Brood stock formation of the hermaphrodite finfish species Pagellus erythrinus (common Pandora) from fish reared in captivity

S.D. KLAOUDATOS, D.S. KLAOUDATOS

doi: 10.12681/mms.224

To cite this article:

Brood stock formation of the hermaphrodite finfish species *Pagellus erythrinus* (common Pandora) from fish reared in captivity

S. D. KLAOUDATOS and D. S. KLAOUDATOS

University of Thessaly, School of Agriculture
Department of Animal Production and Aquatic Environment
Fytokou Street – 38446 New Ionia Magnisia, Greece

Abstract

Formation of brood stock is considered to be one of the most important operations in order to acquire eggs and fry from any promising candidate finfish species for aquaculture production. The sex reversal observed in hermaphrodite species adds to confusion and creates additional complications in forming a brood stock. The present study describes the efforts and the results of the brood stock formation of the hermaphrodite finfish species *Pagellus erythrinus* (common Pandora) from individuals aged between 4 and 5 years (TL>300mm) reared in floating cages. Six groups were formed (50 fish/group) in all of which females were present comprising 20 to 40% of the population. The presence of females was in contrast to the literature, which reported that sex reversal of the common Pandora is complete in naturally occurring populations with the absence of females in sizes of a total length greater than 220mm, indicating that in captivity sex reversal is not complete for this species. Four of the groups formed spawned under natural environmental conditions without hormonal treatment and the other two groups were administered a different dosage (250 and 500 IU/kg) of Human Chorionic Gonadotropin (HCG) to induce spawning. The reproductive period started in the middle of May and ended at the beginning of July and spontaneous spawning occurred in all groups. Egg release lasted for a mean period of one month for the groups that spawned without hormonal treatment with no significant difference in the number of viable eggs between groups. The groups that spawned under hormonal treatment released eggs for a period of six and seven days, for the group that spawned under the high and low hormonal treatment, respectively, with no significant difference in the number of viable eggs between them. The hormonal induced spawning resulted in egg release within a short period of time ideal for a hatchery. However, the number of viable eggs produced was significantly lower compared to the number of viable eggs produced from groups that spawned without hormonal treatment.

Keywords: Hermaphrodite, brood stock, *Pagellus erythrinus*, common Pandora.

Introduction

Mediterranean finfish mariculture is at present dominated by the intensive and highly technified production of gilthead sea bream (*Sparus aurata*) and European sea bass (*Dicentrarchus labrax*). One of the main strategies to ensure the future expansion of Mediterranean aquaculture is species’ diversification (HOUGH, 1996; STEPHANIS, 1996; BASURCO & ABELLAN, 1999), targeting species of high market value that are
easy to domesticate and rear (STEPHANIS & DIVANACH, 1993). Diversification poses a
great challenge for further aquaculture
development and focuses on a few species,
most of which belong to the family Sparidae
playing an important role in world production
(BASURCO & ABELLAN, 1999). The
potential of Sparids for use in aquaculture,
relies on the high degree of development
achieved with some species of this family such
as the red porgy (Pagrus pagrus) and the
gilthead sea bream (Sparus aurata) and in
particular to new species with similar biological
characteristics (HUSSAIN et al., 1981; GIRIN,
1982; CEJAS et al., 1993; FERNANDEZ-
PALACIOS et al., 1994; MENDEZ et al., 1995).

Economically viable aquaculture depends
heavily upon a reliable supply of fertile eggs
and juvenile fish, which can be produced only
by the formation and maintenance of cultured
brood stock. The common Pandora (Pagellus
erythrinus) (Linnaeus, 1758) is a demersal fish
belonging to the Sparidae family, extending
geographically from the Black sea and the
Mediterranean, along the west coast of Europe
and Africa, to Norway and Angola. It can be
found in depths down to 300m but is most
common at 20 - 100m (BAUCHOT &
HUREAU, 1986; MYTILINEOU, 1989;
SANTOS et al., 1995). This species exhibits
protogynous hermaphroditism (ANDALORO
& GIARRITTA, 1985; GIRARDIN &
QUIGNARD, 1985; FISCHER et al., 1987;
PAPACONSTANTINOU et al., 1988;
LIVADAS, 1989; PAJUELO & LORENZO,
1998), and together with gilthead sea bream
(Sparus aurata) and red porgy (Pagrus Pagrus)
comprise three of the most promising species
of the Sparidae family for large-scale
aquaculture in the Mediterranean region.

Larraneta (1964) reports that the ovarian
region of the common Pandora persists along
the dorsoventral surface of the testes, in the
form of degenerated tissue in all males when
the testicular region acquires the characteristic
of the testes. Hermaphroditism is a
phenomenon commonly observed in fish
occurring with a complex form in the Sparidae
family (ATZ, 1964). Taking into consideration
that at present the majority of the
Mediterranean species candidates for
aquaculture diversification belong to this family
(BASURCO & ABELLAN, 1999), the necessity
of forming a successful brood stock is of major
importance. In the case of a hermaphrodite
species the knowledge of the species’ biology,
including the type of hermaphroditism, age of
gonad maturation, initial sex expressed and
the exact time of sex reversal (REINBOTH,
1962; ATZ, 1964), are of vital importance. In
the family Sparidae, gonads appear as a two-
sexed organ in which the male and female
tissues coexist in separation. Furthermore,
each gonad section develops and functions
successively, with either the male or the female
side functioning initially. The ‘complete’
hermaphroditism (REINBOTH, 1962; ATZ,
1964) results in sex reversal observed at a
certain age with the degeneration and atrophy
of the currently functioning tissue and the
consecutive initiation of the tissue in cessation.
The individual will then develop and function
as a member of the opposite sex until the end
of its life. The phenomenon of ‘complete’
hermaphroditism in not universal for all the
individuals of a population and instead a
number of individuals will constitute
‘incomplete’ hermaphrodites which will not
undergo sex reversal. In protogynous
hermaphroditic species for example a number
of individuals will develop testicular tissue and
undergo ovarian degeneration before the onset
of sexual maturity, thus functioning as males
throughout their life omitting the female phase
(REINBOTH, 1962; ATZ, 1964). In the case of
the red porgy (Pagrus pagrus) two kinds of
males coexist in a given population; the
‘secondary males’ comprise the previously
female individuals that have undergone sex
reversal (complete hermaphroditism), and the
‘primary males’ comprising of individuals in
which before the onset of sexual maturity, the

ovaries never became functional and degenerate developing only testicular tissue (incomplete hermaphroditism) (KOKOKYRIS et al., 1999). The combination of ‘complete’ and ‘incomplete’ hermaphrodites creates complex population structures within a population, further complicating the formation of a successful brood stock of a hermaphrodite species.

In the case of the gilthead sea bream, a protandrous species, the addition of young males in the brood stock, during the period between the end of the reproductive period and the initiation of the new one, is vital since the number of older males that will undergo sex reversal will be increased. On the contrary, with the addition of females, older males will not undergo sex reversal and the quantity of sperm produced from the males will not be adequate to fertilise the entire number of eggs produced (ZOHAR et al., 1995). It is thus important to properly select the right individuals for a successful brood stock formation and periodically manage the population by replenishment or removal of individuals.

The current study investigated the potential of common Pandora brood stock formation from 4 and 5 year old individuals (T.L. more than 300 mm) cultured in floating cages, which according to (LARRANETA, 1953; SELLAMI-ZRIBI, 1974; GHORBEL & KTARIM, 1982; MYTILINEOU, 1987) should have undergone sex reversal and be males. In addition, a comparison between natural spawning without hormonal treatment and spawning with the use of Human Chorionic Gonadotropin (HCG) was performed regarding the number of viable eggs produced.

Materials and Methods

The experiments were conducted both in the aquaculture laboratory of the Hellenic Centre for Marine Research (HCMR) and the ‘Galaxidi Sea Farm’ aquaculture farm in central Greece and form a succession of previous work done on this species (KLAOUDATOS et al., 2004). The brood stock was supplied from cultured individuals reared in floating cages at the ‘Galaxidi Sea Farm’, aged between four and five years (more than 300 mm total length). There was an initial uncertainty for the presence of female individuals since, as mentioned in the literature, common Pandora occur in sizes below 220 mm (LARRANETA, 1953; SELLAMI-ZRIBI, 1974; GHORBEL & KTARIM, 1982; MYTILINEOU, 1987). In the first year of the research, four groups of brood stock were established, two of them at the ‘Galaxidi Sea Farm’ and the rest at the installations of the HCMR in the Saronikos Gulf. Following the first year of research, two more brood stock groups were established at the ‘Galaxidi Sea Farm’. The groups formed at the HCMR underwent induced spawning with the use of Human Chorionic Gonadotropin (HCG) (250 and 500 IU/kg) (Table 1) (KLAOUDATOS et al., 2004). Whereas all the groups formed at the ‘Galaxidi Sea Farm’ spawned without hormonal treatment (Table 2).

The main difficulty faced with the HCG hormone administration was the limited number of female individuals available. In

<table>
<thead>
<tr>
<th>Treatment IU/Kg</th>
<th>Number of fish</th>
<th>Mean weight (g)</th>
<th>Fish responding</th>
<th>Responding Time (h)</th>
<th>Viable eggs (%)</th>
<th>Hatching (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>15</td>
<td>815 ± 144</td>
<td>9</td>
<td>48</td>
<td>6.43</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>14</td>
<td>748.3 ± 130</td>
<td>9</td>
<td>52</td>
<td>15.0</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 1

Results of HCG hormone injection for groups 3, 4 (KLAOUDATOS et al., 2004).
addition, problems were encountered with the sedation of this species since the use of quinaldine resulted in sudden nervous behaviour by all individuals and the attempt to use benzokain (100-200ppm) or phenoxyethanol (200ppm) did not yield better results. The hormonal treatments applied are shown in Table 1.

The hormonal treatment was applied in order to attain the eggs during a small period of time since, under natural spawning without hormonal treatment; females produced small amounts of eggs over a lengthy period (Table 3). This lengthy egg production poses difficulties for a hatchery to collect and incubate an adequate number of eggs of the same age resulting in the coexistence of larvae of different sizes and cannibalism.

All groups of fish were initially bathed in a formaldehyde solution (200ppm) for one hour to reduce the possibility of parasitical infection.

The tanks used for storing each group were cleaned, sterilized and covered after the fish transfer to keep the fish calm and eliminate the possibility of escape.

All groups at the ‘Galaxidi Sea Farm’ were kept in a rectangular plastic tank of 30 m3 volume at concentrations of 1.18 kg m$^{-3}$ and 1.25 kg m$^{-3}$ for groups 1 and 2 respectively, whereas for groups 5 and 6 concentrations were 1.51 kg m$^{-3}$ and 1.41 kg m$^{-3}$, respectively. Groups 3 and 4 established at the HCMR were transferred within two isothermic 2 m3 tanks at a concentration of 9.4 kg m$^{-3}$. The oxygen concentration was kept well above 8 mg l$^{-1}$ throughout the transfer and 2-phenoxyethanol was used as a sedative in concentration of 150ppm. The two groups formed at the HCMR were kept in two square cement tanks of 12 m3 volume at concentrations of 3.4 kg m$^{-3}$ and 3.2 kg m$^{-3}$, respectively. All groups were acclimatized in their new environment.

Table 2

Number of individuals (N), Body weight (B.W.), total length (T.L.), standard deviation (S.D.), population structure, and spawning induction for all groups formed.

<table>
<thead>
<tr>
<th>Group No.</th>
<th>N</th>
<th>Location</th>
<th>B.W. (g) ± S.D.</th>
<th>T. L. (cm) ± S.D.</th>
<th>M / F</th>
<th>Spawning Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Galaxidi</td>
<td>705±115</td>
<td>33.9±2.2</td>
<td>2: 1</td>
<td>Natural</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>Galaxidi</td>
<td>735±102</td>
<td>31.5±1.5</td>
<td>2: 1</td>
<td>Natural</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>NCMR</td>
<td>815±144</td>
<td>35.1±1.8</td>
<td>3: 2</td>
<td>HCG</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>NCMR</td>
<td>760±160</td>
<td>34.7±2.1</td>
<td>4: 1</td>
<td>HCG</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>Galaxidi</td>
<td>910±155</td>
<td>37.1±1.8</td>
<td>2: 1</td>
<td>Natural</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>Galaxidi</td>
<td>850±92</td>
<td>35.8±2.3</td>
<td>2: 1</td>
<td>Natural</td>
</tr>
</tbody>
</table>

Table 3

Results of spawning under different spawning conditions for all groups formed during the course of the study.

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Number of Eggs Produced</th>
<th>% Eggs Viable</th>
<th>Viable Eggs(Day)$^{-1}$ (Female)$^{-1}$</th>
<th>Viable Eggs(Day)$^{-1}$ (Kg)$^{-1}$</th>
<th>Spawning induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,237,300</td>
<td>74.6</td>
<td>6,313</td>
<td>8,960</td>
<td>Natural</td>
</tr>
<tr>
<td>2</td>
<td>2,573,000</td>
<td>79.8</td>
<td>6,870</td>
<td>9,540</td>
<td>Natural</td>
</tr>
<tr>
<td>3</td>
<td>1,841,085</td>
<td>6.43</td>
<td>34,100</td>
<td>41,800</td>
<td>HCG</td>
</tr>
<tr>
<td>4</td>
<td>1,347,250</td>
<td>15.0</td>
<td>21,380</td>
<td>29,940</td>
<td>HCG</td>
</tr>
<tr>
<td>5</td>
<td>3,537,300</td>
<td>77.4</td>
<td>6,268</td>
<td>6,920</td>
<td>Natural</td>
</tr>
<tr>
<td>6</td>
<td>3,873,000</td>
<td>81.8</td>
<td>6,538</td>
<td>7,770</td>
<td>Natural</td>
</tr>
</tbody>
</table>
according to Apostolopoulos & Klaoudatos (1986).
Water supply at the ‘Galaxidi Sea Farm’ was kept at 1,200 l h⁻¹, and salinity at 37±0.7‰ for all groups, whereas at the HCMR the water supply was kept at 4,500 l h⁻¹, and salinity at 37±1‰. The supplied sea water was filtered (30-μm) and UV-sterilized, for all groups of fish. Oxygen was kept close to 100% saturation. The eggs for all groups were collected in a pot from the overflow of the tanks, using a net with mesh size of 600μm. The eggs were gently transferred to a 20 l clear volumetric cylinder and allowed to separate with the viable eggs floating and the dead and non-fertilised ones sinking according to (Smith & Hataya, 1982).

Results

All the brood stock groups formed resulted in viable egg release which was spontaneous (did not require stripping) while the proportion of females ranged between 20% and 40% in all groups. The total number of eggs produced, the percentage of viable eggs, the number of viable eggs produced per day per female and per kilogram of fish, and the spawning conditions are summarised in Table 3. In addition, the viable eggs produced per female and per kg of fish are shown in Figure 1. Egg collection from groups 1, 2, 5 and 6 that spawned under natural conditions started about 20 days after the acclimatization date. The egg production lasted for a mean period of 20 days after which it dropped significantly and stopped after the completion of one month from the onset of spawning for the groups that spawned under natural conditions without hormonal treatment. Whereas, egg production lasted for a total 6 and 7-day period for the third and fourth group, respectively, that spawned under hormonal treatment. During the spawning period, which ranged from the middle of May to the beginning of July there were several days for all groups during which egg production did not occur.

Fig. 1: Comparative bar chart of the number of viable eggs produced per female and per kilogram of fish for each of the six groups formed.
The hormonal treatment applied in groups 3 and 4 at the HCMR (Table 1) was used to induce spawning only in the female individuals, with gonads in the last vitellogenic state. In order to identify the appropriate individuals a biopsy was performed and showed non-synchronised ovarian development for this species indicating a prolonged spawning season (KLAOUDATOS et al., 2004).

The hormonal treatment reduced the duration of the prolonged natural spawning period as the treated females released their eggs within a period of a few days. Statistical analysis was performed to check possible differences in the number of viable eggs produced between groups that spawned under natural environmental conditions and under hormonal treatment. The number of viable eggs produced in all four groups that spawned without hormonal treatment (groups 1, 2, 5, and 6) were checked for normal distribution. More than 50% of the data were normally distributed using the Anderson - Darling normality test (DYTHAM, 2003). The data also showed homogeneity of variance using Bartlett’s test (Test Statistic 2.468, P>0.05). ANOVA (Analysis of Variance) was used to determine possible differences between the data. The results of ANOVA (F=2.18, P>0.05) indicated no significant difference in the number of viable eggs produced between all four groups that spawned without hormonal treatment.

The number of viable eggs produced between the two groups that spawned under hormonal treatment (groups 3 and 4) was normally distributed (Anderson - Darling normality test) and homogenous (Test Statistic 0.423, P>0.05). The results of ANOVA (F=0.17 P>0.05) indicated no significant difference in the number of viable eggs produced between the two groups that spawned under hormonal treatment.

Further analysis was performed in order to detect possible differences in the number of viable eggs produced between all groups. More than 50% of the data were approximately normally distributed (Anderson - Darling normality test) but significant heterogeneity of variance was indicated (Test Statistic 25.719, P<0.001). Data transformation was attempted and failed; as a result a non-parametric alternative test (Kruskal Wallis) was used for the comparison of all groups (DYTHAM, 2003). The results of the Kruskal Wallis Test indicated that the number of viable eggs produced were significantly different in at least one of the six groups (H=37.13, P<0.001). Dunn’s method was used for all pair-wise comparisons between groups. A summary of the comparisons performed for all Groups is shown in (Table 4).

The statistical tests performed indicated the production of a significantly lower number of viable eggs in the groups that spawned under hormonal treatment compared to the groups that spawned without hormonal treatment.

Table 4

Summary of the statistical tests performed to detect possible differences in the number of viable eggs produced between groups (ns:not significant, *:significant).

<table>
<thead>
<tr>
<th>Group N</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>-</td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Group 2</td>
<td>ns</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Group 3</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>ns</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Group 4</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>-</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Group 5</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Group 6</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>-</td>
</tr>
</tbody>
</table>
that spawned under natural environmental conditions as shown in Figure 2.

Discussion

The sex ratio in naturally occurring populations of the common Pandora was shown to be unbalanced and in favour of females in the population present off the Canary Islands, (PAJUELO & LORENZO, 1998), and in the Mediterranean (VASSILOPOULOU et al., 1986). Maturity is reached between the second and third years of life (LARRANETA, 1967; GIRARDIN & QUIGNARD, 1985; MYTILINEOU, 1989; PAJUELO & LORENZO, 1998). Size at maturity, according to PAJUELO & LORENZO (1998), in naturally occurring populations off the Canary Islands is 174 mm and 232 mm total length for females and males, respectively. Several reports also mention that female common Pandora occur only in sizes below 220 mm total length (LARRANETA, 1953; SELLAMI-ZRIBI, 1974; GHORBEL & Kitarim, 1982; MYTILINEOU, 1987), while PAJUELO & LORENZO (1998) reported that sex reversal for the common Pandora in a naturally occurring population is complete, indicated by the absence of females in the older individuals.

The current study indicated that in captivity sex reversal is not complete shown by the fact that, despite the age of the brood stock being between 4 and 5 years old, and a total length in excess of 300 mm, a percentage ranging between 20 to 40% of the individuals were females. In many hermaphrodite species individuals change sex, not only because they have reached a particular size or age, but also due to behavioural or/and social (demographic) changes (SHAPIRO, 1992). Captivity could result in an intensification of behavioural signals by artificially creating such social groups. Sex change and sexual structure of populations could be also affected by environmental factors (CHAN & YEUNG, 1983; ZOHAR et al., 1978; BUXTON & GARRATT, 1990).

Sex reversal of gilthead sea bream is conditioned by social and hormonal factors (MORETTI et al. 1999; ZOHAR et al., 1978; BUXTON & GARRATT, 1990). Furthermore, during sex reversal a number of males under the presence of a large number of females do not undergo sex reversal but remain and

Fig. 2: Comparative box plot of the number of viable eggs produced from each group. Each box represents roughly the middle 50% of the data set. The lines extending to either side indicate the general extent of the data. The median value is marked inside the box, whereas the dots indicate the mean value.
develop as males (ZOHAR et al., 1995). Sex reversal in Sparidae is an alternative reproductive style that enables individuals to maximise lifetime reproductive success by functioning initially in the early stages of their lives as a member of one sex and later on as a member of the opposite sex (ZOHAR et al., 1978; BAXTON & GARRATT, 1990; KLAOUDATOS et al., 1997).

According to HAPPE & ZOHAR (1988) sex reversal in the gilthead sea bream is largely controlled by the population structure and will only occur in the period between the end of the reproductive period and the beginning of the next, comprising the most critical period for the formation of a brood stock of a hermaphrodite species. Furthermore, a given brood stock of gilthead sea bream of the ratio of 1 male to 1 female will not remain constant over the years and the addition of young fish in older populations should be avoided, as it might induce older males to undergo sex reversal.

In groups formed during the current study the reproductive period started in the middle of May and ended at the beginning of July. In nature the reproductive period starts in April and ends in September (MYTILINEOU, 1989; VASSILOPOULOU & PAPACONSTANTINOU, 1990), with individuals in the state of maturity present even during the winter period (PAPACONSTANTINOU et al., 1989).

The results of spawning in the groups that spawned without hormonal treatment indicated that the common Pandora is a sequential spawner as further indicated by uneven oocyte sizes in the ovary (KLAOUDATOS et al., 2004). Sequential spawning occurring for an extensive period, in combination with the small number of continuous egg production, constitutes an advantage for a species ensuring high recruitment (SHAPIRO, 1992). Sequential spawning of a small number of eggs generates management problems for the hatchery regarding the proper planning of commercial fingerling production. Induced breeding represents, therefore, a choice for many commercial hatcheries in order to acquire the release of eggs in small periods of time. This was the main reason for the use of HCG in two of the groups formed. However, according to MORETTI et al. (1999) HCG treatment presents some serious drawbacks: not all females respond to it, egg quality may be below acceptable standards (hatching rate below 80%), being a large molecule provokes an immunization reaction, resulting in the fish treated with this hormone not responding when treated again the following season. Finally, it is less effective in inducing out-of-season spawning. HCG has, therefore, been successfully replaced by an analogue of the gonadotropin-releasing hormone (GnRH), a small molecule (10 amino acids) acting on the pituitary gland to induce the release of gonadotropins, which in turn act on the gonads (ZOHAR et al., 1989; ZOHAR & MYLONAS, 2001). Furthermore, almost 100% of the injected fish spawn eggs whose quality usually matches that of natural spawnings and no immunization effect is reported.

In the current study the hormonal induced spawning resulted in the release of eggs during a small period of time, ideal for a hatchery that requires precise planning of year round egg and fry production. Nevertheless, the viability of the released eggs from the groups that spawned under hormonal treatment was significantly lower compared to the groups that spawned without hormonal treatment. In addition, the eggs produced from all groups per kg per day were low compared to the egg production from domesticated gilthead sea bream of 2-3 million eggs per kg per season (ZOHAR et al., 1995). However, early efforts to induce spawning in the gilthead sea bream was rarely spontaneous from the captive brood stock resulting in a low number of eggs released. This was probably a result of domestication, a process that naturally occurs in captive brood stocks over generations (ZOHAR et al., 1995). Similarly, it is expected that through domestication of common
Pandora the number of eggs produced will substantially increase.

References

CEJAS, J., SAMPER, M., JEREZ, S., FORES, R. & VILLAMANDOS, J., 1993. Culture prospective of common Pandora (Pagellus erythrinus) and white Sea bream (Diplodus sargus); Preliminary growth results in comparison with Sea bream (Sparus aurata). Actas del IV Congreso Nacional de Acuicultura Pontevedra-Spain centro De Investigaciones Marinas: 127-132.

SELLAMI-ZRIBI, A. 1974. Contribution a l’etude de l’hermafroditisme de certains poissons des cotes tunisiennes (Maenidae, Serranidiae et Sparidae), These 3eme cycle biologie marine, Universite de Tunis, 106q.

VASSILOPOULOU, V., MYTILINEOU, C. & PAPAKONSTANTINOU, C., 1986. Preliminary biological data on the red Pandora (Pagellus

