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Introduction 

Greece, the seismically most active country in Europe, has a longstanding tradition of 

earthquake research. Fundamental insights into earthquake physics and fault behaviour came 

from the study of Greek earthquakes and many modern concepts of earthquake geology have 

been developed here. Among the many strong earthquakes that hit Greece throughout its long 

history, perhaps the 1981 Gulf of Corinth earthquake series (Jackson et al., 1982; Vita-Finzi & 

King, 1985; Collier et al., 1998) had the largest impact on modern earthquake science. The 

deadly 1999 Athens Earthquake (Papadopoulos et al., 2000; Tselentis & Zahradník, 2000; 

Pavlides et al., 2002) triggered renewed efforts to map the active faults of Greece and to collect 

data on their slip rates and earthquake recurrence intervals. This was done by various means. 

Large-scale studies used geomorphological observations to better understand the distributed 

deformation of the crust both on mainland Greece and on the islands (e.g., Goldsworthy et al., 

2002; Tzanis et al., 2010; Chatzipetros et al., 2013). Paleoseismic studies and tectonic 

geomorphology techniques were applied to many faults throughout the country (e.g., Benedetti 

et al., 2002; Chatzipetros et al., 2005; Kokkalas et al., 2007; Palyvos et al., 2010; Grützner et 

al., 2016, Koukouvelas et al., 2017; Copley et al., 2018). These data were used to build 

databases for active faults in Greece (Pavlides et al., 2010; Caputo et al., 2012, Ganas et al., 

2013). In addition to these efforts, new methods have been developed to translate the fault 

data into better seismic hazard estimates (e.g., Papanikolaou et al., 2013; Deligiannakis et al., 

2018).  
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Despite all these efforts, the 2021 Thessaly Earthquake Sequence occurred on faults 

that were previously unknown. The sequence included a M6.3 mainshock on March 3 and a 

M6.0 event 32 hours later. An M5.6 event on March 12 followed as well as thousands of smaller 

aftershocks. This was the most significant earthquake sequence in Thessaly in 41 years, and 

the largest event in this area of Greece since the major upgrades of the seismological, strong 

motions and geodetic networks. The sequence raised numerous questions related to fault 

interactions, blind faulting, near- and far-field ground motions, damage distribution, earthquake 

triggering, liquefaction phenomena and seismic hazard and seismotectonics of the Northern 

Thessaly. Today, remote-sensing data are available from several satellites and other 

platforms. Seismological and geodetic networks have improved significantly in the last 

decades. These new data allow investigating the Thessaly Earthquakes in detail. This Special 

Issue contains several papers that deal with such new data to characterise the seismogenic 

structures that ruptured in March 2021. Other studies deal with potential precursor phenomena 

and with disaster relief efforts. The Thessaly Earthquake sequence helps to better understand 

the regional tectonic setting, but it also sheds light on knowledge gaps that still exist despite 

many years of active tectonics research in Greece. As such, the Thessaly Earthquakes teach 

us how to save lives in the future.  

Papers in the Special Volume 

 

Mavroulis et al. focus on the disaster management. Since the earthquake series 

damaged many of the old houses without reinforcements in Thessaly, provisional shelters 

needed to be provided for hundreds of people. The earthquakes, however, happened during 

the third wave of the COVID-19 pandemic, which lead to a challenge: the emergency housing 

had to also comply with the anti-virus measures such as distancing and testing. This was 

amongst other measures achieved by providing more and different shelters than usual, by 

innovative approaches to supply distribution, and by isolation of infected people. The authors 

show that the infection rate in the area affected by the earthquake did not increase compared 

to other areas. Thus, this approach can be used as good practice in similar situations.  

 

The paper by Ganas et al. deals with a wide range of methods that allow identifying the 

sources of the three main shocks. Geodetical (InSAR and GNSS) and seismological 

(aftershock distribution and p-wave arrivals) data show that normal motion occurred on 

(W)NW-(E)SE striking faults. The first two earthquakes ruptured NE-dipping faults; the third 

earthquake ruptured a SW-dipping structure. InSAR data allowed to map the ground 

deformation of the individual events and revealed that no significant postseismic deformation 

occurred on the previously unknown faults. The authors furthermore document several 



BGSG Vol. 58 
 

iii 
 

coseismic phenomena such as dilatational cracks and widespread liquefaction. With their 

paper the authors demonstrate the advantages of combing seismological data with geodetic 

information, especially when it comes to disentangling the deformation during three events 

close in time.  

 

The Acceleration Deformation Method was tested by Chatzopoulos using the Thessaly 

Earthquake example. This method analyses the seismicity patterns preceding large 

earthquakes. Chatzopoulos uses the Tsallis Entropy approach to test if there was a spatio-

temporal significant increase of seismicity before the Thessaly main shock. He shows that two 

different approaches of data processing, symmetrical and non-symmetrical, both indicate a 

significant increase of seismicity preceding the 3rd of March, 2021, main shock. 

 

Karakostas et al. report on seismic monitoring of the Thessaly Earthquakes with a 

regional seismological network and a local network installed after the main shock. Aftershock 

distribution and focal mechanisms point to almost pure dip-slip faulting with an NNE–SSW 

direction of extension. Using regionally recorded seismic waveforms, the authors compute 

finite–fault slip inversions for the two largest earthquakes of the sequence and report rather 

low rupture velocities. The largest earthquake (MW6.3) had more than 1 m of slip at depths 

between 3 and 7 kilometres, although the fault rupture did not reach the surface. The second 

main (MW6.0) shock still had more than 20 cm of slip in ca. 5 km depth. Using the finite slip 

models, synthetic shake maps were produced for the two strongest earthquakes and 

compared to macroseismic data. This study sheds light on the source parameters of the 

Thessaly Earthquakes and the strong motion caused by them. 

 

Spingos et al. investigate the problem of Earthquake Early Warning Systems (EEWS) 

using the data from the Thessaly Earthquakes. They estimate the integral of the squared 

velocity from the first few seconds of the wave train after the P-wave arrival at local permanent 

stations. These data are used to establish scaling relationships for the peak ground 

accelerations that occur when later, and more energetic, seismic phases arrive. Such scaling 

relationships are needed to automatically compute the expected shaking from initial 

earthquake data to achieve a meaningful EEWS. The few seconds of potential warning time 

between the alarm and the strongest shaking can save lives. A special emphasis is put on 

local site effects that can significantly modify the shaking.  

 

The Neogene-Quaternary tectonic regime of the Thessaly region is in the focus of the 

paper by Galanakis et al. The authors provide background on the geological setting and 

document abundant coseismic effects such as cracks, liquefaction, and mass movements. 
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They furthermore provide data on the mechanism and location of the main shocks. In their 

paper, Galanakis et al. show that the causative fault of the main shock manifests as the 

boundary between the Alpidic basement and the alluvial deposits. Although the faults that 

ruptured were not previously identified as active, geological data point to long-lived activity. 

These findings may inform future hazard assessments and provide a useful case study for 

neighbouring regions. 

 

The paper by Kouli et al. deals with a remote sensing approach to study possible 

precursors of the Thessaly Earthquake series. Using a 10 years’ time series of land surface 

temperature data from the MODIS sensor (Moderate Resolution Imaging Spectroradiometer), 

the authors analyse the epicentral area adopting the Robust Satellite Technique. They interpret 

preseismic, coseismic and post seismic thermal anomalies as being related to the seismogenic 

faults that ruptured in March 2021.  
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