LOFTUSIA CF. ANATOLICA HORIZON IN UPPER MAASTRICHTIAN LIMESTONES OF THE EASTERN GREECE PLATFORM (MOUNT PTOON, BOEOTIA, GREECE): PALAEOBIOGEOGRAPHICAL REMARKS

Zambetakis – Lekkas A. and Kemeridou A.
National and Kapodistrian University of Athens, Faculty of Geology, Dep. of Historical Geology and Paleontology, Panepistimioupoli Zografou, 15784 Athens. E-mail: zambetaki@geol.uoa.gr

ABSTRACT

Researches on upper Cretaceous limestones from the Eastern Greece platform in the area between Kokkinon and Akrefnion (Boeotia, Greece) revealed the presence of a horizon rich in Loftusia cf. anatolica (foraminifer). In this horizon, of late Maastrichtian age, L. cf. anatolica is associated with debris of Rudists, Orbitoides media, O. apiculata, O. gensicus, Siderolites calcitrapoides, Omphalocyclus macroporus, Hellenocyclus beotica, Miliolidae, Dasyycladaceae and echinoderms. It is found in an undisturbed sequence of limestones, where both the underlying and the overlying horizons are of the same facies and contain debris of Rudists, Hellenocyclus beotica, Orbitoides media, Siderolites calcitrapoides, Sulcoperculina sp., Rotaliidae, Mélobesiées, Nummoafalotia sp., echinoderms. L. cf. anatolica is confined in the above mentioned horizon and it is found neither in the underlying nor in the overlying beds. This facies reflects an outer shelf environment in front of the rudist reefs.

It is the first time that this species is reported in situ in Greece in an undisturbed stratigraphic sequence of upper Cretaceous limestones up to Paleocene flysch.

KEY WORDS: Loftusia cf. anatolica, Maastrichtian, paleobiogeography, Eastern Greece platform, Boeotia, Greece.

1 INTRODUCTION

Loftusia is a benthic foraminifer of Maastrichtian, known from outer platform facies of the Tethys Ocean. The genus is abundant in arabo-iranian platforms, rare in eastern Mediterranean and totally absent in western Mediterranean (Fig. 7).

In Greece it has so far been reported from two sites:
- On Kassidiaris mount (MK in Fig.7) as debris in bioclastic upper Cretaceous limestones of the internal zones (Ferrière, 1982).
- On mounts Valtou (Gavrovo zone, MV in Fig.7) in an occasionally bioclastic conglomerate which is limited by faults that prohibit us from observing its relation with the surrounding formations (Fleury et al., 1990).

In the area of Boeotia, on mount Ptoon (Fig. 1), a horizon rich in Loftusia cf. anatolica has been found (MP in Fig. 7) in an undisturbed sequence of upper Cretaceous limestones up to Paleocene flysch of the Eastern Greece zone. This recovery is considered very important for the paleo-geography of the Tethys Ocean during late Cretaceous.

2 STRATIGRAPHIC DESCRIPTION

This section was realized along the road that from Kokkinon (Boeotia) leads to Akraifnion. More specifically it begins at the point where the road "Megali Rachi" is being constructed, 2 km before Akraifnion (Fig. 1).
From bottom to top we observed the following formations (Fig. 2):

A: 20 m of gray, medium bedded to massive limestones, grainstone-rudstone with debris of Rudists (Fig. 3a).

B: 3 m of light gray massive limestones, floatstone with *Orbitoides tissoti* (Fig. 3b), *Orbitoides media*, *Lepidorbitoides* sp., *Siderolites calcitrapoides* (Fig. 3b), *Sulcoperculina* sp., *Goupillaudina* sp., Rotaliidae, Mélобesiées and echinoderms. At the upper part only abundant shells of Rudists are observed.
C: 4 m of light gray massive limestones, packstone-grainstone, with debris of Rudists, *Orbitoides media*, *Lepidorbitoides* sp., *Siderolites calcitrapoides* (Fig. 3c), *Sulcoperculina* sp., *Nummofallotia* sp., *Goupillaudina* sp., Rotaliidae, Mélobesiées and echinoderms.

D: 3 m of light gray massive limestones, packstone-floatstone to grainstone, with debris and shells of Rudists, *Hellenocyclina beotica*, *Orbitoides media*, *Orbitoides gensacicus* (Fig. 3d), *Lepidorbitoides* sp., *Siderolites calcitrapoides*, *Sulcoperculina* sp., *Nummofallotia* sp. (Fig. 3d), *Goupillaudina* sp., Rotaliidae, Mélobesiées, echinoderms and corals.

E: 4 m of light gray, thickly bedded limestones, floatstone, with debris of Rudists, *Loftusia* cf. *anatolica* (Fig. 4a, b), *Orbitoides media* (Fig. 4b), *Orbitoides apiculata* (Fig. 4b), *Orbitoides gensacicus*, *Siderolites calcitrapoides*, *Omphalocyclus macroporus* (Fig. 5a), *Hellenocyclina beotica*, *Sulcoperculina* sp., Miliolidae, echinoderms and alges.

F: 37 m of light gray, thickly bedded limestones, packstone-grainstone, with debris of Rudists, *Hellenocyclina beotica* (Fig. 5b), *Orbitoides media*, *Siderolites calcitrapoides*, *Orbitoides apiculata*, *Omphalocyclus macroporus*, *Sulcoperculina* sp., *Nummofallotia* sp., Mélobesiées, Rotaliidae, Miliolidae, echinoderms and corals.

Fig. 3. (a) Rudist debris. (b) *Orbitoides tissoti*, *Siderolites calcitrapoides*. (c) *Siderolites calcitrapoides*. (d) *Orbitoides gensacicus*, *Nummofallotia* sp.

Fig. 4. (a) *Loftusia* cf. *anatolica*. (b) *Loftusia* cf. *anatolica*, *Orbitoides media*, *Orbitoides apiculata*, *Omphalocyclus macroporus*.
Fig. 5. (a) Omphalocyclus macroporus, (b) Hellenocyclina beotica.

G: 13 m, of light gray, thickly bedded limestones, packstone-wackestone, with Globigerinidae (Fig. 6a), Rotaliidae, Mélobesiées (Fig. 6b), spicules and large shells of echinoderms (Fig. 6b), Millioidae, corals, algues and debris of Lamellibranches. In the upper part, thin bedded marly limestones and marls are followed by flysch sedimentation.

We observe that Loftusia appears in relative abundance in a thin horizon (approximately 4 m) of late Maastrichtian age (association with Hellenocyclina beotica) and it is found neither in the underlying nor in the overlying beds. That could explain the rarity of the references of the genus.

In the study area the facies that contain Loftusia reflect an environment in the outer platform. The vicinity to the rudist reefs is indicated by the abundant debris and entire shells of Rudists in the horizon that underlies the one with Loftusia. This environment is in agreement with what is reported in the international literature concerning the biotope of the genus Loftusia.

3 MICROPALEONTOLOGICAL REMARKS

Order: Foraminiferida EICHWALD 1830
Suborder: Textulariina DELAGE & HEROUARD 1896
Superfamily: Loftusiacea BRADY 1884
Family: Loftusiidae BRADY 1884
Genus: Loftusia BRADY (in Carpenter & Brady 1870)
Type species: Loftusia persica BRADY (in Carpenter & Brady 1870)

Loftusia BRADY 1870 is a benthic planispiral foraminifera. It has a fusiform, ovoid, globose or nautiloid test. The wall of the spire is perforate, calcareous and alveolar with an arenaceous endoskeleton. It is tightly coiled with regular whors whose thickness increases gradually from center to periphery. Primary, longitudinal, oblique septa divide the whors into chambers with labyrinthic, endoskeletal structure. The last is composed of radially set pillars. Transverse secondary or partial septa may be formed from the fusion of pillars. Across the primary septa and arranged in transverse rows there are numerous apertures.
The determination of the species so far described is primarily based on size. Thus small, medium and large size species are distinguished (Brady, 1869 in Carpenter & Brady, 1870; Douvillé, 1904; Cox, 1937; Grubic, 1958; Meric 1965a, b, 1967, 1979; Al Omari & Sadek, 1976, El Asa'ad, 1989, Meric & Avsar, 1992).

Cox (1937) studied the Loftusia from Persia providing a historical review on the genus in detail. Furthermore based on measurements of their external dimensions e.g. maximum diameter, L/D ratio, he made up a table of the different species of the genus.

Loftusia anatolica MERIC 1965 was defined as a medium sized species with rounded poles. The measurements of the size and internal structures of **L. anatolica** and the other species of the genus as well as of our specimens are shown in Table 1. The specimens observed in our samples are megalospheric. The test is fusiform with alveolar structure and it has rounded poles.

<table>
<thead>
<tr>
<th>Species of Loftusia</th>
<th>N° of tours</th>
<th>Length (mm)</th>
<th>Diameter (mm)</th>
<th>Height of 1st tour (mm)</th>
<th>Height of last tour (mm)</th>
<th>Diam. of embr. chamber (mm)</th>
<th>N° of septa of 1st tour</th>
<th>N° of septa of last tour</th>
</tr>
</thead>
<tbody>
<tr>
<td>anatolica</td>
<td>6-7</td>
<td>16.1-22</td>
<td>4.7-6.1</td>
<td>0.2-0.4</td>
<td>0.3-0.4</td>
<td>0.9-1.4</td>
<td>8-11</td>
<td>8-22</td>
</tr>
<tr>
<td>arabica</td>
<td>10</td>
<td>58-33.9-16.5</td>
<td>6.3-9.2-1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>baykali</td>
<td>2-3</td>
<td>2.3-4.2</td>
<td>1.6-2.4</td>
<td>0.3</td>
<td>0.2-0.3</td>
<td>0.4-0.8</td>
<td>6-7</td>
<td>9-10</td>
</tr>
<tr>
<td>coxi</td>
<td>3 max: 6.1</td>
<td>118-55.5-12</td>
<td>33-12.3-5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>elongata</td>
<td>3</td>
<td>1.4-2.5</td>
<td>-</td>
<td>0.35-0.39</td>
<td>0.31-0.39</td>
<td>0.5-1.0</td>
<td>4-5</td>
<td>9-10</td>
</tr>
<tr>
<td>ketini (forme A)</td>
<td>1.5-2.5</td>
<td>1.8-3.5</td>
<td>0.43-0.78</td>
<td>0.43-0.78</td>
<td>0.31-0.39</td>
<td>0.5-1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(forme B)</td>
<td>8-10</td>
<td>23.9-41.8</td>
<td>5-10.7</td>
<td>0.43-0.78</td>
<td>0.43-0.67</td>
<td>-</td>
<td>4-5</td>
<td>23-25</td>
</tr>
<tr>
<td>minor (forme A)</td>
<td>6-7</td>
<td>2.75-7.5</td>
<td>1.5-2-1.8</td>
<td>0.14-0.2</td>
<td>0.16-0.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(forme B)</td>
<td>2-2.5</td>
<td>1.5-2-1.8</td>
<td>1.5-2-1.8</td>
<td>-</td>
<td>0.2-0.24</td>
<td>0.2-0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>morgani</td>
<td>16</td>
<td>44.5-27-6</td>
<td>8-5.8-3</td>
<td>0.2-0.36</td>
<td>0.28-0.4</td>
<td>0.8-42</td>
<td>5-7</td>
<td>8.56</td>
</tr>
<tr>
<td>L. cf. anatolica in Ptoon</td>
<td>3</td>
<td>3.2-4.04</td>
<td>0.2-0.36</td>
<td>0.28-0.4</td>
<td>0.84-2</td>
<td>5-7</td>
<td>8.56</td>
<td>3.2-4.04</td>
</tr>
</tbody>
</table>

Thus according to the measurements, our specimens are included in the group of medium-sized species of **Loftusia**. Based on previous data we conclude that the species with which our specimens present the greatest resemblance is **Loftusia anatolica** MERIC 1965. It is a species of medium size and it has been described only from megalospheric forms. The measurements in our specimens present small deviations from the typical **L. anatolica**, mainly in the total length, which was measured in only one specimen, and the diameter. Both were found smaller while the diameter of the embryonic chamber appears bigger. The observed deviations could not lead us to the identification of a new species due to lack of a sufficient number of specimens.

Al-Omari & Sadek (1976) investigated microscopically and statistically specimens of **Loftusia** from the Maastrichtian of Northern Iraq (Aqra Formation). They noticed that during this period the genus exhibited a gradual increase in size (length and diameter). Thus, they recognized an evolutionary line for the development of **Loftusia** considering the forms recorded from Cox (1937) as the early stages of the genus' development. In addition they recorded a tendency for tighter forms during the transition from Mid to Late Maastrichtian.

Meric et al. (2001) studied the palaeogeographical distribution of the species of **Loftusia** on the Gondwanian and Laurasian platforms during the Maastrichtian based on the plate tectonic reconstructions of Sengör & Yilmaz (1981). The authors identified three main **Loftusia** groups according
to previous data on their dimensions: small, medium and large. Meriç et al. (2001) also noted that loftusiids show dimorphism with most of the *Loftusia* species having been identified from either megalosphehc (A) or microspheric (B) (only few) forms. Both (A) and (B) forms are seen in only a few species.

4 PALEOECOLOGICAL AND PALEOGEOGRAPHICAL REMARKS

The genus *Loftusia* is already known since the 19th century. It is abundant in arabo-iranian platforms, rare in eastern Mediterranean and totally absent in western Mediterranean (fig. 7). It is reported from:

- Iran: Brady, 1869 in Carpenter & Brady, 1870; Douvillé, 1904; Cox, 1937 (ZA); Bozorgnia, 1964 (ZA); Sampo, 1969 (ZA).
- Iraq: Henson, 1948, 1950 (IN); Al Omari & Sadek, 1976 (IN); Schroeder & Darmoian, 1977 (IN); Al Naqib, 1967 (IN).
- Oman: Kuhn, 1929; Philip & Platel, 1987; Babinot & Bourdillon de Grissac, 1989.
- Taurides and Pontides: Meric, 1965 (TO); Meric & Mojab, 1977; Poisson, 1977 (NL); Meric, 1991.
- Syria: Sadek, 1979 (SY) and
- Hellenides: Ferriere, 1982 (MK); Fleury et al., 1990 (MV) and present paper (MP).

Fig. 7. Palinspastic distribution of the occurrences of the genus *Loftusia*. The pairs of letters correspond to the localities mentioned in the text (PA: Mount Parnassus, Greece) (from Fleury et al. 1990, modified).

In the majority of the sites, *Loftusia* is either transported (Chorowicz, 1977; Poisson, 1977; Ferriere, 1982) or the beds that enclose it are not in stratigraphic continuity with the underlying and the overlying formations. Thus:

On mounts Valtou (Gavrovo zone) (Fleury et al., 1990) *Loftusia* is found in a conglomerate which comes in contact, by faults, with limestones probably of Cenomanian age, as well as with Paleocene breccias with Madrepores. The *Loftusia* shells are included in a grainstone-rudstone facies along with debris of Rudists, *Orbitoides* sp. (large size, up to 16 mm), *Lepidorbitoides* sp. and other
benthic foraminifers. The depositional environment at the margin of the platform, during Cam-
panian-Maastrichtian is the contribution of this recovery on mounts Valtou.

Meric (1965a) found abundant specimens of Loftusia in eastern Turkey, among which he de-
termined L. anatolica n.sp., in conglomeratic limestones of Maastrichtian age. The Loftusia shells
usually constitute elements of the conglomerate therefore can be considered as transported. The Lutetian unconformably overlies the Maastrichtian beds.

Al Omari & Sadek (1976) studied the evolution of the Loftusia species in a Maastrichtian se-
quince in northern Iraq. Nevertheless they do not provide information concerning its stratigraphic relation with the surrounding formations.

Henson (1950) notes that in the Aqra formation in northern Iraq, the compact reefal rudistic
limestones pass into shallow facies of the reefal margin with Loftusia, Omphalocyclus, Orbitoides.

In Boeotia, the Loftusia are found in a calcareous Upper Maastrichtian horizon in a strati-
graphic sequence of upper Campanian up to Paleocene age. The Loftusia horizon overlies a hori-
zon with abundant Rudist shells and is associated with Orbitoides media, Orbitoides apiculata,
Siderolites calcitrapoides, Omphalocyclus macroporus, Hellenocyclina beotica, Sulcoperculina sp.,
Miliolidae and echinoderms. The same fossils, but without the Loftusia, are also found in the overlying
horizon, along with abundant large shells of echinoderms. This facies reflects an outer shelf
environment in front of the rudist reefs of the Maastrichtian.

5 CONCLUSIONS

Loftusia cf. anatolica horizon of late Maastrichtian age is for the first time found in Greece in a
continuous undisturbed sequence of upper Cretaceous limestones up to Paleocene flysch in East-
ern Greece platform in Boeotia. Associated with debris of Rudists, Orbitoides media, O. apiculata,
O. gensacicus, Siderolites calcitrapoides, Omphalocyclus macroporus, Hellenocyclina beotica,
Miliolidae, Dasycladaceae and echinoderms it reflects an outer shelf environment in front of rudist
reef.

REFERENCES

Babinot, J.F. and Bourdillon-de-Grissac, C. 1989. Associations d’Ostracodes de l’Albien-Maastrichtien du Dho-
V, 2, pp. 287-294.

Bozorgnia, F. and Benafi, S. 1964. Microfacies and microorganisms of Paleozoic through Tertiary sediments of
some parts of Iran. 16 pp., 108 pis (National Iranian Oil Company, Tehran).

Carbone, F. and Sirna, G. 1981. Upper Cretaceous reef models from Rocca di Cave and adjacent areas in

Carpenter W.B. and Brady, H.B. 1870. Description of Parkeria and Loftusia, two gigantic types of arenaceous

Chiocchini, M., Molinari, V. and Tilia, A. 1976. Aperçu sur la biostratigraphie des sédiments carbonatés de
plateforme du Latium centre-méridional (Italie). Première partie: Crétacé. VII Colloque Africain de Micro-

Chorowicz, J. 1977. Etude géologique des Dinarides le long de la structure transversale Split-Karlovac (Yougos-

Durvillez, H. 1904. Les explorations de M de Morgan, en Perse. Bulletin de la Société Géologique de france 4,
539-553.

Drobon, K. and Hottlinger, L. 1971. Broeckinella und Saudia aus dem Nordwestlichen Teil Jugoslawiens. Raz-
prave Slov. akad. znam. umet., Ljubljana, class. 4, XIV, 7, pp. 215-238.

El-Asa'ad, G.M. 1989. Loftusia arabica sp. nov. (Foraminiferida) from the Maastrichtian of central Saudi Arabia.

