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Abstract 

 

The Aetolia-Akarnanian region, in Western Greece, is considered to be part of a micro-

plate in formation, named the Ionian Island-Akarnanian Block (IAB), in the larger-

scale Central Mediterranean tectonic context. The IAB accommodates the deformations 

between the surrounding tectonic structures that are the Corinth Gulf, the Hellenic 

subduction, the Kefalonia Transform Fault and the Apulian collision. This work 

presents the first results of a dense temporary seismic survey in the Aetolia-Akarnanian 

region (from the Amvrakikos Gulf to the Patras Gulf). Our local dense network has 

been designed in order to avoid gaps and to allow the recording of a major part of the 

Akarnania seismicity. With a semi-automatic events detection and picking program, we 

detected more than 15000 events from October 2015 to December 2018. With this 

important data set we constrained a 1D local velocity model. The comparison with the 

previous published models shows a possible significant velocity variation inside the 

region and especially at the Trichonis lake graben. Thanks to our data set and our 

velocity model, we precisely located 12723 seismic events with magnitude 0 < ML < 

4.6, and a magnitude of completeness Mc = 1.0, that represents actually the most 

important catalogue for the Aetolia-Akarnania. Seismicity highlights specific seismic 

structures as clusters and a seismic plane below the West of Corinth Gulf that are 

briefly discussed. 
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 ΠΕΡΙΛΗΨΗ 

 

Η περιοχή της Αιτωλοακαρνανίας, στη Δυτική Ελλάδα, θεωρείται μέρος μιας 

μικροπλάκας, με την ονομασία μπλοκ Ιονίων νήσων και Ακαρνανίας (Ionian Akarnanian 

Block, IAB). Η συγκεκριμένη μικροπλάκα συσσωρεύει την παραμόρφωση που 

προκαλείται από γειτονικές ενεργές δομές όπως ο Κορινθιακός κόλπος, η Ελληνική 

υποβύθιση, το οριζόντιο ρήγμα Κεφαλληνίας – Λευκάδας και η ζώνη σύγκρουσης της 

Απούλιας. Η παρούσα εργασία αναφέρεται στα πρώτα αποτελέσματα από την 

εγκατάσταση ενός πυκνού δικτύου σεισμογράφων στην Αιτωλοακαρνανία (από τον 

Αμβρακικό κόλπο έως τον Πατραϊκό). Το δίκτυο σχεδιάστηκε με τέτοιο τρόπο ώστε να 

καλύψει την περιοχή ομοιόμορφα και να καταγράψει τη σεισμικότητα με μεγάλη ακρίβεια. 

Χρησιμοποιώντας μια ημιαυτόματη διαδικασία εντοπισμού των σεισμικών γεγονότων και 

επιλογής των σεισμικών φάσεων, αναγνωρίστηκαν και εντοπίστηκαν περισσότερα από 

15000 σεισμικά γεγονότα, για τη χρονική περίοδο, Οκτώβριος 2015 – Δεκέμβριος 2018. 

Με βάση τα παραπάνω δεδομένα υπολογίστηκε ένα τοπικό μοντέλο ταχυτήτων σε μια 

διάσταση (1D). Η σύγκριση με δημοσιευμένα μοντέλα δείχνει μια σημαντική μεταβολή 

της ταχύτητας στην περιοχή και κυρίως στην τάφρο της Τριχωνίδας. Χρησιμοποιώντας 

το ενημερωμένο μοντέλο ταχυτήτων, εντοπίστηκαν με μεγάλη ακρίβεια 12723 σεισμικά 

γεγονότα, με μεγέθη από 0 < ML < 4.6, και μέγεθος πληρότητας Mc = 1.0, που αποτελεί 

και τον πιο πλήρη σεισμικό κατάλογο για την περιοχή της Αιτωλοακαρνανίας. Στην 

εργασία αναλύεται η κατανομή της σεισμικότητας, η οποία εντοπίζεται σε συγκεκριμένες 

τεκτονικές δομές, με την μορφή συστάδων, και με τη μορφή ενός επίπεδου σεισμικού 

ρήγματος κάτω από το δυτικό Κορινθιακό κόλπο. 

 

Λέξεις-Κλειδιά: Μικροσεισμικότητα, μοντέλο ταχυτήτων, Δυτική Ελλάδα 

 

1. INTRODUCTION 

The Ionian Island-Akarnanian Block (IAB) is a micro-plate located in the western 

Greece that has been recently defined by Pérouse (2013) and Pérouse et al. (2017). This 

micro-plate accommodates the deformation in between the Corinth Gulf (South-East), 

the Hellenic subduction (South), the Kefalonia Transform Fault (KTF) and the Apulian 

collision (West). The Hellenic subduction marks the limit between the Nubian (South) 

and the Anatolian (North) plates with an estimated convergence of 35 mm/yr (Nocquet, 

2012) and joins the southern termination of the KTF to the West of our study area 

(fig.1A). The KTF is a major dextral transform fault that delimits the IAB to the west. 

North of the KTF, the Apulian collision against Albania and Western Greece is due to 

the counterclockwise rotation of the Apulian platform (Pérouse et al., 2012; D’Agostino 

et al., 2008). To the east of the IAB, the Corinth Gulf is one of the fastest continental 
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 rifts in the world with between 10 to 16 mm/yr of N-S extension in its western part 

(Avallone et al., 2004; Briole et al., 2000; Chousianitis et al., 2013; Briole et al., 2021). 

The region in between, from the Patras Gulf to the south, to the Amvrakikos Gulf, to 

the north is characterized by a ~ North-South left lateral strike-slip fault system, the 

Katouna – Stamna Fault (KSF). Moreover, several East-West normal faults bordering 

extensional areas, as the Trichonis lake graben, the Corinth rift, the Patras Gulf and the 

Amvrakikos Gulf are recognized as active faults (Fig. 1B).  

 

The National Observatory of Athens (NOA) distributes the data from the Hellenic 

Unified Seismic Network (HUSN, Evangelidis et al., 2021), which includes almost all 

the permanent seismic stations of the different Greek Universities, nearly 150 stations. 

With an automatic detection method and manual updating, this network locates seismic 

activity in the Akarnanian region. During our study time, from October 2015 to 

December 2018, 3187 seismic events have been located by NOA, with magnitudes 

ranging from 0.4 to 4.5 ML, a magnitude of completeness at Mc = 1.8, and mean error 

locations at about 3.6 km. 

 

The details of the tectonic setting and dynamics are not well resolved within the IAB, 

the connections with the surrounding tectonic structures are still difficult to appraise. 

The Aetolia-Akarnanian region is a key area to understand coexisting deformation 

modes due to surrounding tectonic structures. In order to better observe the seismic 

activity and provide geodynamical knowledge of this region, we started a seismic 

survey (MADAM) at the end of 2015 with a dense seismological network over the area, 

between the Patras Gulf and the Amvrakikos Gulf. The temporary seismic network 

(Fig.1B) was composed of 16 stations recording continuously at 100 Hz with short-

period and enlarged short-period seismometers, and Datacube and Earthdata 

dataloggers to detect local seismicity. As shown in Fig. 1B, six seismometers are 

located to the north of Akarnania surrounding the Amvrakikos Gulf, three to the west 

of the KSF, and seven in the surroundings of the Trichonis lake. In addition, ten stations 

from the permanent networks are also used: the HUSN (HUSN Team, 2015) and the 

Corinth Rift Laboratory Network (CRLNET, Corinth Rift Laboratory Team and RESIF 

Datacenter, 2013) are composed by short-period and broad-band seismometers 

recording continuously at 100 Hz. Beside the temporary network, a gap in station 

coverage remains in the central Akarnanian region (east to the KSF) but despite this, 

micro-seismicity is well detected in this area (see section Seismicity and Fig. 5). 

 

At regional scale, several seismic velocity models already exist (Hatzfeld et al., 1995; 

Rigo et al., 1996; Haslinger, 1998; Novotny et al., 2012; Kassaras et al., 2014, 2016) 
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 but none of them is specifically constrained for our study area. In order to obtain precise 

seismic event locations and to try to characterize the local seismotectonics, we 

determined a new local velocity model from seismic data from October 2015 to 

December 2017. In this paper we present the first results of the MADAM network 

related to local velocity structure and seismicity distribution. 

 

 

Fig. 1: Seismic networks map. A) General tectonic map, red rectangle locating the study 

area. B) The MADAM network corresponds to a temporary network of 16 stations (pink 

triangles) carried out between October 2015 and December 2018, the HUSN is the 

Hellenic Unified Seismic Network and the CRL is the Corinth Rift Laboratory Network 

(blue triangles). The seismicity used to determine the velocity model is located by 

orange dots. Fault traces are from Pérouse (2013) and Pérouse et al. (2017). IAB: Ionian 

Island Akarnanian Block, Lou: Loutraki faults, KSF: Katouna-Stamna Fault. A high-

resolution image of this figure is available online. 

 

 

2. Data Analyses 

Various methods to analyze continuous seismic recordings and to detect seismic events 

have been proposed in the literature (e.g., Leonard and Kennett, 1999; Gentili and 

Michelini, 2006; Vassallo et al., 2012; Baillard et al., 2014; Bogiatzis and Ishii, 2015). 

One of them is based on the comparison of the mean characteristic signal over a short 

and a long time period to find phase time arrivals. This method using the transient 

increase of energy occurring during the phase arrivals, is the Short Term Average / 

Long Term Average method (STA/LTA) (Allen, 1978; Chen and Holland, 2016). The 
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 STA/LTA method allows to process in a short time a huge quantity of data, but with 

small precision for small magnitude events due to low seismic waves amplitude 

generated by those events and the presence of noise. To detect a maximum number of 

small events recorded by the network, we developed a semi-automatic seismic detection 

and picking program based on the STA/LTA method. This program first applies a band-

pass filter between 2.0 and 10.0 Hz. Then, it searches a transient increase of energy on 

continuous vertical component recordings for each seismic station using the Fbpicker 

function from the PhasePApy Python program (Chen and Holland, 2016). In case of a 

minimum of 3 stations detection in a 30-s time-window the user has to confirm the 

seismic event by a visual check. Then the P- and S-phases are automatically picked on 

each component at each station with the picker functions from Obspy (Beyreuther et 

al., 2010; Megies et al., 2011; Krischer et al., 2015). The last step is a visual check with 

possible manual corrections of phase pickings (Fig. 2). At the same time, some 

additional information is manually added like phases picking quality (A=good, D=bad) 

and P-wave first motion polarity (U=up, D=down). In that way, more than 15000 events 

were detected over the 39 months of the MADAM campaign (October 2015 - December 

2018). For small amplitude events, the coda, which can be used to estimate the local 

magnitude ML, was difficult to distinguish from noise, which can be significant at some 

stations due to anthropogenic activity. To avoid those uncertainties, we computed local 

magnitudes (ML) based on the signal amplitude using the Source-Spec open source 

software (Satriano, 2021). The magnitude range we obtained is 0 < ML < 4.6 with 8 

seismic events with ML greater than 4.0: one located at Karpenisi city (NE Akarnania), 

one near Agrinio and the 6 others at the transition zone between Patras and Corinth 

gulfs (red stars in Fig. 5). According to the frequency-magnitude distribution 

(Gutenberg and Richter, 1944), the resulting magnitude of completeness is Mc = 1.0, 

with a-value and b-value at 4.90 and 0.93, respectively (Fig. 3). 

 

Several regional seismic velocity models are already published for various parts of 

Western Greece (Hatzfeld et al., 1995; Rigo et al., 1996, Haslinger, 1998; Novotny et 

al., 2012; Kassaras et al., 2014, 2016). For the initial locations, we used the Haslinger 

(1998) (Fig. 4) velocity model with hypo71 software (Lee and Lahr, 1972). The 

Haslinger’s velocity model is the most used for the Aetolia-Akarnanian region. This 

model is constrained by 232 seismic events from a seismic campaign carried out in 

1995, covering the northern part of the Akarnanian region (Arta-Agrinio area). This 

velocity model is composed of 9 layers from surface to 40 km depth corresponding to 

the estimated Moho depth (Hatzfeld et al., 1995; Haslinger et al., 1999), and a Vp/Vs 

ratio at 1.86. Nevertheless, the slow velocity (3.5 km/s P-wave velocity) at the most 

superficial layer of this model (0 – 500 m depth) is poorly constrained due to the 1D 
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 velocity model resolution method (Haslinger, 1998), and we decided to not take it into 

account for our first locations. 

 

 

Fig. 2: P- and S-phases picking example for SS04 station. The three graphics represent 

the vertical, North-South and East-West components, respectively. Dashed lines depict 

P- (green), S- (blue) wave arrival times and event duration (coda, black). 

 

 

Fig. 3: Gutenberg-Richter diagram for MADAM (dark gray and orange) and NOA 

(light gray and green) catalogues, respectively. Number of events corresponds to circles 

and cumulative number of events corresponds to squares. The linear fits are curvature 

solution for magnitude of completeness Mc = 1.0 and Mc = 1.8 for MADAM and NOA 

catalogues, respectively. 

 
 

3. 1-D velocity model 

To improve hypocentral locations, a new velocity model for the area covered by the 

MADAM network and stations delays for temporal and permanent stations are 
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 constrained from our data set using the VELEST program (Kissling et al., 1994). A total 

of 2343 good seismic event locations from 2015, 2016 and 2017 have been used to 

determine this new velocity model (Fig. 1). The good seismic event locations 

correspond to hypo71 location results with the Haslinger's velocity model, and for 

which we obtained qualities A and B (from hypo71 criteria), locations RMS smaller 

than 0.35 s, and horizontal and vertical errors smaller than 2 km and 5 km, respectively. 

We estimated the Vp/Vs ratio to be 1.85 from the Wadati diagram (Wadati and Oki, 

1933). It agrees with the ratios obtained from previous studies in the area ranging from 

1.79 to 1.86 (Hatzfeld et al., 1995; Rigo et al., 1996; Haslinger, 1998; Nocquet, 2012; 

Kassaras et al., 2014, 2016). The 2343 seismic events have been selected in order to be 

distributed over the entire study region limiting the gaps, and to constrain a velocity 

model on the largest tectonic structures as the Trichonis graben, the KSF strike-slip 

system, the West Corinth Gulf, and the Amvrakikos Gulf. The obtained 1D velocity 

model (red line Fig. 4) with VELEST, is composed of 8 layers from the surface to 40 

km depth with P-wave velocities ranging from 5.40 km/s at surface to 8.04 km/s at 

depth (Table 1). The obtained Vp/Vs ratio at 1.84 estimated with a weighted on layers 

thickness is consistent with the 1.85 value found with the Wadati diagram. The 

robustness of this model is empirically estimated by trial-and-error calculations by 

changing input parameters as number and limit of layers, top layer velocity and initial 

velocity model. Beside those variations, these different simulations tend towards a 

similar result.  

 

Table 1: 1-D P- and S-wave velocity model table with depth, P-waves velocities, S-

waves velocities and the weighted mean Vp/Vs ratio obtained in our study. Moho depth 

is at 40 km. 
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Fig. 4: 1-D P-wave velocity model comparison between our model, VLefils in bold red 

solid line (Vp/Vs = 1.84) and the previously published models : Rigo et al. (1996) 

(yellow dotted line) constrained for the western part of the Corinth Gulf, Vp/Vs= 1.80, 

Haslinger (1998) (blue dotted line) constrained for Arta-Agrinio region, Vp/Vs = 1.86, 

Kassaras et al. (2014) (green dotted line) constrained for the Trichonis graben, Vp/Vs 

= 1.79 and Kassaras et al. (2016) (brown dotted line) constrained for Akarnanian and 

Epirus regions, Vp/Vs = 1.83. 

 

The objective in determining a new 1D P-wave velocity model was to better constrain 

the hypocentre locations of our big data set. Actually, no velocity model has been 

specifically constrained for the Akarnanian region (Amvrakikos Gulf to Corinth-Patras 

Gulf). The models already published have been defined for nearby area or parts of 

Akarnania. However, the differences in depth interfaces and P-velocities (Fig. 4) 

suggest that no models can be trusted to locate with confident precision the hypocentres. 

Discrepancies between the models can be explained by the differences on several 

parameters as the geographical zone considered, the number and the distribution of the 

seismological stations and the number and the location of the events used to constrain 

the models. Our model is close to Haslinger's model, which is the one mostly based on 

data covering our study area. Those similarities between those two models confirm the 

velocities found by Haslinger and constrain the most superficial velocity layer 
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 consistent with crustal geology. Also, the differences between the regional and local 

models can not only be due to different parameterisations, but also linked to non-

negligible lateral velocity variations in the area. Specifically, the differences between 

the model from Kassaras et al. (2014) built for a smaller area corresponding to the 

Trichonis graben, and the other models built for larger areas, are the most important for 

depths above 20 km (Fig. 4). That tends to confirm the hypothesis of strong lateral 

variations of P-wave velocities in the region. 

 

4. Seismicity 

The new 1D velocity model is used to determine more precise event locations for our 

data set. From the 15079 detected events, thanks to hypo71 and using stations delays 

determined with VELEST, we have been able to precisely locate 12723 events with 

mean vertical errors of 3.2 km, mean horizontal errors of 0.8 km, and a mean RMS of 

0.26 s (Fig. 5). The seismicity is well distributed all over the region and mostly restricted 

between the surface and 30 km depth, with magnitudes ML ranging from 0 to 4.6. This 

catalogue is actually the most complete catalogue for the Akarnanian region. If we 

compare to the NOA catalogue, it has 4 times more events that have been located for 

the same region and same time period (3187 events for NOA against 12723 events for 

MADAM). The difference in the magnitudes of completeness, i.e., Mc = 1.8 for NOA 

and Mc = 1.0 for MADAM catalogue, highlights the accuracy of the MADAM 

catalogue compared to the NOA one (Fig. 3). The new velocity model used (Table 1) 

compared to the Greek global velocity model used by NOA for hypocentre locations 

gives a shallower seismicity, with depths mostly between surface to 30 km for the 

MADAM catalogue compared to surface to 40 km depth for the NOA catalogue. 

 

In addition, the obtained precise locations, bring information about locations, origins 

and type of structures of the seismogenic active zones of the Aetolia-Akarnanian region. 

On first approach, the relationship between active faults and seismicity is not obvious 

(Fig. 5). For sure, on most normal faults (West Corinth Gulf and Trichonis graben) there 

is a clear intense seismic activity. On the contrary, the seismicity is less important on 

the Loutraki and Patras Gulf normal faults, and on most parts of the KSF. Nevertheless, 

seismic activity on the KSF seems to be located on relay zones, between the Katouna 

and the Stamna faults to the south, and on Katouna geometric direction changes to the 

north. Also, intense seismic activity stands out from zones without any known mapped 

active faults like in Messologi bay, to the south of the Amvrakikos Gulf (between SS08 

and SS11 seismic stations) or to the north and the south out of Trichonis lake. The event 

distribution in the region is non-homogeneous and shows important dense seismic 

zones. As examples, high seismic density is clearly apparent to the north of the 
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 Trichonis graben around 10 km depth (Fig. 5B) and also to the South-West in Messologi 

bay (at 21°17’E, 38°20’N on map, Fig. 5A). The temporal evolution of the seismicity 

(Fig. 6) indicates that these dense seismic activities are not only spatial (from few events 

to several hundred events) but also temporal (from some days to several tens of days). 

Those one-off increases of the seismicity are spatio-temporal clusters. Likewise, 

another specific seismic structure already observed in previous studies (Rigo et al., 

1996; Godano et al., 2014; Lambotte et al., 2014; Duverger et al., 2018; Kaviris et al., 

2021) is highlighted in the western Corinth Gulf (Fig. 5A). This big structure 

encompasses more than 50% of the MADAM catalogue seismicity. The West Corinth 

Gulf stands out by a seismic plane with about 30 km radius around Nafpaktos city. This 

plane is dipping between 5° and 30° to the North between 5 and 25 km depth (Fig. 5B) 

from South of the Corinth rift to East of the Trichonis graben (Fig. 5A). Compared to 

clusters, this plane differs not only by its size, but also by its temporal evolution being 

continuously active during the time of observation. 

 

 

Fig. 5: Located seismic events map from the MADAM catalogue. The locations are 

from hypo71 software (Lee and Lahr, 1972) with the new velocity model considering 

stations delays from VELEST. Red stars correspond to ML > 4.0 and red traces 

correspond to fault traces from Pérouse (2013) and Pérouse et al. (2017). A) Seismicity 

map, B) N-S vertical cross-sections with projections of all seismic events, C) E-W 

vertical cross-sections with projections of all seismic events. A high-resolution image of 

this figure is available online. 
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Fig. 6: Temporal evolution map of the seismicity from the MADAM catalogue. Each 

colour corresponds to one trimester from October 2015 to December 2018. Black traces 

correspond to fault traces from Pérouse (2013) and Pérouse et al. (2017). A high-

resolution image of this figure is available online. 
 

5. Conclusions 

The seismicity of the Aetolia-Akarnanian region was recorded from October 2015 to 

December 2018 with good seismic detectability thanks to the MADAM seismic 

campaign. The huge quantity of data is processed with a semi-automatic detection and 

picking python program. Due to the good spatial distribution of the seismic stations and 

the data set, we can provide a new 1D velocity model constrained for the entire 

Akarnania (from Amvrakikos Gulf to West Corinth Gulf). The comparison of velocities 

and model coverage with previously published velocity models from the same area 

suggests that there must be a non-negligible lateral variation of the crustal seismic wave 

velocities particularly at the Trichonis graben. The 12723 well located seismic events 

are the most complete seismic catalogue of the Akarnania with 4 times more events 

than NOA catalogue over the same period.  

 

The major KSF strike-slip fault is poorly seismically active, except on geometric 

direction changes. Whereas, on the Trichonis graben, West Corinth Gulf and at the East 

of Amvrakikos Gulf the seismic activity is important as these areas are characterised by 
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 the presence of important active tectonic structures. There is evidence of the presence 

of seismicity clusters by a non-homogeneous seismic distribution and several one-off 

increases in the temporal distribution. A seismic plane continuously seismically active 

at the western termination of the Corinth Gulf is highlighted by the MADAM catalogue. 

This plane, already observed in previous studies (Duverger et al., 2018; Kaviris et al., 

2021) is gently dipping to the north from Corinth rift to east of the Trichonis lake 

graben. This is the first time that this plane is seen as far to the north and in depth (25 

km depth). Specific structures like clusters and a large-scale seismic plane reveal the 

details of the physical processes that could impact the region. In a second step, 

additional analyses of the seismicity as relocations, spatio-temporal evolutions or focal 

mechanisms will provide new information to understand deformation and 

seismotectonic pattern in the Akarnanian region and possibly will help to build a 

seismotectonic model consistent with the regional geodynamics. 

 

6. Data and Resources 

Seismic data and seismograms from HUSN network are available online on the 

National Observatory of Athens website https://www.gein.noa.gr/en/services-

products/database-search/. Seismograms from CRL network is available online on the 

Résif website https://seismology.resif.fr/networks/\#/CL. Seismograms were collected 

using the temporary MADAM network, available on request to A. RIGO 

(rigo@geologie.ens.fr). Topography is from SRTM 30 m files available online on the 

USGS website https://earthexplorer.usgs.gov/. 
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