New Mediterranean Biodiversity Records (June 2012)

NICOLAIDOU A. Department of Zoology-Marine Biology, School of Biology, University of Athens, Panepistimiopolis, 15784 Athens

ALONGI G. Laboratorio di Algologia, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli studi di Catania, Via A. Longo, 19 95125 Catania

AYDOGAN O. Department of Biology, Faculty of Arts and Sciences, Celal Bayar University, Muradiye Manisa 45140

CATRA M. Laboratorio di Algologia, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli studi di Catania, Via A. Longo, 19 95125 Catania

CAVAS L. Dokuz Eylül University, Faculty of Science, Department of Chemistry, Biochemistry Division, 35160, Kaynaklar Campus, İzmir

CEVIK C. Cukurova University, Faculty of Fisheries, Balcali Campus, 01330, Adana

DOSI A. Department of Zoology-Marine Biology, School of Biology, University of Athens, Panepistimiopolis, 15784 Athens

CIRCOSTA V. Department of Ecology, University of Calabria, via P. Bucci 4B, 87036 Rende

GIAKOUMI S. Hellenic Centre for Marine Research, Institute of Inland Waters, P.O. Box 712, P.C. 19013, Anavyssos, Attiki

GIMENEZ-CASALDUERO F. Departamento de Ciencias del Mar y Biologia Aplicada,
To cite this article:

New Mediterranean Biodiversity Records (June 2012)

1 Department of Zoology-Marine Biology, School of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
2 Laboratorio di Algologia, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli studi di Catania, Via A. Longo, 19 95125 Catania, Italy
3 Department of Biology, Faculty of Arts and Sciences, Celal Bayar University, Muradiye Manisa 45140, Turkey
4 Dokuz Eylül University, Faculty of Science, Department of Chemistry, Biochemistry Division, 35160, Kaynaklar Campus, İzmir, Turkey
5 Cukurova University, Faculty of Fisheries, Balcali Campus, 01330, Adana, Turkey
6 Department of Ecology, University of Calabria, via P. Bucci 4B, 87036 Rende, Italy
7 Department of Marine Sciences, University of the Aegean, 81 100 Lesbos Island, Greece
8 Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain
9 Mugla University, Faculty of Fisheries, Dept. of Hydrobiology, 48000, Koteklı, Mugla, Turkey
10 Centro de Investigación Marina de Santa Pola (CIMAR), Ayto. Santa Pola - Universidad de Alicante. Torre d’Enmig s/n, Cabo de Santa Pola, Alicante, Spain
11 Hydrobiological Station of Rhodes, Hellenic Centre for Marine Research, Cos street, 85100, Rhodes, Greece
12 Department of Fisheries, Region of Epirus, P. Tsaldari 18, 46100 Igoumenitsa, Greece
13 Department of Biology, Faculty of Education, University of West Bohemia, Klatovská 51, Pilsen, 306 19, Czech Republic
14 WWF-Calabria, via Popilia 42, 89900 Vibo Valentia, Italy
15 Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
16 Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 712, 190 13 Anavissos, Attiki, Greece
17 WWF Hellas, Ethnikis Antistaseos 82, Heraklion, Crete, Greece, P.O. 71601
18 Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
19 Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 712, 190 13 Anavissos, Attiki, Greece

Abstract

The present work reports on the extended distribution of nineteen species in the Mediterranean. These are: *Upeneus pori* (Fish:Turkey), *Bursatella leachii* (Mollusca, Opisthobranchia: eastern coast of Spain), *Sparisoma cretense* (Fish: Ionian coast of Greece), *Pseudobryopsis myura* (Chlorophyta:Turkey), *Aplysia dactylomela* (Mollusca, Opisthobranchia: Karpathos island, and Kyklades Archipelago, Greece), *Asparagopsis armata* and *Botryocladia madagascariensis* (Rhodophyta: South Peloponnesos, Greece), *Oxynotus centrina* (Fish: Greece), *Caulerpa racemosa var. cylindracea* (Chlorophyta), *Stypopodium schimperi* (Phaeophyta) *Siganus luridus* and *Stephanolepis diaspros* (Fish) *Pericon gibbesi* (Decapoda, Brachyura) (Kyklades Archipelago, Greece), *Cerithium scabridum* (Mollusca, Prosobranchia: Anavissos: Greece), *Cerithium renovatum* (Mollusca, Prosobranchia: N. Κriti), *Cassiopea andromeda* (Scyphomedusa: Rhodos Island, Greece), *Abra tenuis* (Mollusca Bivalvia: Vouliagmeni Lake, Greece) *Lagocephalus lagocephalus* (Fish: Calabrian coast, Italy) and *Plocamopherus ocellatus* (Mollusca, Opisthobranchia: İskenderun Bay, Turkey).

Introduction

As part of its policy, the Journal publishes in each issue a collective article with new records of marine species in the Mediterranean and/or information on the spatial distribution of already established species of particular interest. All contributors are co-authors in this collective article, their names appearing in alphabetical order. The new findings are presented in the order of submission. The authors responsible for each record are listed at the beginning of each section.
A. Northernmost occurrence of *Upeneus pori* (Mullidae) in the Aegean Sea

By H. Filiz

Eight specimens of *Upeneus pori* (10.6 - 16.4 cm TL, 11.52 - 43.06 g) (Fig. 1) were caught on 27th December 2009 in Kusadasi Bay (with sandy bottom) at depth of 47 m, by a commercial trawl ship (F/V Akylarlar, 22.6 m length, 485 HP) equipped with a conventional bottom trawl net of 24 mm cod-end mesh size. Trawl route was 37° 43’ 30’’N-27° 29’ 30’’E and haul durations fixed to 1 h. The specimen, fixed in 96% alcohol, is deposited in the Mugla University, Faculty of Fisheries Museum Collection. The scientific name of the species was checked against FishBase (Froese & Pauly, 2011).

The Por’s goatfish, *Upeneus pori* Ben-Tuvia & Golani, 1989, was first recorded in Iskenderun Bay (Turkey) by Kosswig (1950) as *Upenoides (= Upeneus) tragula*. Since its initial detection, *U. pori* is considered to be successfully established in the Mediterranean Sea, especially off the coast of Israel (Golani, 1994), Egypt (El Sayed, 1994), Lebanon (George & Athanasiou, 1996) and the Levantine Coast of Turkey (Gucu et al., 1994). Westwards, *U. pori* is reported from the Tunisian waters (Ben Souissi et al., 2004; Azzouz et al., 2005) and Libya (Ben Abdallah et al., 2004). To the north, the species was reported in Gokova Bay (Ogretmen et al., 2005) and the SE coast of Rhodes Island (Corsini et al., 2005) in the Aegean Sea. By this paper, *U. pori* has extended its northern distribution range to Kusadasi Bay in the Aegean Sea. Its occurrence here is very recent, and the observation of eight individuals suggests an established population.

B. Occurrence of the exotic gastropod *Bursatella leachii* (Opisthobranchia: Aplysiidae) off the east coast of Spain (Mediterranean Sea)

By A. Izquierdo-Muñoz, M. Vázquez-Luis, F. Giménez-Casalduero and A. A. Ramos-Esplá

Bursatella leachii Blainville, 1817 has a circumtropical global distribution, with its northernmost geographic limitation reported as the east coast of the United States, off North Carolina (Kruczynski & Porter, 1969). Additionally, it is found in warm temperate and tropical waters throughout the world (Rudman, 1998). Although first reported in the Mediterranean Sea off Israel (O’Donoghue & White, 1940), the species is presently very common in the eastern Mediterranean having been introduced through the Suez Canal (see reviews: Zenetos et al., 2004; Olivier & Terrasa, 2004). In the western Mediterranean, it was first reported from the Tyrrenhian Sea (Fasulo et al., 1984; Zenetos et al., 2004), while the first citation of *B. leachii* off the Spanish coast was in 1996 in Palma Bay at Balearic Island (Olivier & Terrassa, 2004). After, its discovery in *Delta del Ebro* in 2007 (Weitzmann et al., 2007), the species was also observed in the fishing port of *Aguilas Bay* (southeast of Spain) that same year (Cervera, pers. comm.).

In September 2008, 100 individuals of *Bursatella leachii* were found in the *Mar Menor* coastal lagoon, specifically within the inner channel connection between the lagoon and the Mediterranean Sea (*Las Encañizadas*, N 37° 43’ 00’’, W 00° 46’ 00’’) an area with an average salinity of 42 psu. Many of the specimens were mating. The animals were collected and exhibited at the Aquarium of Research at the University of Murcia. One year later the opisthobranch had colonized much of the northern basin of the coastal lagoon, where salinities may be greater than 47 psu in some locations and average temperatures range from 12-30 ºC.

In January 2010, five specimens of *B. leachii* (length 8-10 cm) (Fig. 2A) were observed in a small recreational harbor of *Altea Bay* (Porto Senso Harbor, N 38° 37’ 26’’, W 00° 01’ 09’’) on concrete substrate, very close to the surface in water temperature as low as 14.5ºC. Inside the harbour, the bottom was muddy covered by the chlorophyte *Caulerpa prolifera* (Forsskål) Lamouroux. On February 2010, two individuals (length 8 and 15 cm) were found at the *Villajoyosa* fishing harbor (N 38° 30’ 29’’, W 00° 13’ 05’’) (Fig. 2B) The bottom was muddy, almost devoid of macrophytes, and the water temperature was 12ºC.
C. *Sparisoma cretense* (L. 1758) from the NW Ionian coast of Greece

By C. Perdikaris, E. Konstantinidis and I. Paschos

The Mediterranean parrotfish (*Sparisoma cretense* L. 1758) is more common in the south and eastern parts of the Mediterranean Sea and its typical distribution range has been historically dictated by the February 15°C surface isotherm barrier. In Greece, it is incidentally caught in rocky shores up to 50 m depth mainly in the Dodecanese (Petrakis & Papaconstantinou, 1990; Kalogirou et al., 2010; Kalogirou et al., 2012), in the Kyklades islands (Stergiou et al., 2002) and in Kriti (Katsanevakis & Thesalou-Legaki, 2009). Up to now there has been no record of it from the Ionian Sea.

A single adult male specimen (Fig. 3) was caught on October 17, 2011 with gillnets (mesh size: 34 mm, 1.6m deep and 500m long) placed overnight close to the small rocky islet of Prasoudi (north-western Greece) (39°30'33''N, 20°09'30''E) at 10 m depth. The specimen was identified according to the criteria presented in Fischer et al. (1987), sexed by its colour morph (De Girolamo et al., 1999) and verified by visual examination of the gonads. The body weight was 90.23 g and the standard length was 173.39 mm.

The shift of the February 15°C surface isotherm barrier northwards (approximately 140 km) during the last two decades, to just beneath the island of Corfu and very close to our study area (see relevant map in Coll et al., 2010) may have facilitated the westward and northward spreading of the species.

Within the on-going “tropicalization” process of the region, *S. cretense* is expected to further expand its range to the north, exploiting primarily the ‘warm corridor’ on the Ionian-Adriatic axis, with the aid of the east Adriatic current and the increased communication between the Ionian and the Aegean basins due to the Eastern Mediterranean Transient.

D. First report of green alga *Pseudobryopsis myura* (J. Agardh) Berthold from Turkey

By O. Aydogan and E. Taskin

The green alga *Pseudobryopsis myura* (J. Agardh) Berthold (Bryopsidophyceae, Chlorophyta) (Fig. 4) is reported for the first time from Turkey. It was found growing as an epilithic in Iskenderun Bay in the midlittoral zone (-1 m) in November 2011. It was preserved in 4% formaldehyde in seawater and deposited at the Biology Department of Celal Bayar University, Manisa, Turkey.

The genus *Pseudobryopsis* was established by Berthold in Oltmanns (1904) and *Pseudobropsis myura* (J. Agardh) Berthold is the type species of the genus, which was based on *Bryopsis myura* J. Agardh. This species is widely distributed in the Mediterranean Sea [France, Spain, Italy, Adriatic Sea, Tunisia, Algeria, Corsica, Greece, Levant states, (Gallardo et al., 1993); Libya (Nizamuddın, 1991)], the Canary Islands (John et al., 2004), Oman (Wynne, 2001) and Australia (Bostock & Holland, 2010).
E. Another record of the lessepsian immigrant *Aplysia dactylomela* Rang 1828 in the Mediterranean Sea

By J. Kout

Two specimens of the opisthobranch mollusc *Aplysia dactylomela* (Fig. 5) were observed in Amoopi, a site on the east coast of Karpathos island (35°35′N 27°8′E) in August 2010. The bottom in the area is rocky with sponges and algae but no sea grasses. The two specimens were found about 30 m apart, moving on the bottom at 0.5 m depth and at a distance of approximately 2 m from the shore. They were photographed by underwater camera but not preserved. Although the species has been mentioned from Crete and Rhodos (Pasternak & Galil, 2010) there was no reference to it from the island of Karpathos.

Apart from *A. dactylomela* three other immigrants were observed, namely the teleost fish *Fistularia commersonii*, the remarkably abundant crab *Percnon gibbesi* and the bivalve mollusk *Pinctada radiata*.

F. *Asparagopsis armata* and *Botryocladia madagascariensis* in South Peloponnesos, Greek Ionian Sea

By M. Catra and G. Alongi

In the course of a research campaign on macroalgae of the South Peloponnesos (Greece) carried out in July 2010, the following two alien species new to that area were found: *Asparagopsis armata* Harvey (Rhodophyta, Bonnemaisoniaceae) and *Botryocladia madagascariensis* Feldmann-Mazoyer (Rhodophyta, Rhodymeniaceae). Specimens of both species preserved in 5% formaldehyde are held in the Herbarium of the Department of Biological, Geological and Environmental Sciences, University of Catania (CAT).

Asparagopsis armata (Figs 6A, B)

Both gametophytic and sporophytic thalli of this species were collected at two localities of the Messiniakos Gulf: Trachila (36° 46.089 N, 22° 18.819 E) and Gerolimenas (36° 28.729 N, 22° 24.085 E) from 0.5 to 10 m and at 8 m depth, respectively. *A. armata* is a cosmopolitan species first recorded in the Mediterranean Sea by Sauvageau (1925) from Algeria. Since then, it has spread widely throughout that Sea in well lit environments of the infralittoral zone (Cormaci et al., 2004).

Botryocladia madagascariensis (Fig. 7)

Some sterile specimens of this species (Fig. 7) were collected at Trachila (36° 46.089 N, 22° 18.819 E) and Gerolimenas (36° 28.729 N, 22° 24.085 E) (Messinian Gulf) and at Porto Ageranos (36° 41.969 N, 22° 31.540 E) (Lakonic Gulf) between 8 and 10 m depth. *B. madagascariensis*, described from Madagascar, is widely distributed along the Indian Ocean coast of South Africa. Outside that Ocean, it was recorded only from the Canary Islands (Wilkes et al., 2006) and the Mediterranean Sea. The first record of this species in the Mediterranean Sea was by Cormaci et al. (1992) from Lampedusa Island (Pelagian Islands) and Castelluccio (Syracuse, Eastern coast of Sicily). Later, it was reported from the Maltese Islands by Cormaci et al. (1997), the Tremiti Islands by Cormaci et al. (2000), the Gargano promontory (Adriatic Sea) by Cecere et al. (2000), Turkey by Turna et al. (2000), Karpathos Island by Catra & Giardina (2009) and Korinthiakos Gulf (Greek Ionian Sea) by Tsiamis & Verlaque (2011).

Fig. 5: *Aplysia dactylomeda* from Karpathos.
G. New records of the shark *Oxynotus centrina* (Chondrichthyes: Oxynotidae) in the Greek seas

By V. Kousteni and P. Megalofonou

The angular rough shark, *Oxynotus centrina* (Linnaeus, 1758), (Fig. 8) is an uncommon, little-known, ovoviviparous species, which produces litters of 10 to 12 embryos once a year (Capapé et al., 1999, 2001). It is distributed throughout the Mediterranean Sea and the Eastern Atlantic from the British Isles to the north, down to South Africa to the south (Compagno, 1984). Records of the angular rough shark in the Greek Seas exist since 1878 (Papakonstantinou, 1988). However, due to the rarity of the species little is known about its distribution and biology within this region.

During the period 2006-2011, four angular rough sharks were caught in various areas of the Greek Seas (Table 1). The species identification was confirmed and morphometric measurements were taken based on Compagno (1984).

Other areas in the Mediterranean, where *Oxynotus centrina* has been caught, include the Gulf of Lions and the Tunisian coast (Capapé et al., 1999), the Italian coast (Tortonese, 1956), the Eastern Adriatic Sea (Dragičević et al., 2009; Županović & Jardas, 1989) and the Sea of Marmara (Turkey), Kabasakal (2009). In Greece, according to the “Check-list of marine fishes of Greece”, earlier records of *Oxynotus centrina* are in the North Aegean Sea, Thermaikos Gulf, Pagassitikos Gulf, Saronikos Gulf and Patraikos Gulf (Papakonstantinou, 1988), while this study reports for the first time the species occurrence in the Korinthiakos Gulf. More recently, the species has been found in the Central Aegean Sea near the island of Kea (Megalofonou & Damalas, 2004) and in the South Eastern Aegean Sea, in the Dodecanese waters (Corsini-Foka, 2009).

![Fig. 6: Asparagopsis armata Habit A. Gametophytic thalli (Photo: Mario Cormaci) B. Detail showing branches provided with spine-like branchlets.](image)

![Fig. 7: Botryocladia madagascariensis. Habit (Photo: Mario Cormaci).](image)

![Fig. 8: Oxynotus centrina from Korinthiakos Gulf.](image)
H. Records of alien species in the Kyklades Archipelago

By S. Giakoumi

In situ underwater surveys were conducted in July-August 2007 and June-July 2008 to explore the shallow sublittoral of the Kyklades Archipelago, Greece (Giakoumi _et al._, 2011). 233 sites were surveyed by snorkeling at depths between 2 and 5 meters. During these surveys six alien species were recorded: _Caulerpa racemosa var. cylindracea_, _Siganus luridus_, _Percnon gibbesi_, _Stephanolepis diaspros_, _Aplysia dactylomela_ and _Stypopodium schimperi_.

The two first species, i.e. the macrophyte _Caulerpa racemosa var. cylindracea_ and the Lessepsian rabbitfish _Siganus luridus_ (H. Milne Edwards, 1853) (Fig. 9), which is established in most Mediterranean coasts (Katsanevakis _et al._, 2011), was recorded for the first time on rocky substrate in the south of Sikinos Island (N 36 42 58.93 E 25 08 35, date: 17-6-2008). The fish _Stephanolepis diaspros_ Fraser-Brunner, 1940 (Fig. 10), known to be well established in the South Aegean (Zenetos _et al._, 2011) was recorded on sandy bottoms on the east of Sikinos Island (N 36 40 26 E 25 08 35, date: 29-6-2008). The black spotted seahare, _Aplysia dactylomela_ Rang, 1928 (Fig. 11), was encountered north of Schinoussa Island, on rocky bottoms with patches of the seagrass _Posidonia oceanica_, (N 36 51 78 E 25 16 22, date: 24/7/2007). The macrophyte _Stypopodium schimperi_ (Buchinger ex Kützing) Verlaque & Bou-douresque, 1991 (Fig. 12) was recorded in rocky sites of several Kyklades islands, which are presented in Table 2. This alien macrophyte has been found off Santorini Island before (Tsiamis _et al._, 2010).

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
<th>Date</th>
<th>Fishing method</th>
<th>Depth (m)</th>
<th>TL</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psara</td>
<td>38° 44’ 71” N 25° 23’ 94” E</td>
<td>Oct-07</td>
<td>Trawling</td>
<td>130</td>
<td>533</td>
<td>1649</td>
</tr>
<tr>
<td>Psara</td>
<td>38° 44’ 71” N 25° 23’ 94” E</td>
<td>Oct-07</td>
<td>Trawling</td>
<td>130</td>
<td>565</td>
<td>1703</td>
</tr>
<tr>
<td>Korinthiakos Gulf</td>
<td>38° 20’ 50” N 22° 25’ 33” E</td>
<td>Jun-10</td>
<td>Longline</td>
<td>180</td>
<td>790</td>
<td>5020</td>
</tr>
<tr>
<td>Evia</td>
<td>38° 27’ 122” N 24° 46’ 678” E</td>
<td>May-11</td>
<td>Trawling</td>
<td>366-458</td>
<td>674</td>
<td>3250</td>
</tr>
</tbody>
</table>

TL: total length in mm; RW: round weight in g

Table 1. Sampling data of the angular rough sharks reported in the present study.

Fig. 9: _Percnon gibbesi_ (H. Milne Edwards, 1853), Sikinos.

Fig. 10: _Stephanolepis diaspros_ Fraser-Brunner 1940, Sikinos.
I. Findings of Cerithium scabridum and Cerithium renovatum in the Aegean Sea

By P. Ovalis and D. Poursanidis

Cerithium scabridum Philippi, 1848 is an Indo-Pacific species that has entered the Mediterranean Sea via the Suez Canal. It can be found in shallow waters, on rocky bottoms covered with low or no vegetation, but it mainly prefers pebbles, where it forms dense populations. It has been found at several locations in the Mediterranean Sea. In the Aegean it was first noticed on the east coast of Rhodes in 2007 and 2009 (Zenetos, 2009). Recently, in 2011, several specimens were located in a shallow salt water pond, at Agios Nikolaos, Anavissos in Saronikos Gulf (Fig. 13).

* Cerithium renovatum* Monterosato, 1844 is a replacement name for *C. vulgatum* var. *pulchella* Philippi, 1836 (Gofas et al., 2004). The species has not hitherto been reported from the Greek Aegean Sea. In 2009 a lot of specimens (Fig. 14) were found at two locations on the north coast of Crete (Agia Pelagia and Lygaria). All the specimens were in shallow waters (1-3 meters depth), on pebbles with no vegetation.

Table 2. Records of the macrophyte *Stypopodium schimperi* in the Kyklades.

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates (N, E)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorgos (north-west)</td>
<td>36 55 70</td>
<td>25 04 18</td>
</tr>
<tr>
<td>Amorgos (north-west)</td>
<td>36 55 35</td>
<td>25 00 95</td>
</tr>
<tr>
<td>Amorgos (west)</td>
<td>36 51 51</td>
<td>25 04 50</td>
</tr>
<tr>
<td>Amorgos (west)</td>
<td>36 51 11</td>
<td>25 05 32</td>
</tr>
<tr>
<td>Ano Koufonisi (north)</td>
<td>36 56 85</td>
<td>25 12 55</td>
</tr>
<tr>
<td>Donoussa (north-east)</td>
<td>37 87 65</td>
<td>25 25 33</td>
</tr>
<tr>
<td>Folegandros (north-west)</td>
<td>36 38 5</td>
<td>24 50 59</td>
</tr>
<tr>
<td>Makares (north-west)</td>
<td>37 05 29</td>
<td>25 41 70</td>
</tr>
<tr>
<td>Kato Koufonisi (north)</td>
<td>36 55 44</td>
<td>25 14 05</td>
</tr>
<tr>
<td>Kato Koufonisi (south-west)</td>
<td>36 54 14</td>
<td>25 12 88</td>
</tr>
<tr>
<td>Kea (south-east)</td>
<td>37 31 50</td>
<td>24 18 32</td>
</tr>
<tr>
<td>Naxos (north-east)</td>
<td>37 09 81</td>
<td>25 34 43</td>
</tr>
<tr>
<td>Naxos (north)</td>
<td>37 12 17</td>
<td>25 32 07</td>
</tr>
<tr>
<td>Santorini (north-west)</td>
<td>36 26 48</td>
<td>25 25 29 02</td>
</tr>
</tbody>
</table>

Fig. 11: *Aplysia dactylomela* Rang, 1828, Schinoussa.

Fig. 12: *Stypopodium schimperi* (Buchinger ex Kützing) Amorgos.

Fig. 13: *Cerithium scabridum*. Photo: P. Ovalis

Fig. 14: *Cerithium renovatum*. Photo: D. Poursanidis.
J. Occurrence of the non-indigenous scyphomedusa Cassiopea andromeda (Forsskål, 1775) in Rhodes island (SE Aegean Sea)
By S. Kalogirou

Schäfer (1955) was the first to report the presence of Cassiopea andromeda in the Aegean Sea. He found young specimens of C. andromeda in Neokameni, a small volcanic island near Santorini, where they flourished in rocky pools with water temperatures reaching 36°C (attributed to volcanic activity). After a time gap of 55 years, the species was recorded in Paros, in S. Evvoikos and at two sites off Paros where it reached densities greater than 20 individuals/m² (Zenetos et al., 2011). C. andromeda was considered invasive (Katsanevakis, 2011).

The present work reports on the finding, in September 2011, of approximately 300 live individuals of C. andromeda trapped in rock-pools (0-1m in depth) on a rocky islet off the north-eastern coast of Rhodes Island, SE Aegean Sea (Fig. 15). The absence of C. andromeda from the nearby waters may indicate that entrapment together with increased water temperatures, due to isolation from the main water body, may have favoured its flourishing. All individuals were found upside-down swimming downwards justifying its common name, “upside-down jellyfish”.

K. On the presence of the bivalve Abra tenuis (Montagu, 1803) in Vouliagmeni Lake, Greece
By A. Legaki, A. Dosi, S. Reizopoulou and A. Nicolaidou

The bivalve mollusc Abra tenuis occurs in the Eastern Atlantic from Scotland (Tebble, 1966) to Mauritania (Wolff et al., 1993). In the Mediterranean it has been mentioned only from two sites, the brackish Lake Ichkeul in Tunisia (Casagranda & Boudouresque, 2005) and the brackish Messologhi Lagoon in Greece (Bogdanos & Diapoulis, 1984; Nicolaidou et al., 1988). Its fragmentary distribution is probably due to the fact that it is an aplacan (directly developing) species (Holmes et al., 2004).

This note reports the presence of A. tenuis in a second site in Greece, Vouliagmeni Lake (Fig. 16). It is a brackish water lagoon which communicates with the adjacent sea not directly but through an underwater network of flooded caves (Chintiroglou et al., 1996). Abra tenuis has been collected regularly from October 2004 to July 2005 at densities which varied from 1000 m² in May to 10680 m² in July. During the study period water temperature remained relatively constant ranging between 19.8°C in January to 27.8°C in June, while salinity varied from 14.3 in May to 20.2 in February.

L. On the presence of Lagocephalus lagocephalus (Linnaeus, 1758) (Osteichthyes, Tetraodontidae) along the Calabrian coast (Central Mediterranean, Southern Italy)
By E. Sperone, G. Paolillo, V. Circosta and S. Tripepi

The presence of the oceanic puffer Lagocephalus lagocephalus (Linnaeus, 1758) in the Mediterranean has long been known (Dulčić & Pallaoro, 2006).

However, the species is rarely sighted and biological information is quite scarce (Laskaridis, 1948; Tortonese, 2006).
In recent years reports of this species have increased especially for Sicily (Zava et al., 2005). This note reports the presence of *Lagocephalus lagocephalus* along the coast of Calabria from 2007 to 2012, expanding its known distribution to the Central Mediterranean Sea.

Five records were made by the authors, by fishermen and by local press. For each record the date, the location and the type of observation are provided in Table 3. *Lagocephalus lagocephalus* was found in five sites along the Calabrian coastline (Table 3, Map 1, Fig. 17). Three records (LL2, LL3 and LL5) were located in the Tyrrhenian Sea, one (LL4) in the Messina Strait and one (LL1) in the Ionian Sea. The reports are due to strandings and catches by rod fishing at a distance from the shore up to about 150 m. They were all made in the period between October and early March.

These observations confirm the hypothesis, advanced by Zava et al. (2005), that the adults of this species approach the coast between autumn and winter. In the rest of the year, probably, they lead a pelagic life.

The number of dorsal and anal finrays, counted on two of the specimens, were 14 and 12, respectively, for both animals. This is in accordance with the observations of Tortonese (1975). Zava et al. (2005) observed a higher number of dorsal and anal finrays for specimens from Sicily.

Table 3. Records of *Lagocephalus lagocephalus* around Calabria.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site</th>
<th>GPS location</th>
<th>Record type</th>
<th>Code</th>
<th>Dorsal finrays</th>
<th>Anal finrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/10/2007</td>
<td>Palizzi</td>
<td>37° 58' N 15° 59' E</td>
<td>fishing rod</td>
<td>LL1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>08/02/2012</td>
<td>Pizzo</td>
<td>38° 44’ N 16° 09’ E</td>
<td>stranded</td>
<td>LL2</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>08/03/2012</td>
<td>Tropea</td>
<td>38° 40’ N 15° 53’ E</td>
<td>fishing rod</td>
<td>LL3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>09/03/2012</td>
<td>Messina Strait</td>
<td>38° 06’ N 15° 39’ E</td>
<td>fishing rod</td>
<td>LL4</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>11/03/2012</td>
<td>Palmi</td>
<td>38° 21’ N 15° 51’ E</td>
<td>stranded</td>
<td>LL5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
M. On the observation of *Plocamopherus ocellatus* Rüppell & Leuckart, 1828 from İskenderun Bay (Eastern Mediterranean), Turkey
By C. Cevik and L. Cavas

The nudibranch *Plocamopherus ocellatus* Rüppell and Leuckart, 1830 has so far been observed from three different locations in the Mediterranean (Israel: Barash & Danin, 1982; Lebanon: Valdés & Templado, 2002; Turkey: Rudman, 2002). The present note reports the second observation in the Turkish coastline since the only other reference is a web page and a summary in conference proceedings (Rudman, 2002; Yokes and Rudman, 2004, respectively). *Plocamopherus ocellatus*, was incidentally observed on December 15, 2011, in İskenderun bay during the *Caulerpa taxifolia* monitoring project. The geographic location of the sampling area is 36° 49.82' N and 35° 52.95' E. The depth, temperature, oxygen saturation, salinity and pH values of the sampling area were -4m, 16.53 °C, 7.44 mg/L, 38.35 ppt and 8.10, respectively. The substrate was rocky covered by macroalgae such as *Cystoseria* sp., *Jania rubens*, *Padina pavonia* and Bryozoa. One sample was deposited in the Museum of Çukurova University, Faculty of Fisheries. Voucher number was CSFM-GAS/11–09.

The species was brick colored with yellow circular spots (Fig. 18). However, in Zenetos et al (2004), the color of *P. ocellatus* is reported as black body with several large reddish ocellatus-like margins. In our samples we also observed a caudal fin. Many egg ribbons were found on the macroalgae meadows (Fig. 19). It is very interesting to note that *P. ocellatus* was observed under the water to emit luminescent flashes when disturbed as reported by Zenetos et al., (2004).

Its introduction into the İskenderun bay might be due to spreading via the Suez Canal or ship ballasts transfer. Since inasmuch as 8 specimens and many egg ribbons were observed in our diving, it may be concluded that this species has settled successfully in the area.

Acknowledgements

The specimens of *Upeneus pori* were collected as part of a survey carried out in the south-eastern Aegean Sea, supported by “Mugla University, Scientific Research Projects Unit (BAP 09/31)”. Thanks are due to the “Republic of Turkey, Ministry of Agriculture and Rural Affairs, General Directorate of Protection and Control” and “Turkish Coast Guard Command (TCGC)” and “TCG Aegean Sea Area Command” for giving trawl permission in prohibited areas during the survey. Mr H. Filiz likes to thanks Akin Akyar and his crew, and project assistants for their help during the field works.

The authors (A. Izquierdo-Muñoz, M. Vázquez-Luis, F. Giménez-Casalduero and A. A. Ramos-Esplá) acknowledge Lucas Cervera and Emilio Cortés Melendres for their information about the presence of *Bursatella leachii* in the Mar Menor area.

The study on *Pseudobryopsis myura* is a part of the PhD thesis of O. Aydogan and it has been supported by Celal Bayar University.

The sampling for *Oxynotus centrina* has been co-financed by the Operational Programme for Education and Initial Vocational Training (O.P. “Education”) in the framework of the project Pythagoras II - Support of University Research Groups with 75% from European Social Funds and 25% from National Funds and by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

The authors (E. Sperone, G. Paolillo, V. Circosta & S. Tripepi) thank Mr. Stranges and Mrs. Marra for their collaboration.

C. Cevik and L. Cavas are thankful to the scientific and technological research council of Turkey (TÜBİTAK) for financial support of project (Grant number: 109Y284).
References

