Marine fouling community in the Eastern harbour of Alexandria, Egypt compared with four decades of previous studies

RAMADAN SH.E. National Institute of Oceanography and Fisheries, Kayet-Bay, Alexandria
KHEIRALLAH A.M. Zoology Department, Faculty of Science, Alexandria University
ABDEL-SALAM KH.M. National Institute of Oceanography and Fisheries, Kayet Bay, El Anfoushy, Alexandria

http://dx.doi.org/10.12681/mms.167

Copyright © 2006

To cite this article:

Marine fouling community in the Eastern harbour of Alexandria, Egypt compared with four decades of previous studies

SH. E., RAMADAN¹, A. M., KHEIRALLAH² and KI. M., ABDEL-SALAM¹

¹ National Institute of Oceanography and Fisheries, Kayet-Bey, Alexandria, Egypt
² Zoology Department, Faculty of Science, Alexandria University, Egypt

e-mail: sheriframadan2001@yahoo.com

Abstract

The aim of the present study is to compare the fouling communities between the years 1960 and 1999 in the Eastern harbour of Alexandria, Egypt and to study the main factors that may be controlling these communities. This comparison is based on monthly durations of panel immersion. By using roughened white polystyrene test panels (12.5x12.5 cm), monthly samples of marine fouling were collected from the harbour from October 1998 through September 1999.

It is clear that a remarkable variation in number and diversity of fouling communities throughout the last four decades is evident. The minimum diversities were recorded during the studies of 1960 and 1970 (19 and 20 species respectively), while the maximum diversity (35 species) was achieved during the 1991 study. Moreover, a small shift among the four dominant groups (Polychaeta, Cirripedia, Bryozoa and Amphipoda) was noted during the four decades of the studies.

The present comparison indicated that many factors may contribute to this variation, of which nutrient enrichment is the most important and the nature of the applied test panel is less so.

Keywords: Ecology; Community; Marine fouling; Eastern harbour of Alexandria; Comparison.

Introduction

Fouling results from the growth of marine animals and plants on the surfaces of submerged structures (ANON, 1952). Attaching of marine fouling organisms in a remarkable numbers to submerged objects has been demonstrated by several authors as a usual phenomenon in different world harbours (e.g. WISELY, 1959; LEPORE & GH-ERARDI, 1977; HUANG et al., 1982; NAIR & NAIR, 1987; CAI & LI, 1990; GORDON & MAWARATI, 1992; LI et al., 1996) and in the Mediterranean harbours (e.g. RIGGIO & MAZZOLA, 1976; GALLUZZO, 1980; RAMADAN, 1986)

The Eastern harbour of Alexandria, Egypt is a relatively shallow semicircular bay, situated from longitudes 29° 53’ to 29° 54’ 40” E and latitudes 31° 12’ to 31° 13’ N (Fig.1). The harbour is surrounded by the city except on its northern side, where it communicates with the sea through two outlets. The area of the harbour is about 2.53X10⁶ m², with a maximum depth of 11m (SELIM, 1997). The average water depth of the bay is about 6.0 m
and it receives many kinds of vessels, especially fishing boats (AL SAYES & SHAK-WEER, 1997). Since 1977, the diversion of municipal wastewater into the harbour has rendered its water eutrophic (HALIM et al., 1980). Although it is supposed that since 1999 the discharge of domestic sewage into the harbour has totally ceased, LABIB (2002) mentioned that due to water circulation the harbour is subjected to an additional amount of municipal wastewater from the main sewer of Alexandria (Kayet Bey), located in its western vicinity (Fig.1).

Studies of fouling organisms in the Egyptian waters go back to BANOUB (1960), who investigated the succession of foul-
ing organisms settled on glass plates in the
Eastern harbour of Alexandria, Egypt. He re-
corded 19 fouling species. The Eastern har-
bour of Alexandria has also been studied by

The present work aims to compare the foul-
ing communities between the years 1960 and
1999 in the Eastern harbour of Alexandria,
Egypt and to discuss the factors responsible for
controlling these communities.

Material and Methods

This work was carried out in the Eastern har-
bour of Alexandria, Egypt. Three replicate test
panels fixed to a wooden rack suspended verti-
cally 0.5 m under water level were used to col-
cect monthly fouling samples from the harbour
from October 1998 through September 1999.
The surface of the test panels facing seawa-
ter was roughened by using sand paper. These
panels were regularly replaced every month.

A preliminary study was performed to com-
pare two substrata (the smooth glass and the
roughened polystyrene panels). Three smooth
glass panels and 3 roughened polystyrene pan-
els (each 12.5x12.5 cm) were immersed in sea-
water for one month during August (summer)
1998, before the survey was started. The fouling
communities on these panels were weighed and
identified to species level under (20X) zoom ste-
reo- microscope.

It is worth mentioning that this work and all
the previous studies in the Eastern harbour of
Alexandria were carried out at the same place
(panels were suspended vertically under the
jetty of the National Institute of Oceanography
and Fisheries, Alexandria, Egypt). The present
comparison is based on monthly durations of
panel immersion.

Results

It is clear that there has been a variation
in the number and diversity of fouling species
throughout the last four decades (Table 1).
BANOUB (1960) investigated the foul-
ing organisms settled on glass plates for a
period of 7 months from February to Sep-
tember 1958. He recorded 19 species of foul-
ing organisms which represent the minimum
diversity of fouling organisms in the Eastern
harbour as compared with the other studies
that followed. He mentioned that competi-
tion was very evident between the encrusted
bryozoa and any other organisms. The most
dominant species were the polychaete Hy-
droides norvegica, the barnacle Balanus
amphitrite and the erect bryozoan Bugula
neritina. As well, MEGALLY (1970) inves-
tigated the marine fouling organisms settled
on glass plates for a period of 15 months
from October 1968 to December 1969 and
recorded 20 fouling species. The most domi-
nant species were the polychaete Hydroi-
des norvegica, the barnacle Balanus
amphitrite and the erect bryozoan Bugula
neritina. He found that all fouling organisms in the har-
bour showed marked seasonal variations in
abundance.

GHOBASHY (1976) studied the month-
ly variation and settlement behaviour of the
principal fouling organisms that settled on
roughened panels made of impact-resistant
polystyrene for a period of 12 months from
March 1973 to February 1974. He recorded
23 species of fouling organisms and indicat-
ed that fouling occurred throughout the year
but, the community might have been devel-
oping, flourishing and vanishing in a definite
period of time. The most dominant species
were the polychaete Hydroides norvegica,
the barnacle Balanus perforatus and the
erect bryozoan Bugula neritina. EL-KOMI
(1991; 1992) studied the fouling organisms
settled on roughened test panels made of
polystyrene for periods of 12 and 14 months
from March 1983 to February 1984 and Oc-
tober 1990 to November 1991, respectively.
In 1991 he recorded 35 species of fouling
organisms which represent the maximum di-
versity of fouling organisms recorded at the
Eastern harbour, while in 1992 he recorded
29 fouling species. In the study of 1991, the
most dominant species were the polychaete

Table 1
Fouling communities recorded on test panels between the years 1960 and 1999 at the Eastern Harbour of Alexandria.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus sp.</td>
<td></td>
<td>Enteromorpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. compressa</td>
<td></td>
<td>E. compressa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td></td>
<td>Enteromorpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lice</td>
<td></td>
<td>E. lice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. lata</td>
<td></td>
<td>U. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectocarpus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. irregularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enteromorpha sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bugula sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. nertina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubularia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. larynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrusting Bryozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bugula sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. unicornis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erect Bryozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. cayetana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. amphitrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta (Erra.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. intestinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirripedia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solitary Ascidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. eburneus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonial Ascidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botryllodes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 1. (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>unidentified specimen</td>
<td>Diplosoma listerianum</td>
<td>Balanus trigonus</td>
<td>Cirolana aegyptiaca</td>
<td>Corophium sextoni</td>
<td>Podocerus variegatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Botryllus schlosseri</td>
<td>Tanailaeca</td>
<td>Sphaeroma walleri</td>
<td>Elasmopus pectenicrus</td>
<td>Stenothoe gallensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanais cavolinii</td>
<td>Amphipoda</td>
<td>Eridonius brasiliensis</td>
<td>Eridonius brasiliensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopoda</td>
<td>Corophium sextoni</td>
<td>Jassa falcata</td>
<td>Decapoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cymodoce truncata</td>
<td>Elasmopus pectenicrus</td>
<td>Halesoma sp.</td>
<td>Lisarcinus deparatur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Idotea baltica</td>
<td>Stenothoe gallensis</td>
<td>Solitary Ascidian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamene bidentata</td>
<td>Eridonius brasiliensis</td>
<td>Ciona intestinalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphipoda</td>
<td>Pycnogonida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fouling communities</td>
<td></td>
<td>Elasmopus pectenicrus</td>
<td>Solitary Ascidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stenothoe sp.</td>
<td>Ciona intestinalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eridonius brasiliensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jassa falcata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copella equilibra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonial Ascidian</td>
<td></td>
<td>Diplosoma listerianum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Botryllus schlosseri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of fouling species</td>
<td>19 species</td>
<td>20 species</td>
<td>23 species</td>
<td>35 species</td>
<td>29 species</td>
<td>27 species</td>
<td>24 species</td>
</tr>
<tr>
<td>Nature of test panels</td>
<td>Smooth glass</td>
<td>Smooth glass</td>
<td>Roughened polystyrene</td>
<td>Roughened polystyrene</td>
<td>Roughened polystyrene</td>
<td>Iron slides</td>
<td>Roughened polystyrene</td>
</tr>
<tr>
<td>Dimensions of test panel</td>
<td>19 X 17 cm</td>
<td>12.5 X 20 cm</td>
<td>10 X 12.5 cm</td>
<td>15 X 15 cm</td>
<td>17.5 X 17.5 cm</td>
<td>7 X 2.5 cm</td>
<td>12.5 X 12.5 cm</td>
</tr>
</tbody>
</table>

Sed. = Sedentaria, Erra. = Errantia
Hydroides elegans, the amphipods Ericthonius brasiliensis, Corophium sextoni and the erect bryozoan Bugula neritina, while in the study of 1992 the most dominant species were the polychaete Hydroides elegans, the barnacle Balanus amphitrite, the polychaete Polydora ciliata and the erect bryozoan Bugula neritina.

The most dominant species were the polychaete Hydroides elegans, the amphipod Corophium sextoni and the barnacles Balanus eburneus and B. amphitrite.

The present work refers to the biota settled on roughened polystyrene test panels for a period of 12 months from October 1998 to September 1999 and records 24 species of fouling organisms. The most dominant species were the polychaete Hydroides elegans, the barnacle Balanus amphitrite, the amphipods Corophium acutum and Elasmopus pectenicrus. As well as the experiment for the settlement of fouling on the roughened polystyrene and smooth glass, test panels revealed that the roughened ones collected more weight and fouling species than the smooth panels (Table 2).

Concerning the dominant groups, the results indicated that there is a shift from Polychaeta, Cirripedia and Bryozoa during the studies of 1960, 1970 and 1976 to Polychaeta, Amphipoda and Bryozoa during the study of 1991, and a return to the previous dominant groups in the study of 1992. The study of 1998 indicated that there was an-

Table 2
(a). List of fouling species recorded on roughened polystyrene and smooth glass panels experimented at the Eastern Harbour of Alexandria during the same period of immersion during summer 1998.

<table>
<thead>
<tr>
<th>Type of panel</th>
<th>Roughened Polystyrene panels</th>
<th>Smooth Glass panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded species</td>
<td>Cyanophycophyta layer</td>
<td>Cyanophycophyta layer</td>
</tr>
<tr>
<td>Ulva lactuca</td>
<td>Ulva lactuca</td>
<td></td>
</tr>
<tr>
<td>Corallina officinalis</td>
<td>Bugula neritina</td>
<td></td>
</tr>
<tr>
<td>Obelia geniculata</td>
<td>Hydroides elegans</td>
<td></td>
</tr>
<tr>
<td>Bugula neritina</td>
<td>Balanus amphitrite</td>
<td></td>
</tr>
<tr>
<td>Hydroides elegans</td>
<td>Tanais dulongii</td>
<td></td>
</tr>
<tr>
<td>Balanus amphitrite</td>
<td>Corophium acutum</td>
<td></td>
</tr>
<tr>
<td>Balanus perforatus</td>
<td>Stenothoe gallensis</td>
<td></td>
</tr>
<tr>
<td>Tanais dulongii</td>
<td>Ericthonius brasiliensis</td>
<td></td>
</tr>
<tr>
<td>Corophium acutum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe gallensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ericthonius brasiliensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elasmopus pectenicrus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b). Average number of species and total biomass ± S.E. of fouling assembled on roughened polystyrene and smooth glass panels experimented at the Eastern Harbour of Alexandria during the same period of immersion during summer 1998.

<table>
<thead>
<tr>
<th>Type of panel</th>
<th>Roughened Polystyrene panel</th>
<th>Smooth Glass panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species/panel</td>
<td>10.3±0.9</td>
<td>7±0.6</td>
</tr>
<tr>
<td>Total biomass (gm)/panel</td>
<td>53±3.4</td>
<td>38±3.2</td>
</tr>
</tbody>
</table>

other shift from Polychaeta, Cirripedia and Bryozoa to Polychaeta, Amphipoda and Cirripedia. Meanwhile, in the present study, the dominant groups are Polychaeta, Cirripedia and Amphipoda.

Discussion

Recruitment of many sessile invertebrates is influenced by a variety of biological, chemical and physical factors (CRISP, 1984; PAWLIK, 1992; WALTERS et al., 1997). The present results indicate that the maximum diversity of fouling organisms was recorded during the work of EL-KOMI (1991), while the minimum diversity was recorded during the work of BANOUB (1960).

Generally speaking, the fouling communities in the harbour consisted mainly of Algae, Hydrozoa, Bryozoa, Polychaeta, Cirripedia, Amphipoda and Ascidiaeae (GHOBASHY, 1976).

BANOUB (1960) indicated the appearance of detrital tubes during the period (May-September, 1958) and he thought that the builder of these tubes was either an amphipod or a worm, since neither of these had been found inside the tubes. GHOBASHY (1976) mentioned the occurrence of Amphipoda tubes and he recorded two species Jassa falcata and Ericthonius brasiliensis. Moreover, he added that Megally (1970) did not refer to Amphipoda tubes although their attachment constitutes one of the characteristics of this harbour fouling. From these, it could be concluded that during the studies of (1960 and 1970), the Amphipoda group was represented but the authors did not mention the appearance of any species of this group.

The present comparison revealed the appearance of 15 fouling groups in the Eastern harbour of Alexandria. These groups are Algae, Porifera, Hydrozoa, Nematoda, Platyhelminthes, Bryozoa, Polychaeta, Bivalvia, Cirripedia, Tanaidacea, Isopoda, Amphipoda, Decapoda, Pycnogonida and Ascidiaeae.

The distribution of fouling groups varies from one study to another, but there are groups which appeared in all studies (Algae, Bryozoa, Polychaeta and Cirripedia). The groups Hydrozoa and Ascidiaeae appear in all studies except one. On the other hand, there are animal groups like Porifera, Nematoda, Decapoda, Pycnogonida which were recorded only in one study. Bivalvia appear in the studies of BANOUB (1960) and the present work. Platyhelminthes were recorded during the studies of BANOUB (1960) and EL-KOMI (1991, 1992). Tanaidacea appear in the studies of EL-KOMI (1991, 1992, and 1998) and in the present work. The Isopoda group appear in the present study and the studies of EL-KOMI (1991 and 1992).

It is clear that, the appearance or disappearance of animal groups may be related to some environmental changes in the Eastern harbour. BANOUB (1960) mentioned that the Alexandria sewage pumping station discharged very near to the harbour, which was occasionally slightly affected. MEGALLY (1970) indicated that the harbour was moderately polluted due to both sewage disposal and waste material dumped from fishing boats.

Pollution creates major differences in community structure (MORAN & GRANT, 1991). It is worth mentioning that the discharge of domestic sewage into the harbour started in 1977 (HALIM, 1980). During 1983, a total of 230,137 m3/day of this waste was discharged in the Eastern harbour. At Kayet Bey pumping station, 200,000 m3 of wastes were discharged daily into the open sea and the remainder was discharged into the Eastern harbour of Alexandria. This means that the daily amount of discharge of domestic sewage inside the harbour was 30,137 m3/day in 1983. This amount varied with time. It gradually increased to reach 63,014 m3/day in 1986 (SAID & MAIYZA, 1987) and 95,134 m3/day in 1987 (FARAGALLAH, 1995). Recently during 1999-2000, after the construction of the western treatment plant (which primarily treats the sewage and industrial wastes from the central and western parts of Alexandria), the discharge of domes-
tic sewage inside the harbour totally ceased and the daily discharge into the open sea decreased to reach 140,000 m3/day and 50,000 m3/day from the main Kayet Bey pipeline and El-Silslla outfall respectively (JAMMO, 2001). The waste discharged from the Kayet Bey pipeline may enrich the environment inside the harbour with nutrients, depending on the direction of both water current and wave action.

Nutrient enrichment significantly affects the composition of marine fouling communities (RASTETTER & COOKE, 1979). The discharge of sewage can stimulate autotrophic production in planktonic food sources and in the fouling community itself, or depress the abundance of species sensitive to toxins in the effluent and low oxygen levels associated with eutrophication. Biotic diversity in terms of species number usually increases when pollution is moderate (MOR et al., 1970), but drops again in heavily disturbed areas. This was the case in 1983 when the daily amount of discharge of domestic sewage inside the harbour was moderate, reaching 30,137 m3/day. This amount may support the maximum diversity of fouling organisms (35 species) in the Eastern harbour during the study of EL-KOMI (1991), meanwhile the increased or the decreased amounts of domestic sewage inside the harbour may not support the settlement of larger numbers of fouling organisms. That is to say that the daily amount of about 30,000 m3/day of sewage may be the optimum amount for fouling diversity in the Eastern harbour.

It is well established that most of the sedentary animals settle preferably on rough rather than on smooth surfaces (RAMADAN, 1986; MCGUINNESS & UNDERWOOD, 1986; MCGUINNESS, 1989; ANDERSON & UNDERWOOD, 1994). Indeed, a preliminary study in the Eastern harbour of Alexandria indicated this. The roughened polystyrene panel hosted more species with higher biomass (10.3±0.9 species and 53±3.4 gm respectively) than the smooth glass panel with the same area (7±0.6 species and 38±3.2 gm) during the same period of immersion (Table 2). This may be an explanation of the low diversities of fouling organisms during the studies of (1960 & 1970) which used smooth glass surfaces.

The present comparison revealed that the polychaete _Hydroides elegans_ was the most dominant species in all the studies. It is worth noting that the previous studies in the Eastern harbour (1960, 1970 and 1976), mentioned _Hydroides elegans_ as _H. norvegica_. ZIBROWIUS (1971) discriminated between the two similar species in the shape of byonet setae and in the operculum, as well as in the habitats. _H. elegans_ is an introduced species commonly found in Mediterranean harbours and polluted waters while _H. norvegica_ inhabits deeper, unpolluted waters. SCHELTEM (1975) reported that the calcareous tube worm _Hydroides_ is an important fouling organism in warm temperate and tropical seas. Moreover, it has already been shown that the development of an epibenthic community is influenced by interspecific or intraspecific epigrowth competitions. Despite the fact that epigrowth competitions should be far more frequent on smaller panels than on larger ones, LEVIN & PAIN (1974) observed that on a larger surface where many species compete for the available space, the chances of survival in the presence of spatial competition are relatively small. KARA-NDE & SWAMI (1988) indicated that the polychaete _Hydroides_ showed no preference for any particular area. This may favor the dominance of this species in any panel area.

The comparison indicated that there is a small shift between the four dominant groups (Polychaeta, Cirripedia, Bryozoa and Amphipoda) during the four decades of studies. Regarding the results of dominant species, there are few alien species occurring in the harbour. Alien species are those occurring outside their historically known range as a result of direct or indirect introduction or care by humans (ZENOTOS et al., 2005). In the Mediterranean Sea the polychaete _Hydroides elegans_ is considered as a cryp-
togenic invasive species and the amphipod *Elasmopus pectenicrus* is an established alien species (ZENOTOS et al., 2005). The cryptogenic species are those whose probable introduction has occurred in early times (ZENOTOS et al., 2005). This may explain the early records of *Hydroides elegans* in many parts of the Mediterranean Sea. In spite of the fact that the barnacle *Balanus amphitrite* is a tropical species, it exists in the Mediterranean and Black Sea areas, as well as in harbours on the Atlantic coast (SOUTHWARD & CRISP, 1963). It may migrate to the Mediterranean through the Suez Canal or it may transfer to the northern areas with fouling on ship’s hulls. The barnacle *Balanus perforatus* is a southern species, occurring in the Mediterranean and along the eastern Atlantic seaboard from south-west Wales to West Africa (CRISP & SOUTHWARD, 1953). Of the other dominant species, the erect bryozoan *Bugula neritina* is found in numerous temperate and subtropical regions worldwide (RUSSELL et al., 1999); *Ericthonius brasiliensis*, *Corophium sextoni* and *C. acutum* are the best known amphipod fauna of the north-east Atlantic and the Mediterranean region (RUFFO, 1982; 1989 and 1993). The abundance of *Ericthonius brasiliensis* and *Corophium sextoni* during the study of EL-KOMI (1991) may be related to available food content (total phytoplankton and/or total zooplankton) which depends on the nutrient enrichment of the harbour. RUFFO (1998) reported that the littoral amphipods seem to be greatly impacted by variations in food sources and temperatures.

Results of non-dominant species in the harbour during the four decades of study indicated that the barnacles *Balanus eburneus* and *B. trigonus* are cryptogenic established species, while the amphipod *Stenothoe gallensis* and the isopods *Sphaeroma walkeri* and *Paradella dianae* are regarded as established alien species (ZENETOS et al., 2005).

References

Accepted in April 2007