Microcassiope minor (Dana, 1852): a description of the first stage zoea (Crustacea: Decapoda: Brachyura: Xanthidae)

P.F. CLARK, M.A. DIONISIO, A.C. COSTA

doi: 10.12681/mms.200

To cite this article:

Microcassiope minor (Dana, 1852): a description of the first stage zoea (Crustacea: Decapoda: Brachyura: Xanthidae)

P.F. CLARK¹, M.A. DIONISIO² & A.C. COSTA²

¹ Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, England
 e-mail: pfc@nhm.ac.uk

² Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 9500 Ponta Delgada, Açores, Portugal
 e-mail: ana_dionisio@iol.pt; costa@alf.uac.pt

Abstract

The first stage zoea of Microcassiope minor (Dana, 1852) is described, illustrated and compared with thirteen other known Xanthinae. This comparison suggests that M. minor is closely related to another Atlantic Ocean xanthid, Nanocassiope melanodactyla (A. Milne-Edwards, 1867). Such an affinity may indicate that the genus Nanocassiope Guinot, 1967 is not a homogenous taxon.

Keywords: Microcassiope minor (Dana, 1852); First stage zoal description; Comparative morphology; Xanthinae.

Introduction

SERÈNE (1984:21, 172) listed 13 Xanthinae genera, but the larvae are only known for Leptodius exaratus (H. Milne Edwards, 1834) by AIKAWA (1929) as Xantho exaratus [ZI], CHHAPGAR (1956) [ZI], TUFAIL & HASHMI (1964) as L. exeratus [ZI-II], SABA (1976) [ZI-IV, Meg.], FIELDER et al. (1979) [ZI-IV, Meg.], TERADA (1980) [ZI-IV], AMIR (1989, publication not seen during this present study), SIDDQUI & TIRMIZI (1998) [ZI-IV], KO & CLARK (2002) [ZI], and CLARK & PAULA (2003) [ZI]; Macromedaeus distinguendus (de HAAN, 1835) by TERADA (1980) [ZI-IV]; Nanocassiope granulipes (SAKAI, 1939) by KO & CLARK (2002) [ZI-IV, Meg.]; Nanocassiope melanodactyla (A. Milne-Edwards, 1867) by DORÑELAS et al. (2004) [ZI-IV, Meg.] and Paraxanthias elegans (Stimpson, 1858) by TERADA (1990) [ZI-IV]. Xantho is also assigned to this subfamily and the larvae of a number of species are known e.g. Xantho incisus Leach, 1814 by LEBOUR (1928) [ZI-IV, Meg.], BOURDILLON-CASANOVA (1960) as Xantho incisus granulicarpus [ZI-IV],
and INGLE (1983) [ZI-IV, Meg.], (1991) [ZI-IV, Meg.]; Xantho pilipes A. Milne Edwards, 1867 by LEBOUR (1928) as Xantho hydrophilus [ZI], INGLE (1992) [ZI] and PAULA & dos SANTOS (2001) [ZI-IV, Meg.], and Xantho poressa (Olivi, 1792) by GOURÉTT (1884) as Xantho rivulosus [ZI], BOURDILLON-CASANOVA (1960) [ZI], RODRIGUEZ & MARTIN (1997) [ZI-IV, Meg.], and KO & CLARK (2002) [ZI]. Other genera may also be referred to the Xanthinae for which the larval morphology is reported for Cataleptodius floridius (Gibbes, 1850) by KURATA (1970, publication not seen during this present study) as Leptodius floridius and INGLE (1987) [ZI]; Cycloanthops novemdentatus (LOCKINGTON, 1877) by KNUDSEN (1960) [ZI-IV, Meg.]; C. truncatus (de HAAN, 1837) by HONG (1977) [ZI-IV, Meg], SUZUKI (1979) [ZI-IV] and TERADA (1980) [ZI-IV] and Pseudomedaeus agassizii (A. Milne Edwards, 1880) by COSTLOW & BOOKHOUT (1968) as Leptodius agassizii [ZI-IV, Meg.].

According to MANNING & HOLTHUIS (1981) Microcassiope minor (Dana, 1852) lives inter-tidally down to a depth of ca. 220 m with a reported distribution from the Eastern Atlantic including the Açores, Madeira, the Cape Verde Islands, the Canary Islands, the Spanish Sahara, the Ivory Coast, Ghana, the Gulf of Guinea (Principe and São Tomé) to Annobon and Saint Helena. LEWINSOHN & HOLTHUIS (1964) provide records for the Eastern Mediterranean and Chace (1966) for the Western Atlantic (the Bahamas, Cuba, Curacao and Islas Los Roques). CHACE (1966) recorded ovigerous crabs from Saint Helena in January and April and off West Africa during June (FOREST & GUINOT, 1966). Recently an ovigerous crab of M. minor was collected from São Miguel, Açores in August and the first stage zoeas were hatched in the laboratory. The purpose of this present study is to describe the morphology in detail and compare it with other known Xanthinæ first stage zoeas in an attempt to establish the relationship of M. minor within this subfamily.

Materials and Methods

An ovigerous Microcassiope minor was collected by hand on the lower shore from Ponta Delgada, São Miguel, Açores, on 5 August 2002. The first stage zoeas hatched on 13 August 2002 and were fixed and preserved in 4% buffered formalin. Zoeas were dissected using a Wild M5 and an Olympus BH-2 microscope equipped with Nomarski interference contrast. Setal ambiguities were resolved using a Zeiss Axioskop differential interference contrast microscope. Appendages were mounted on slides in polyvinyl lactophenol and allowed to clear for 24 h. Cover slips were sealed with clear nail varnish and drawings were made with the aid of camera lucida. Five zoeal specimens were examined. The sequence of the zoeal descriptions is based on the malacostracan somite plan and described from anterior to posterior. Setal armature of appendages is described from proximal to distal segments and in order of endopod to exopod (CLARK et al., 1998). The first stage zoea and the spent female are deposited in The Natural History Museum, London, registration number NHM 2002.2006. The first stage zoea is described and fully illustrated. The long plumose natatory setae of the first and second maxillipeds, and the long antennular aesthetascs, were drawn truncated. The approximate measurement of the antennal exopod (for its ratio with the protopod) was taken from the base to the tip excluding the terminal setae.

Description

Microcassiope minor (Dana, 1852)

Zoea I

Carapace (Figs 1a, b). Dorsal spine long, distally curved and spinulate and longer than rostral spine; rostral spine straight with prominent spines distally and equal in size to the antennal protopod; lateral spines present with spinulations on anterior margin;
anterodorsal setae absent; one pair of posterodorsal setae present; each ventral margin without setae; eyes sessile.

Antennule (Fig. 1c). Uniramous; endopod absent; exopod unsegmented with three long (two stout + one thinner) aesthetasc, one short, slender aesthetasc and one small seta, all terminal.

Antenna (Fig. 1d). Protopod equal in length to rostral spine and distally spinulate; with a minute protopodal spine; exopod ca. 17% length of protopod with one long subterminal seta and two terminal setae of unequal length.

Mandible. Mandibular palp absent.

Maxillule (Fig. 2a). Epipod absent, coxal endite with seven setae; basial endite with five setal processes; endopod two-segmented, proximal segment with one seta, distal segment with six (two subterminal + four terminal) setae; exopod seta absent.

Fig. 1: Microcassiope minor (Dana, 1852) first stage zoea; a) anterior view of carapace; b) rostral spine; c) antennule; d) antenna.
Maxilla (Fig. 2b). Coxal endite bilobed with 4 + 4 setae; basial endite bilobed with 5 + 4 setae; endopod bilobed with 3 + 5 (two subterminal + three terminal) setae; exopod (scaphognathite) margin with four plumose setae plus distal stout plumose process.

First maxilliped (Fig. 3a). Coxa with 1 seta; basis with ten setae arranged 2, 2, 3, 3; endopod five-segmented with 3, 2, 1, 2, 5 (one subterminal + four terminal) setae respectively; exopod two-segmented, distal segment with four terminal natatory plumose setae.

Second maxilliped (Fig. 3b). Coxa without seta; basis with four setae arranged 1, 1, 1, 1; endopod three-segmented, with 1, 1, 6 (three subterminal + three terminal) setae respectively; exopod two-segmented, distal segment with four terminal natatory plumose setae.

Fig. 2: Microcassiope minor (Dana, 1852) first stage zoea; a) maxillule; b) maxilla; c) telson.
Third maxilliped. Absent.
Pereiopods. Absent.
Abdomen (Figs 4a, b). Five somites; somite 2 with a pair of lateral processes directed laterally; somite 3 with a pair of lateral processes directed posteriorly; somites 3-5 with posterolateral processes; somites 2-5 with one pair of posterodorsal setae; pleopods absent.

Telson (Figs 4a, b; 2c). Each fork long and not spinulate, with two lateral spines (one stout and one smaller) and one dorsomedial spine; posterior margin with three pairs of stout spinulate setae.

Fig. 3: Microcassiope minor (Dana, 1852) first stage zoea; a) first maxilliped; b) second maxilliped.
Discussion

The first stage zoeas of nine genera and thirteen species which may have affinities within the Xanthinae MacLeay, 1838, are tabulated (Table 1) with respect to six larval characters. These are the antennal ratio of the exopod length to protopod length, the presence of the antennal endopod spine, the terminal setation of the antennal exopod, the presence or absence of spinulation on the anterior margin of the lateral carapace spines, the setation of the distal endopod segment of the second maxillipede and the lateral armature of the telson. One character that appears to have been overlooked in the past by a number of Xanthidae (*sensu* SERÈNE, 1984) zoeal descriptions is the small endopod spine on the antenna (Fig. 1d) and this is probably due to

![Fig. 4: Microcassiope minor (Dana, 1852) first stage zoea; a) dorsal view of abdomen; b) lateral view of abdomen.](image-url)
Table 1
A comparison of first stage zoeal characters from some known Xanthinae descriptions. ? = character may require re-examination (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Antenna: ratio of exopod length to protopod length</th>
<th>Small antennal endopod spine</th>
<th>Terminal setation of the antennal exopod</th>
<th>Spinulation on anterior margin of lateral carapace spines</th>
<th>Setation of distal endopod segment of 2nd maxilliped</th>
<th>Lateral armature of the telson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcassiope minor</td>
<td>17% (this study: Fig. 1d)</td>
<td>present</td>
<td>3 (this study: Fig. 1a)</td>
<td>present</td>
<td>6 (this study: Fig. 3b)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Nanocassiope melanodactyla</td>
<td>19% (Dornelas et al., 2004: Fig. 5A)</td>
<td>present</td>
<td>3 (Dornelas et al., 2004: Fig. 5A)</td>
<td>present</td>
<td>6 (Dornelas et al., 2004: Fig. 1A)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Paraxanthias elegans</td>
<td>26% (Terada, 1990: Fig. 3Cl)</td>
<td>absent?</td>
<td>3 (Terada, 1990: Fig. 3Cl)</td>
<td>absent</td>
<td>5? (Terada, 1990: Fig. 3G1)</td>
<td>1 spine + 1 seta</td>
</tr>
<tr>
<td>Xanthopus poressa</td>
<td>2.5% (Ko & Clark, 2002)</td>
<td>present</td>
<td>2 (Rodriguez & Martin, 1997: Fig. 2F)</td>
<td>absent</td>
<td>6 (Rodriguez & Martin, 1997: Fig. 5H)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Xanthopus incisus</td>
<td>3% (Ko & Clark, 2002)</td>
<td>present</td>
<td>2 (Ingle, 1983: Fig. 7a)</td>
<td>absent</td>
<td>6 (Ko & Clark, 2002)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Xanthopus pilipes</td>
<td>6% (Dornelas et al., 2004)</td>
<td>present</td>
<td>2 (Paula & dos Santos, 2001: Fig. 1D)</td>
<td>absent</td>
<td>5? (Paula & dos Santos, 2001: Fig. 1A, J)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Cycloxanthops truncatus</td>
<td>13% (Terada, 1980: Fig. 2B1)</td>
<td>present</td>
<td>2 (Terada, 1980: Fig. 2B1)</td>
<td>absent</td>
<td>5 (Terada, 1980: 138)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Cateleptodius floridanus</td>
<td>10% (Ingle, 1987: Fig. 4c)</td>
<td>present</td>
<td>2 (Ingle, 1987: Fig. 4c)</td>
<td>absent</td>
<td>5 (Ingle, 1987: Fig. 4g)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Pseudomedaeus agassizii</td>
<td>10% (Costlow & Bookhout, 1968: Fig. 1D)</td>
<td>absent?</td>
<td>2 (Costlow & Bookhout, 1968: Fig. 1D)</td>
<td>absent</td>
<td>5 (Costlow & Bookhout, 1968: Fig. 1B)</td>
<td>1 spine + 1 smaller spine</td>
</tr>
<tr>
<td>Nanocassiope granulipes</td>
<td>12% (Ko & Clark, 2002: Fig. 5a)</td>
<td>present</td>
<td>1 (Ko & Clark, 2002: Fig. 5a,b)</td>
<td>absent</td>
<td>5 (Ko & Clark, 2002: Fig. 9a)</td>
<td>1 spine + 1 seta</td>
</tr>
</tbody>
</table>
the use of an inadequate microscope. This small endopod spine may be a diagnostic zoeal character of the family.

DORNELAS et al. (2004) suggested that Nanocassiope was not a homogenous taxon and could be divided into separate Atlantic and Indo-Pacific genera. They concluded that the larval study of another Indo-Pacific species would be needed to clarify further the generic status of Nanocassiope, and adult characters will also have to be reappraised. However, this present larval study appears to support their hypothesis because Microcassiope minor, with an Atlantic distribution, appears to show close affinities with N. melanodactyla. Four zoeal characters (Table 1) distinguish these two Atlantic species from N. granulipes as described by KO & CLARK (2002) and include: the number of terminal setae on the antennal exopod (three versus one respectively), the number of setae on the distal endopod segment of the second maxilliped (six versus five respectively), the presence or absence of spinulation on the anterior margin of the lateral carapace spines and the lateral armature of the telson fork (one spine and one smaller spine versus one spine and one seta respectively). Zoeal evidence seems to suggest that adult characters within Nanocassiope Guinot, 1967 will have to be reappraised.

Acknowledgements

The authors wish to thank Maria Thessalou-Legaki and the organising committee of the 8th Colloquium Crustacea Decapoda Mediterranea for an extremely successful meeting.

References

AMIR, N., 1989. Abundance and distribution of some brachyuran larvae (Decapoda, Crustacea) in the northern Arabian Sea, (M. Phil. Thesis), Institute

MACLEAY, W. S., 1838. On the Brachyurous Decapod Crustacea. Brought from the Cape by Dr. Smith. Illustrations of the Zoology of South Africa; consisting chiefly of figures and descriptions of the objects of natural history collected during an expedition into the interior of South Africa, in the years 1834, 1835, and 1836; fitted out by "The Cape of Good Hope Association for Exploring Central Africa": together with a summary of African Zoology, and an inquiry into the geographical ranges of species in that quarter of the globe, Published under the Authority of the Lords Commissioners of Her Majesty’s Treasury, Invertebratae. In A. Smith. Smith, Elder and Co., London : 53-71.

