limiting the results only to the research 

studies that are included in the area of interest. The spots represent the different research 

studies, the y axis the precipitation’s weight, and the x axis the ID of each study. As it 

can be observed the weight of the precipitation has one extreme maximum value, which 

is over 0.2 (20%), two extreme minimum values that are lower than 0.04 (4%), while 

most of the values range from 0.0868 to 0.18. For that purpose, the scatter plot tool, of 

plotly plugin of QGIS is used. 
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     Fig. 6: Precipitation's Weight as a causal factor in LSA over Peloponnese peninsula, Greece. 

 

Furthermore, the QGIS tools, mentioned in the previous paragraph, can be used to 

illustrate the variance of the weights of the causal factors used in a research study, 

compared with the rest of the studies, conducted in the area of interest. Figure 7 

illustrates a characteristic example where for a certain region (Peloponnese peninsula), 

nine (9) research studies are included in the geodatabase, and each one of them is 

presented separately in vertical layout. The most common (between these 9 studies) 

landslide causal factors (slope, rainfall/precipitation, altitude/elevation, aspect and 

lithology) are illustrated with different colors (e.g., the slope is illustrated with the blue 

color). The x axis contains the fid of each research study and the y axis the relevant 

causal factor’s weight. For the first research study (fid 1 in the x axis), the weights of 

the most common causal factors are: Wslope = 0.209, WRainfall = 0.033, Waspect = 0.021, 

WLithology = 0.269 while the altitude is not contained as a causal factor.  This Figure (7) 

provides to the users, a clear illustration of the variance of the weights of the most 

common causal factors in the area of interest. By using that, the users can easily 

compare the causal factors’ weights attributed by the research studies and afterwards to 

examine, if it is required, to exclude some of them, according to the region’s special 

characteristics and their personal judgement. For example, the density of the spots in 

the y axis for the research study with id 4, compared with the relevant density of the 
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spots of the research study with id 5, is rather small, which leads to the conclusion that 

in the research study with id 4 some of the causal factors are favored, while at the same 

time in the research study with id 5, the causal factors have similar contribution to the 

LSA. It is significant to note that for the examined area of interest, the “slope”, the 

“rainfall”, the “aspect”, the “lithology” and the “altitude” are the most common causal 

factors, used in the 9 different research studies, revealing a relative homogeneity, 

concerning the LSA, in the area of interest. The rest of the causal factors differ between 

the research studies and are not included in the graph as they would not provide any 

critical information and they would increase the complexity of the graph (Graphs have 

been made by using the Scatter plot tool of plotly plugin of QGIS). 

 

 

Fig. 7: Graph with 5 most common causal factors and their weights’ variance. 

 

Also, many times the researcher needs to examine if the weight of a causal factor (e.g., 

the precipitation, the slope), change in relation with the distance from the examined 

area. In that case, the researcher needs to evaluate if the local parameters differentiate 

the terrain or the hydrological conditions over a certain distance (e.g., Starkel and Sarkar 

2002, where the rainfall was correlated with the distance from the mountain front) and 

therefore the geodatabase’s records that are over that distance (buffer) need to be further 

excluded from the processing. GIS contributes significantly to that purpose because of 

its ability to spatially combine different characteristics of the geodatabase and of the 

prevailing parameters to the area of interest (a relevant hypothetical example, is 

presented in SM- Figure 10 and in SM- Figure 11, where the results of the geodatabase 

are limited by applying a distance- buffer of 60km of the examined area). 
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The main purpose of this analysis is to present the potentiality of the geodatabase when 

it is used with GIS and not to include every possible GIS technique. It is evident that 

other, similar techniques may also be used, for the same or similar purposes (e.g., using 

boxplots to identify possible outlier values, using the inverse distance weighted (IDW) 

tool to evaluate the potential weight of a causal factor according to the relative distances 

of the geodatabase’s research studies (geodatabase’s records), using multiple buffer 

rings tool to create distance zones from the examined area). 

 

As it was shown in the previous paragraphs, the proposed geodatabase significantly 

reduces the risk of potential biased conclusions, as it combines the results of different 

research studies, which were conducted by different researchers in the broader area, 

with the experts’ knowledge and experience. Thus, an expert that want to perform an 

initial LSA, can use the provided geodatabase as a decision-making tool, to determine 

the causal factors, that are usually selected in the broader area of interest, along with 

the relative range of their weights. However, it is significant to note that the experts still 

need to use a MCDA method and their personal judgements, to adjust these data, 

according to the area’s special characteristics. Moreover, the experts can also use the 

geodatabase to identify possible extreme values used during previous research studies, 

which if they do not arise from the areas’ special characteristics should be excluded 

from the conducted LSA. Additionally, in some cases, the geodatabase can be used for 

an initial rapid LSA, especially in areas where the landscape has changed recently or 

where a landslides’ inventory does not exist, or it is incomplete. However, it is 

significant to note that even in these cases (that an initial rapid LSA is required), MCDA 

methods still need to be used and the experts should take the final decisions about the 

use, modification, or rejection of the geodatabase’s results-indications. 

 

3.2 Statistical and Spatial Processing of the Geodatabase in a broader level 

 
Many interesting results also emerge from the statistical and spatial processing of the 

Geodatabase by expanding its results, so as not to be limited in a local region, such as 

Peloponnese peninsula (which was presented in the previous paragraphs), but to include 

a broader spatial level, such as a country. Thus, the geodatabase can be used to 

determine the most common causal landslide factors in a national level, using a similar 

procedure, to the one followed in a regional level. These findings, as happens with all 

the geodatabase's results, are aiming to aid the researcher-experts, and their use or not 

is a decision that should be based exclusively on their judgement. Also, the geodatabase 



 
 

Geological Society of Greece   85 

 
 

Volume 59 

 

can be used to enrich a national inventory of a country, by extracting the location of the 

landslides examined in the research studies of the geodatabase. This can be achieved 

because most of the research studies of the geodatabase, study and analyze the most 

significant landslides occurred in a country, in the recent past. It is significant to note 

though, that a complete national inventory, requires a great number of landslides and 

therefore the geodatabase can be used only complementary to a national inventory. As 

an example, Figure 8 illustrates the research studies of the geodatabase that analyze 

areas where landslide occurred in Iran, from 2008 to 2019. 

 

 

Fig. 8: Database’s use in national level (Iran). 

 

By running a relative query or by counting directly the number of the research studies 

that correspond to each country of the geodatabase, it becomes apparent that India is the 

country with the most records in the geodatabase (15 out of 82 that corresponds to 

18,29% of the total geodatabase’s records). This location refers only to the landslide 

event examined in each research study and not to the location of the researchers or their 

institutes (which is not recorded in the geodatabase). This result (of India recording the 

majority of research studies) highlights the high interest of the scientific community for 

the landslides occurred in that country, which is mainly because India is the second 
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country in the worldwide ranking on the landslide reports, and the first one on the 

landslide fatalities (Kirschbaum et al., 2015). 

 

Furthermore, GIS offers to the researcher the ability to simultaneous display the statistical 

and spatial characteristics of a landslide causal factor in a local and in a broader level. 

For example, the researcher can illustrate the spatial variance of the values of the weight 

of a causal factor, such as the “Land Use/Land Cover”, in a worldwide level, and at the 

same time to check this value in a specific location and to access its overall statistics 

(e.g., min, max, mean value) (SM- Figure 12). By using similar GIS techniques, the 

researcher can also limit the results over a specific location (e.g., a peninsula). 

 

In addition, the GIS offers the opportunity to interconnect the geodatabase with global 

spatial data gathered from external open access sources- geodatabases. Thus, the 

researcher can identify possible patterns about the LSA and to apply them, in areas that 

are not spatially covered by the geodatabase or to modify the geodatabase’s results, based 

on the observed correlations.  Figure 9 presents an example where the values of the 

landslide causal factor ''distance from faults” of the geodatabase, are illustrated 

simultaneously with the worldwide ''active faults'' lines (the spatial data for “active 

faults” lines derived by Styron and Pagani, 2020 and are not part of this study). The 

research studies that do not consider this factor to be a critical causal factor during their 

LSA, are only symbolized with the “research study” symbol (there is not a symbol for 

the “Distance from Faults” weight, next to it). As it can be observed, according to the 

geodatabase’s results, in countries, such as Greece, the factor “Distance from Faults” is 

common in many LSA research studies while at the same time the “active faults” lines, 

according to Styron and Pagani (2020) spatial data, are also dense for that area. On the 

other hand, in areas, such as the South of India, where the relative active faults lines are 

sparse, the “Distance from Faults”, is also rarely used as a causal factor in the 

geodatabase. Thus, in this hypothetical  example, that a researcher wants to perform a 

LSA  in the country of “Georgia”, (where, as it shown in Figure 9, it is not spatially 

covered from the geodatabase but where the active faults lines, according to Styron and 

Pagani (2020) geodatabase, are dense),  by using the proposed geodatabase, the 

researcher has the indirect indication- suggestion that the “Distance from Faults” can be 

a potential landslide causal factor. Subsequently, the expert can also use the geodatabase 

to receive potential initial suggestions (derived from areas covered from the geodatabase) 

that can help him with the relevant weight attribution of that causal factor (“distance from 

faults"). As it happens with all the outputs of the geodatabase, these correlations with the 

spatial data gathered from external open access sources, can be used only as indications- 
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suggestions and the final decisions about their use should be made exclusively by the 

experts, who are going to evaluate them along with the other characteristics of the area. 

Furthermore, the expert can investigate possible further correlations in a more detailed 

level (e.g., about the attributed weight of a causal factor and the density of the “active 

faults” lines), by examining the geodatabase along with national or local open access 

external geodatabases, such as the Ganas et al. (2013) “active faults” geodatabase, which 

is more precise and detailed, but it is spatially limited in a national level (Greece) – (SM- 

Figure 13). 

 

 

Fig. 9: Projecting the weight of the Geodatabase’s causal factor “Distance from faults” 

along with the open access external worldwide geodatabase of Styron and Pagani 

(2013) about active faults lines. 

 

Also, the geodatabase can be dynamically correlated with spatial data gathered from 

other external open access sources which are regularly updated. Figure 10, presents an 

example, where the weight of the causal factor “precipitation”, is illustrated along with 

Köppen – Geiger Climate Classification data. Köppen – Geiger Climate Classification 

is a method that divides the climate of the world in 5 main classes, using a capital letter, 

and 30 subclasses, using a small letter. Due to the climate crisis the final map is 

regularly updated by scientists (Kottek et al., 2006; Beck et al., 2018). As it can be 

observed in Figure 10, the attributed precipitation’s weight is rather big in places 

characterized by the letters “s” or “w”, which relatively corresponds to dry summer (s) 
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or dry winter (w). The identification of such patterns is rather significant as it can lead 

the researcher to spatially correlate the geodatabase with data derived from external 

sources, and afterwards to use their updates to relatively adjust the geodatabases’ 

results. Hence, the future modifications of the Köppen – Geiger Climate Classification, 

such as the change of some areas’ characterization from the letter “s”, or “d”, to another 

letter or vice versa, can be used by the researcher to relatively adjust the weight of the 

precipitation in these areas, incorporating to the LSA, the upcoming changes, due to 

climate change. Thus, in a hypothetical example, due to a modification of a Köppen – 

Geiger Climate Classification, the climate of a region that nowadays is characterized 

with the letter “s” (dry summer), changes, because of the climate crisis, with the letter 

a (hot summer). In this example, a researcher who wants to perform a LSA in that 

region, by using the above conclusion, about the correlation of the precipitation’s 

weight with the areas characterized by the letter “s” or “d”, and the information that the 

climate of the examined region is going to change from “s” to “a” (derived by the 

external open access geodatabase), has the initial indication- suggestion to consider 

reducing the weight of the precipitation as a causal factor for that region, during the 

LSA.  

 

 

Fig. 10: Using Geodatabase and Köppen -Geiger Climate Certification Map 

(classification data derived from Kottek et al., (2006)). 

 

Likewise, the geodatabase can be easily connected with other geodatabases or other 

landslide studies’ results in order to study in general the landslide mechanism and the 
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methods used worldwide for the LSA. Hence, Figure 11 displays the geodatabase 

focused on Europe, Africa, Asia and Australia along with the global landslide catalog 

(GLC) provided by the USA - National Aeronautics and Space Administration’s 

(NASA’s) Open Data Portal, as has been compiled since 2007 and have been afterwards 

regularly updated, at NASA Goddard Space Flight Center (Kirschbaum et al., 2015) 

(SM- Figure 14 presents the relative geodatabase’s results focused in America). As it 

can be observed, a great part of the distribution of the research studies of the 

geodatabase is following the relevant distribution of the recorded landslides of the GLC. 

This means that the interest of the scientific community, as it is illustrated by the 

published scientific studies of the geodatabase, is mainly focused in areas where 

landslides are frequently happening, as it is also illustrated in the GLC. 

 

 

Fig. 11: Spatial distribution of the research studies contained in the geodatabase along 

with the global landslide catalog (GLC) provided by USA-NASA open data portal, 

focused on Europe, Africa, Asia and Australia. 

 

Nevertheless, there are some regions, where the recorded landslides, according to the 

GLC, are frequent but are not included in the geodatabase. This is happening because 

some countries, such as the US, UK, Canada, France, and Italy have developed, over 

the years, relative national landslide inventories (Malamud et al., 2004; Westen et al., 

2006; Lin et al., 2017) and these large volumes of these landslide inventories, which in 

some cases can been easily accessible through internet (Westen et al. 2006), has led to 
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a more frequently use of the statistical methods in that areas (Lin et al..2017) compared 

with other methods, such as of the MCDA methods. Thus, the MCDA methods are 

usually rare in some of these countries, such as the UK, while in some others, such as 

Italy, are used more often, as they can provide direct and efficient results, especially in 

areas with special geomorphological characteristics (such as hilly-mountainous and 

highly human-influenced areas - Cignetti et al. (2019)). On the contrary, in countries, 

where a national landslide inventory does not exist at all or it is not considered to be as 

a complete one, the MCDA methods are more frequently used, and therefore the 

geodatabase’s research studies are illustrated more frequently there, as it shown in 

Figure 11. 

 

4. CONCLUSIONS 

 

Landslides are over time in high scientific interest due to their devastating results and 

their complex nature. Nowadays, the scientific community has available, advanced 

technological tools, such as the Geographic Information Systems (GIS) and the 

geodatabases, which, when combined, can significantly assist its efforts to understand 

and analyze the landslide mechanism. 

 

Multi-Criteria Decision Analysis (MCDA) methods are widely used in landslide 

susceptibility assessment (LSA), as they can be applied rapidly and with a very good 

accuracy, even in areas where a landslides inventory does not exist, or the landscape 

has changed recently. Their main disadvantage is that their efficacy depends 

significantly on the experts’ personal judgements, about the determination of the most 

critical landslide causal factors and the evaluation of their relative weights and is not 

guaranteed. These personal judgements can render the MCDA method to be either 

efficient, (when the expert combines successfully the knowledge in LSA gained through 

his personal experience with the knowledge of the area’s special characteristics) or 

inefficient (when the judgements are not justified and are based exclusively on biased 

conclusions).  

 

During this research a geodatabase is created by integrating the results of 82 research 

studies that use MCDA methods to perform a LSA. These results contain spatial 

characteristics of the examined landslide, the causal factors, their weights, and the 

verification methods used in each research study. By that way, the previously 

knowledge in LSA generated by the previous studies, which also integrate the broader 

area’s special characteristic, is gathered and spatially provided to the future researcher, 
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as a decision-making tool, reducing the risk of possible biased conclusions and the time 

required for the method’s applicability. Besides the advantages that the geodatabase is 

offering, the use of experts, remains indispensable. Moreover, the statistical analysis of 

the geodatabase offers interesting results, which can be part of the standardization of 

the process while at the same time its spatial analysis and correlation with other spatial 

data reveals patterns concerning the correlation of the LSA causal factors with local and 

worldwide parameters. Finally, the geodatabase, can be used along with external 

databases that are regularly updated, such as the future climate projections of the 

Köppen – Geiger Climate Classification data, to provide updated indications- 

suggestions concerning the LSA, such as the use of precipitation as a causal factor or 

not. Finally, it is significant to note that according to the authors’ knowledge, a similar 

geodatabase, that integrates spatially the results of previous LSA research studies, does 

not exist in the scientific literature. 
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