Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species

SIMBOURA N. Hellenic Centre for Marine Research, Institute of Oceanography, P.O. Box 712, P.C. 19013, Anavyssos, Attiki

ZENETOS A. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens

http://dx.doi.org/10.12681/mms.194

Copyright © 2005

To cite this article:

Increasing Polychaete diversity as a consequence of increasing research effort in Greek waters: new records and exotic species

N. SIMBOURA and A. ZENETOS

Hellenic Centre for Marine Research, Anavissos Attiki 19013, Greece

e-mail: msim@ath.hcmr.gr

Abstract

The increasing diversity of the Greek Polychaete fauna over the last seven decades, as illustrated graphically, shows an increasing trend which is proportionately related to the research effort exerted. Ongoing research activities mainly in the depths of the N. Aegean Sea, as a result of which 13 new records have been added to the Greek Polychaete fauna, confirming the above statement. The new species records are presented along with their geographical distribution and habitat. According to the latest checklist of the Greek Polychaeta, 753 species of Polychaetes have been recorded in Greek waters. Finally, it should be noted that 6 Lessepsian migrants and 16 species have been recorded in the Mediterranean for the first time. Their distribution within Greece and worldwide is given and their presence in Greek waters is discussed.

Keywords: Polychaeta; Biodiversity; Greece; Lessepsians; Exotic; Checklist.

Introduction

Worldwide, marine biodiversity research is suffering from an extremely fragmented approach. The eastern Mediterranean and Black Seas are among the areas which have received a low level of scientific research on biodiversity issues (CEC/EERO, 1996). Polychaetes are an important component of marine fauna worldwide and in the Mediterranean Sea which hosts approximately 10-12000 marine species (EEA, 1999), the estimate of 1037 Polychaete species (ARVANITIDIS et al., 2002), accounts for 10% of the total.

Nowadays, when quality of life has become synonymous with a sustainable environment the role of polychaetes as structuring species in marine communities cannot be overlooked. In the eastern Mediterranean it is estimated that, in undisturbed environments, Polychaetes comprise up to 65% of the macrobenthic fauna both qualitatively and quantitatively (EEA, 1999). Under environmental ‘stress’, Polychaete diversity falls dramatically, whereas the abundance of some species, the so-called ‘instability/pollution indicators’, increases approaching the level of 70-95%.

The first documents available on benthic Polychaeta (Annelida) collected from Greek
seas dates back to 1832 (BRULLÉ, 1832) followed by FORBES (1842, 1844), QUATREFAGES (1865), (STEINDACHNER, 1891) and MARENZELLER (1893). A great amount of research has been carried out in the Greek Seas (ARVANITIDIS, 1994; SIMBOURA, 1996) resulting in a number of papers which focus on Polychaete taxonomy. The most recent inventory of polychaetes of the Aegean Sea enumerates 592 species (ARVANITIDIS, 2000). However, the increasing number of Polychaete findings has revealed the need to update the previous works, adding also documentations and records from the Ionian Sea. Thus, a review of the documented reportings of Polychaete species in the Greek seas was accomplished in the form of a monograph including a comprehensive checklist (SIMBOURA & NICOLAIDOU, 2001). The present paper presents some recent additions to the Greek Polychaetes fauna and also, based on the above checklist, attempts to quantify the increasing richness of diversity of the Greek Polychaete fauna over the last seven decades, which is apparently a result of increasing research effort.

Materials and Methods

The diversity of Polychaete fauna in terms of species numbers was primarily assessed from two major scientific works (ARVANITIDIS, 1994; SIMBOURA, 1996). However, the species lists included in the afore-mentioned works have been updated based on recent publications, unpublished technical reports, students’ theses, recent findings, and a new checklist was published (SIMBOURA & NICOLAIDOU, 2001). The list considered here takes into account all Polychaete species recorded from 1930 to 2000 in Greek waters. The full reference list for constructing the diagram is too extensive to be fully cited in this paper. Only the literature citations from 1996 to 2000 are cited in the reference list.

The nomenclature used is primarily based on FAUCHALD (1977); CASTELLI et al. (1995) and recent review works such as FIEGE et al. (2000), LICHER (2000), and ROUSE & PLEIJEL (2001).

The new Polychaete records occurred in samples collected within the framework of various recent research projects carried out by the National Centre for Marine Research (NCMR, 1995; NCMR, 1997; NCMR, 2001; ZENETOS et al., 1999). The samples were collected from soft bottoms using various benthic samplers such as the Van Veen grab (sampling surface of 0.2 or 0.1 m²), the McIntyre grab (0.1 m²), the Ponar grab (0.05 m²), the box corer (0.1 m²) or a dredge. The grab samples were mostly sieved through a 1mm mesh size. The sampling areas included enclosed gulfs such as S. Evvoikos Gulf, N. Evvoikos Gulf, Korinthiakos Gulf, open gulfs such as Petalioi Gulf and open sea areas like the area off Limnos Island in the northern Aegean. The geographical coordinates and sediment characteristics of the stations are given in Table 1. All identifications were confirmed by specialists. For each species information on habitat, worldwide distribution and distribution in Greek waters is given. Information on the exotic polychaetes (Lessepsian migrants and first records for the Mediterranean) is given separately because of their importance in assessing biodiversity changes caused by anthropogenic and climatic alterations.
Table 1

Stations co-ordinates and sediment characteristics, where new records have been found.

<table>
<thead>
<tr>
<th>Station code</th>
<th>Geographic area</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Depth in m</th>
<th>Sediment type</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC1</td>
<td>N. Aegean</td>
<td>390°48'43"</td>
<td>250°28'90"</td>
<td>97</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC2</td>
<td>N. Aegean</td>
<td>390°47'10"</td>
<td>250°23'70"</td>
<td>79</td>
<td>Sand</td>
</tr>
<tr>
<td>KC3</td>
<td>N. Aegean</td>
<td>390°40'88"</td>
<td>250°26'84"</td>
<td>132</td>
<td>Sandy mud</td>
</tr>
<tr>
<td>KC4</td>
<td>N. Aegean</td>
<td>390°34'11"</td>
<td>250°23'88"</td>
<td>184</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC5</td>
<td>N. Aegean</td>
<td>390°26'10"</td>
<td>250°27'60"</td>
<td>307</td>
<td>Mud</td>
</tr>
<tr>
<td>KC6</td>
<td>N. Aegean</td>
<td>390°40'02"</td>
<td>250°23'79"</td>
<td>120</td>
<td>Sandy mud</td>
</tr>
<tr>
<td>KC7</td>
<td>N. Aegean</td>
<td>390°41'80"</td>
<td>250°41'00"</td>
<td>151</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC8</td>
<td>N. Aegean</td>
<td>390°34'15"</td>
<td>250°45'60"</td>
<td>156</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC10</td>
<td>N. Aegean</td>
<td>390°48'10"</td>
<td>250°42'15"</td>
<td>82</td>
<td>Sandy mud</td>
</tr>
<tr>
<td>KC11</td>
<td>N. Aegean</td>
<td>390°46'50"</td>
<td>250°16'50"</td>
<td>69</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC12</td>
<td>N. Aegean</td>
<td>400°02'70"</td>
<td>250°31'70"</td>
<td>63</td>
<td>Sand</td>
</tr>
<tr>
<td>KC13</td>
<td>N. Aegean</td>
<td>400°06'69"</td>
<td>250°29'97"</td>
<td>142</td>
<td>Silty sand</td>
</tr>
<tr>
<td>KC14</td>
<td>N. Aegean</td>
<td>400°10'20"</td>
<td>250°26'50"</td>
<td>300</td>
<td>Mud</td>
</tr>
<tr>
<td>KC18</td>
<td>N. Aegean</td>
<td>400°27'50"</td>
<td>250°16'80"</td>
<td>110</td>
<td>Clayey sand</td>
</tr>
<tr>
<td>KC20</td>
<td>N. Aegean</td>
<td>400°43'60"</td>
<td>250°28'00"</td>
<td>63</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC21</td>
<td>N. Aegean</td>
<td>400°39'20"</td>
<td>250°16'30"</td>
<td>100</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC22</td>
<td>N. Aegean</td>
<td>400°34'50"</td>
<td>250°05'80"</td>
<td>151</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KC23</td>
<td>N. Aegean</td>
<td>400°28'50"</td>
<td>240°58',90"</td>
<td>300</td>
<td>Clay</td>
</tr>
<tr>
<td>KC24</td>
<td>N. Aegean</td>
<td>400°14'00"</td>
<td>250°11'00"</td>
<td>1250</td>
<td>Mud</td>
</tr>
<tr>
<td>KC25</td>
<td>N. Aegean</td>
<td>390°58'70"</td>
<td>250°44'50"</td>
<td>84</td>
<td>Sandy clay</td>
</tr>
<tr>
<td>KC26</td>
<td>N. Aegean</td>
<td>390°25'73"</td>
<td>250°44'71"</td>
<td>355</td>
<td>Sandy clay</td>
</tr>
<tr>
<td>KC32</td>
<td>N. Aegean</td>
<td>390°40'44"</td>
<td>250°45'38"</td>
<td>125</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>sta D</td>
<td>Petalioi G.</td>
<td>380°08'90"</td>
<td>24°04'90"</td>
<td>49</td>
<td>Silty sand</td>
</tr>
<tr>
<td>sta E</td>
<td>Petalioi G.</td>
<td>380°06'20"</td>
<td>24°10'80"</td>
<td>68</td>
<td>Silty sand</td>
</tr>
<tr>
<td>sta F</td>
<td>Petalioi G.</td>
<td>380°01'00"</td>
<td>24°04'00"</td>
<td>58</td>
<td>Silty sand</td>
</tr>
<tr>
<td>K1</td>
<td>Korinthiakos G.</td>
<td>380°22'85"</td>
<td>22°39'07"</td>
<td>34</td>
<td>Silty sand</td>
</tr>
<tr>
<td>K5</td>
<td>Korinthiakos G.</td>
<td>380°21'05"</td>
<td>22°40'16"</td>
<td>52</td>
<td>Sandy mud</td>
</tr>
<tr>
<td>K11</td>
<td>Korinthiakos G.</td>
<td>380°20'02"</td>
<td>22°37'12"</td>
<td>68</td>
<td>Silty sand</td>
</tr>
<tr>
<td>K17</td>
<td>Korinthiakos G.</td>
<td>380°18'49"</td>
<td>22°41'08"</td>
<td>75</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>K20</td>
<td>Korinthiakos G.</td>
<td>380°17'14"</td>
<td>22°36'88"</td>
<td>87</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>K33</td>
<td>Korinthiakos G.</td>
<td>380°14'36"</td>
<td>22°23'93"</td>
<td>820</td>
<td>Clay</td>
</tr>
<tr>
<td>K35</td>
<td>Korinthiakos G.</td>
<td>380°13'12"</td>
<td>22°53'14"</td>
<td>90</td>
<td>Sandy mud</td>
</tr>
<tr>
<td>UNTR0</td>
<td>S. Evvoikos G.</td>
<td>380°18'23"</td>
<td>24°01'85"</td>
<td>66</td>
<td>Silt</td>
</tr>
<tr>
<td>OR</td>
<td>S. Evvoikos G.</td>
<td>380°20'34"</td>
<td>23°46'36"</td>
<td>3</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>AV</td>
<td>S. Evvoikos G.</td>
<td>380°21'29"</td>
<td>23°39'34"</td>
<td>2</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>D</td>
<td>S. Evvoikos G.</td>
<td>380°20'53"</td>
<td>23°40'74"</td>
<td>5</td>
<td>Muddy sand</td>
</tr>
<tr>
<td>KL</td>
<td>Kalymnos isl.</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>Posidonia bed</td>
</tr>
<tr>
<td>BE1</td>
<td>N. Evvoikos G.</td>
<td>38°39',04"</td>
<td>23°19',50"</td>
<td>70</td>
<td>Muddy</td>
</tr>
</tbody>
</table>
Results

A. New additions to the Greek Polychaete Fauna

Thirteen new records for the Greek fauna along with comments on their taxonomy, distribution and habitat are presented below.

Family Paraonidae Cerruti, 1909

Aricidea wassi Pettibone, 1965

Material examined: 2 individuals. N. Aegean Sea, st. KC32, muddy sand, 125m.

Distribution: Atlantic (N. America) (CASTELLI, 1987), North Sea (HANSSON, 1998), Iberian Peninsula (ARIÑO, 1987). In the Mediterranean reported only from Italy (CASTELLI et al., 1995).

Habitat: muddy bottoms (in the north Atlantic coast it is typical of sandy bottoms), 50-150m.

Family Spionidae Grube, 1850

Prionospio salzi Laubier, 1970

Material examined: 30 individuals, S. Evvoikos Gulf (st. Oropos, Avlida, Dilesi), 3-5 m, sandy material. Kalymnos st. 2 (1 specimen), 14m, on *Posidonia* bed.

Habitat: In the Levantine basin it has been reported from shallow waters (0.5-1.5m), in artificial substrate.

Family Capitellidae Grube, 1862

Neomediomastus glabrus (Hartman, 1960)

Material examined: 18 individuals. N. Aegean Sea, st. KC24, mud, 1250m.

Distribution: Pacific (deep basins off California) (HARTMAN, 1960), Atlantic (Capbreton Canyon, Bay of Biscay) (R. Capaccioni, pers. commun). This is the first documented record for Mediterranean waters.

Habitat: Deep water form 500-1000m (HARTMAN, 1960; R. Capaccioni, pers. commun).

Family Syllidae Grube 1850

Eusyllis blomstrandi Malmgren, 1867

Material examined: 2 individuals. Petalioi Gulf, sts E, F, silty sand, 58-68m.

Habitat: Found among bryozoa and hydrozoa, intertidal.

Exogone campoyi San Martin, Ceberio & Aguirrezabalaga, 1996

Material examined: 3 individuals. N. Aegean Sea, sts KC24, KC26, silt, 355-1250m.

Distribution: Western Mediterranean: from Italy and Spain (CASTELLI et al., 1995). Eastern Mediterranean: from Cyprus (CINAR et al., 2003).

Habitat: In the western Mediterranean it was found in coastal waters (3-20m depth) on hard substrate and in *Posidonia oceanica* beds (LANERA et al., 1994). In Cyprus it is reported in coastal waters on muddy sand with *C. racemosa* (CINAR et al., 2003).

Exogone gambiae Lanera, Sordino & San Martin, 1994

Material examined: Frequent >20 specimens. Petalioi Gulf, sts D, E, F, silty sand, 49-68m. Korinthisakos Gulf, sts K1, K5, K11, K17, K20, K35, silty sand, sandy mud, muddy sand, 34-90m. N. Aegean Sea, sts KC1, KC2, KC3, KC4, KC6, KC7, KC8, KC10, KC11, KC12, KC13, KC18, KC20, KC21, KC32, muddy sand, sand, sandy mud, 63-184m. N. Evvoikos Gulf, st. BE1, muddy sand, 70m.

Distribution: Western Mediterranean: from Italy and Spain (CASTELLI et al., 1995). Eastern Mediterranean: from Cyprus (CINAR et al., 2003).

Habitat: In the western Mediterranean it was found in coastal waters (3-20m depth) on hard substrate and in *Posidonia oceanica* beds (LANERA et al., 1994). In Cyprus it is reported in coastal waters on muddy sand with *C. racemosa* (CINAR et al., 2003).

Exogone lopezi San Martin, Ceberio & Aguirrezabalaga, 1996

Material examined: 2 individuals. N. Aegean, sts KC14, KC24, mud, 306-1280m.
Distribution: N. Atlantic: Capbreton Canyon, Bay of Biscay (SAN MARTIN et al., 1996). The first documented record in Mediterranean waters.
Habitat: In mud, at depths of 500 and 1100m, deep-water species (SAN MARTIN et al., 1996).

Exogone sorbei San Martin, Ceberio & Aguirrezabalaga, 1996
Material examined: 2 individuals. N. Aegean Sea, sts KC24, mud, 1230-1280m.
Habitat: In mud, at depths of 500 and 1100m, deep-water species (SAN MARTIN et al., 1996).

Exogone wolfi San Martin, 1991
Material examined: 1 individual, N. Aegean, st. KC6, sandy mud, 120m.
Distribution: N. Atlantic: Florida, Gulf of Mexico, Capbreton Canyon (Bay of Biscay) (SAN MARTIN et al., 1996). In Mediterranean waters only reported from Cyprus (CINAR et al., 2003).
Habitat: In muddy sand, coarse sand, and mud from 106 to 1000m depth, deep-water species (SAN MARTIN et al., 1996). In Cyprus it was found in mud at 70m.

Family Polynoidae Malmgren 1867

Perolepis sp.
Material examined: 5 individuals. N. Aegean Sea, sts KC11, KC14, KC22, KC5, KC32, muddy sand, mud, 69-300m.
Taxonomic comments: The species has the characteristic setae of the genus *Perolepis* Ehlers 1908. It differs, however, from the remaining species of the genus in that the elytrophores are shorter than the cirrophores. One of the morphological features characterising the genus is that elytrophores and cirrophores do not differ in size and are highly elongated (USHAKOV, 1982). Also the superior setae with a bifurcate tip possess finer spines than the inferior with a simple tip, while in *Perolepis* sp. the spines of these setae do not differ in length or size.
Another difference from all described species is that the individuals from the Aegean bear in the superior fascicle of the neuropodium some bipicate simple setae with unidentate but a very elongated and sharp tip. Only HORST (1917) cites the presence of similar setae in the species *Lepidasthenia sibogae* Horst, 1917 which was recently (JAE et al., 1987) made synonymous to *Perolepis stylolepis* (WILLEY, 1907). However, the drawing provided by HORST (1917) depicts a different kind of biplicate setae with a shorter and blunter tip arranged in the inferior fascicle of the neuropodium. AMOUREUX (1977) describes a *Lepidasthenia* sp. individual from the entrance of the Channel which appears to be more similar to these individuals. However, he does not comment on the comparative length of the elytrophores and the cirrophores, or on the presence of bipicate simple superior neurosetae.

Family Lumbrineridae Schmarda 1861

Lumbrinerides laubieri Miura, 1980
Material examined: 5 individuals. N. Aegean Sea, sts KC8, KC4, KC23, muddy sand, clay, 156-300m.
Distribution: Atlantic-Golfe de Gascogne (MIURA, 1980). This is the first documented record in the Mediterranean.
Habitat: In the Atlantic (France) it was found in abyssal depths (1894-2775m).

Family Ampharetidae Malmgren 1866

Adercodon pleijeli Mackie, 1994
Material examined: More than 10 individuals. Petaliio Gulf, sts D, E, F, silty sand, 49-68m. S. Evvoikos Gulf: st. Untr0, silt, 66m. Korinthiakos Gulf, sts K33, clay, 820m.; N. Aegean Sea, sts KC7, KC13, KC25, KC32, sandy mud, mud, 84-152m.
Distribution: W. Mediterranean: Italy, France (MACKIE, 1994).
Habitat: The species was described (MACKIE, 1994) from muddy sediments with or without
terrestrial/seagrass detritus, in shallow shelf depths (<100m). However, its finding in the N. Aegean and Korinthiakos Gulf widens its range of distribution to significantly deeper areas and in mixed sediments.

Family: Sabellidae Latreille 1825
Pseudofabricia aberrans Cantone, 1970
Material examined: Frequent >20 individuals. Petalioi Gulf, sts E, F, silty sand, 58-68m. N. Aegean Sea : KC1, KC2, KC3, KC4, KC6, KC7, KC8, KC10, KC12, KC13, KC20, KC21, KC32, sandy mud, muddy sand, sand, mud, 63-184m.
Habitat: In the western Mediterranean it was found in shallow waters among Posidonia rhizomes.

B. Cumulative number of Polychaete species over time
Figure 1 shows the cumulative number of Polychaete species reported in Greek waters over the years by decades. Figure 2 shows the increasing number of recorded polychaete species in Greek Seas over the years.

![Fig. 1: Curve line showing the increasing number of recorded polychaete species in Greek Seas over the years.](image1.png)

![Fig. 2: Curve line and linear regression (R²=0.7594) showing the increasing number of recorded polychaete species in Greek Seas as correlated with increasing scientific effort.](image2.png)
curve and the regression line correlating the increasing Polychaete species number with the scientific effort exerted over time. The corresponding regression coefficient value $R^2 = 0.7594$ shows a statistically significant linear correlation between the above variables.

The species number slowly rises up to 1960 and more rapidly through the next two decades reaching 275 species in 1980. During the decades of the eighties and nineties the number of Polychaete species increases at higher rates climbing up to 645 in 1996 and finally, with the addition of the most recent findings, to 753 in 2000.

C. Exotic species

1. Lessepsian migrants

The following species occurring in Greek waters have been documented as Lessepsian migrants (BEN-ELIAHU, 1972; BEN-ELIAHU & FIEGE, 1996; HARMELIN, 1969; POR, 1978). Their detailed distribution in the Greek seas and worldwide is given below.

 1. Branchiosyllis exilis (Gravier, 1900)

 Worldwide distribution:

 2. Lysidice collaris Grube, 1870

 Worldwide distribution:

 Distribution in Greece:
 Sea of Kriti (ELEFTHERIÓU et al., 1990); N. Aegean Sea (KOUKOURAS et al., 1985); N. Sporades (SIMBOURA et al., 1995b); Kalymnos isl. (SIMBOURA, 1996).

 3. Metasychis gotoi (Izuka, 1902)

 Distribution in Greece: Elefsis Gulf (ZENETOS & BOGDANOS, 1987); Geras Gulf (BOGDANOS, et al., 2002); Ionian Sea (Kalami) (ZENETOS et al., 1997); Gulf of Kavala (PAPAZHACHARIS, 1991); Kerykyra (NCMR, 1992b); Korinthiakos Gulf (NCMR, 1995); Kyklades (NCMR, 1989); N. Evvoikos Gulf, Rodos (SIMBOURA, 1996); Navarino Bay (IOFR, 1984); S. Evvoikos Gulf (NCMR, 1997); Saronikos Gulf (SIMBOURA et al., 1995a); Sea of Kriti (PÈRES, 1959; ELEFTHERIÓU et al., 1990); Strimonikos Gulf (DOUNAS, 1986); Thermaikos Gulf (TSELEPIDIS, 1992).
4. *Notomastus aberans* Day, 1957

Worldwide distribution:

Distribution in Greece:
Sea of Kriti (HARMELIN, 1969); Agios Nikolaos (Kriti) (SIMBOURA, 1996).

5. *Timarete anchylochaeta* (Schmarda, 1861)

Worldwide distribution:

Distribution in Greece:
Aegean Sea (ARVANITIDIS, 2000).

6. *Spirobranchus tetraceros* (Schmarda, 1861)

Worldwide distribution:
Rodos isl. (BEN ELIAHU & FIEGE, 1996).

2. **First records for the Mediterranean Sea**

Table 2 presents the species that are newly recorded in the Mediterranean. Their distribution in the Greek seas associated by the relevant literature, are provided below.

Discussion

The cumulative curve of reported Polychaete species over time clearly illustrates the increasing species diversity of the Greek Polychaete fauna over a 70 years span of research. It appears that data slowly accumulated up to 1960 and faster during the next two decades when the results of some foreign expeditions in the Greek seas, for example: PÈRES, 1959; BELLAN, 1961; KISSELEVA, 1963; HARMELIN, 1969, largely contributed to the knowledge of the Polychaete fauna of Greece at that time.

However, during the 80s the information on Polychaete species distribution and occurrence increased dramatically. This increase is apparently the result of the flourishing activities of Greek marine biologists in those years. The correlation coefficient among the species number and number of publications over time shows a positive linear correlation among the two variables illustrating that the species number is analogous to the research effort exerted. As for other marine animals, the number of species constantly increases with the inputs of new studies in either unexplored bathymetric zones or overlooked geographic areas (ZENETOS, 1977). It is indicative that up to 1980 only 32 documents containing polychaete records can be traced, while by 2000, 114 documents concerning Polychaetes from Greek waters have been accumulated.

Pioneering works are those published by ARVANITIDIS (1994) and SIMBOURA (1996) which focus exclusively on the taxonomy of the Polychaeta of the N. Aegean (the former) and of the Polychaeta of Greece in general (the latter). They largely contributed to the knowledge of the Polychaete fauna of Greece by adding new records for Greece (53 and 56 species, respectively) and for the Mediterranean and by describing new species. Recently, a checklist of the Polychaeta from the Aegean, incorporating also some data collected from the Turkish coast, has added
Table 2

New findings for the Mediterranean Sea, distribution.

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
<th>Distribution in Greece</th>
<th>Distribution worldwide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascleirocheilus capensis</td>
<td>Day, 1963</td>
<td>Chalkis, Kalymnos, N. Evvoikos</td>
<td>S. Atlantic (S. Africa)</td>
</tr>
<tr>
<td>Dispio magna</td>
<td>Day, 1955</td>
<td>Zakynthos, Kefalonia</td>
<td>S. Atlantic (S. Africa)</td>
</tr>
<tr>
<td>Lumbrinerides amoureuxi</td>
<td>Miura, 1980</td>
<td>N. Aegean (Nestos Delta), Ionian (Kalamitsi), Saronikos</td>
<td>NE Atlantic (France)</td>
</tr>
<tr>
<td>Neomediomastus glabrus</td>
<td>(Hartman, 1960)</td>
<td>N. Aegean</td>
<td>Pacific</td>
</tr>
<tr>
<td></td>
<td>Simboura, 1996</td>
<td>Ionian (Kalamitsi)</td>
<td>NE Atlantic (France; Spain, Ireland); North Sea; Gibraltar Strait</td>
</tr>
<tr>
<td>Pionsylis dionisi</td>
<td>Munoz & San Martin, 1991</td>
<td>Korinthiakos, Kyklades, Oreo, Channel</td>
<td>NE Atlantic (Canary Islands); Gibraltar Strait</td>
</tr>
<tr>
<td>Polycirrus plumosus</td>
<td>Wollebaek, 1912</td>
<td>Kalymnos, N. Evvoikos, Rodos</td>
<td>NE Atlantic (Spain, Norway, Sweden), S. Atlantic (S. Africa)</td>
</tr>
<tr>
<td>Malangrenta andreapolis</td>
<td>(Mc Intosh, 1874)</td>
<td>Thermikos Gulf</td>
<td>N. Atlantic</td>
</tr>
<tr>
<td>Nephys pulchra</td>
<td>Rainer, 1991</td>
<td>N. Aegean</td>
<td>Northern Europe</td>
</tr>
<tr>
<td>Polydora spongicola</td>
<td>Berkeley & Berkeley, 1950</td>
<td>N. Aegean (Chalkidiki)</td>
<td>Pacific Canadian, USA, Mexican coasts</td>
</tr>
<tr>
<td>Pista lornensis</td>
<td>Pearson, 1969</td>
<td>N. Aegean</td>
<td>West coasts of Scotland, Yellow Sea</td>
</tr>
<tr>
<td>Euchone southerni incisa</td>
<td>Banse, 1970</td>
<td>N. Aegean</td>
<td>South Atlantic (S. Africa)</td>
</tr>
<tr>
<td>Exogone campoyi San Martin, Ceberio & Aguirrezabalaga, 1996</td>
<td>Present paper</td>
<td>N. Aegean</td>
<td>N. Atlantic (Bay of Biscay)</td>
</tr>
<tr>
<td>Exogone lopezi San Martin, Ceberio & Aguirrezabalaga, 1996</td>
<td>Present paper</td>
<td>N. Aegean</td>
<td>N. Atlantic (Bay of Biscay)</td>
</tr>
<tr>
<td>Exogone sorbe San Martin, Ceberio & Aguirrezabalaga, 1996</td>
<td>Present paper</td>
<td>N. Aegean</td>
<td>N. Atlantic (Bay of Biscay)</td>
</tr>
<tr>
<td>Lumbrinerides laubieri</td>
<td>Miura, 1980</td>
<td>N. Aegean</td>
<td>N. Atlantic (Golfe de Gascogne-France)</td>
</tr>
</tbody>
</table>
some more species (ARVANITIDIS, 2000). However, the recent extensive research projects of HCMR carried out in unexplored geographic areas such as the Korinthiakos Gulf, N. Aegean and new bathymetric zones (open areas down to 820 and 1250m) offered rich material. More information coming from the Ionian Sea has also enriched the Polychaeta fauna of Greece.

According to the comprehensive checklist of SIMBOURA & NICOLAIDOU (2001), 753 benthic Polychaete species have been recorded in Greek waters. This number accounts for 75% of the Polychaete species estimated for the whole Mediterranean enumerating 1037 species (ARVANITIDIS et al., 2000), 42% of the European marine Polychaete species numbering 1800 species (ERMS, 1999) and about 10% of the worldwide number of Polychaetes estimated as 8000 species (BIANCHI & MORRI, 2000; FREDJ et al., 1992).

It is worth noticing the occurrence in Greek waters of 6 exotic species that have more or less passively entered through the Suez Canal, the so-called Lessepsians. Some of these have established viable populations and are widely distributed such as *Metasychis gotoi*, while others have a very restricted distribution in the Aegean: *Notomastus aberans*, *Spirobranchus tetraceros*.

A total of 16 Polychaete species (5 of those are among the new records presented here) seem to be distributed only in the Greek seas. Their absence from the Western Mediterranean, Adriatic and the occurrence of the great majority of them in the N. Aegean may imply that they are exotic species presumably introduced by shipping: Big ports (Thessaloniki, Izmir) are located in the northern Aegean which is also a significant shipping route for oil transportation. Consequently, accidental introduction cannot be excluded, although future research may reveal these species may well have a continuous distribution from the Western to Eastern Mediterranean.

Conclusions

The diversity of the Polychaeta reported from Greek waters has amazingly increased over the last seven decades, a fact clearly attributed to the increasing research effort. The most recent estimation of the Polychaete species number reported from Greek waters (Aegean and Ionian Seas) up-to-date accounts for 753 species. On going research projects in unexplored areas rendered some new findings adding 13 more species to the Greek Polychaete fauna list. It is also interesting to note the presence in the Greek polychaete fauna of 22 exotic species of which 6 are considered as Lessepsian migrants (introduced in the Mediterranean through the Suez Canal) and 16 species are the first recorded in the Mediterranean, being reported so far only outside the Mediterranean.

Acknowledgements

Special thanks are due to G. San Martin (Univ. Autonoma de Madrid) for checking the Syllidae material; D. Fiege (Senckenberg Mus.) for checking the Glyceridae material; T. Miura (Kagoshima Univ.) for checking the Lumbrineridae material; R. Capaccioni (Valencia Univ.) for checking the Capitellidae; A. Mackie (National Mus. Of Wales) for checking the Ampharetidae and Polynoidae; A. Somaschini and F. Gravina (Zool. Mus. of Rome) for checking the Sabellidae. Part of this study was supported by EU-MASTIII project KEYCOP (MAS3-CT97-0148).

References

ARINO, A.H., 1987. Bibliographia iberica de poliquetos base de datos y catalogo de especies. Publicaciones de Biologia de la Universidad de

Siboga Expeditie, 24: 1-42.

