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Abstract

An application of fractal theory in geological formations in the central Corinthian Gulf, Greece, is
presented in an attempt to study the nature of presently active deformation. Fault patterns are approximated
under the perspective of fractal theory concept, leading to the conclusion that fractal approach can be considered
valid for the region of study. Nevertheless, homogeneity may be expected with the reservation that there are
no considerable changes in the viscosities of the ductile layers in the region, so that the characteristic exponent
b+1-a is less than zero.
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A basic investigation of the study of active
deformation concerns the preservation of
undeformed regions, quite large sometimes, in
the midst of otherwise penetrative deformation.
To understand the term undeformed in the
present case, a representative volume with a
length scale LH (length of homogeneity) is
introduced. At scales larger than LH the system
behaves as if it was homogeneous with affective
average rheological laws. As mentioned in
DAVY et. al. (1990), owing to the importance
of faults on the deformation field, this approach
is certainly valid if no faults of size larger than
LH cut the representative volume element in
two pieces.

Previous studies considering geological
formations under the concept of fractal theory

(VILOTTE et al., 1984; DAVY et al., 1990)
lead to the argument that the existence of large
underformed regions might arise naturally
from a fractal style of faulting.

The meaning of fractal structure was
introduced in the study of Poincaré sections
of a chaotic attractor in non-linear dynamics
(NIKOLIS, 1995). Fractals and chaos are
closely intertwined and often occur together.
For instance, most chaotic attractors have a
fractal texture. Points on such attractors plot
as a set of layers that look the same over a wide
range of scales. In general, the chaotic
attractors of flows or invertible maps are
typically fractals; the chaotic attractors of
noninvertible maps may or may not be fractals.
Other chaos-related geometric objects, such



as the boundary between periodic and chaotic
motions in phase space, may also have fractal
properties. Because of those close relationships,
fractals can help detect chaos (WILLIAMS,
1997).

In the present study, the meaning of fractal
structure will be restricted to a pattern repeating
the same design and detail or definition over a
broad range of scales. Any piece of a fractal
appears the same as repeatedly magnified (self-
similarity). The usefulness of a fractal approach
to geological formation is due to the fact that
since deterministic chaos-related geometric
objects usually have fractal properties (MOON,
1992), fractals can help in detecting the
existence of deterministic chaotic behaviour.

DAVY & COBBOLD (1988) and
COBBOLD & DAVY (1988) have succesfully
explained and simulated the Indian - Asian
collision as yielding a predicted distribution of
underformed regions that can be easily tested
in the field. Furthermore, DAVY et al. (1990)
have shown that, if faulting is fractal in nature
that will limit the validity of homogenization
approaches in the modeling of deformation in
which the rheology of the lithosphere is assumed
to be homogeneous at scales larger than a
threshold value.

A similar approach using the concepts of
the fractal theory is applied here in the central
Corinthian Gulf, Greece, in an attempt to
examine the nature of the presently active
deformation due to N-S extension. The specific
area was chosen because of available accurate
data from recent neotectonic surveys, and also
its particular interest from the geodynamic
point of view, due to the active deformation
and high seismic activity (PAPAZACHOS &
PAPAZACHOU, 1989).

Materials and Methods

Geotectonic Background

The Corinthian Gulf is one of the most
seismically active areas in Greece and the

southeastern Mediterranean (DELIBASIS,
1968, 1981, LEYDECKER, 1975;
MAKROPOULOS, 1978). The Gulf is a post-
alpine tectonic basin, WNW-ESE oriented,
almost perpendicular to the alpine geotectonic
units of continental Greece, known as the
Hellenides. The geodynamic evolution of the
Gulf dates back to the upper Miocene, and is
controlled by normal faults. These have caused
an almost 1,000m uplift of the Pleistocene
sediments of the northern Peloponnese
(PHILIPPSON, 1892, KELLETAT et al., 1976,
DOUTSOS et al., 1988, 1992), and intense
geodynamic phenomena (extended landslides,
sediment accumulation) in the broader region.

The broader area of the Corintian Gulf is
characterized by high seismic activity
(PAPAZACHOS & PAPAZACHOU, 1989).
From fault plane solutions it is found that the
dominant stress field is extensional, N-S
oriented (McKENZIE, 1972), as also verified
by geodetic measurements showing a rate of
extension of the order of 1cm/yr (BILLIRIS
et al., 1991), and dipping to the south
(TSELENTIS & MAKROPOULOS, 1986).

The central and western parts of the Gulf
have been the subject of a detailed investigation
of active faulting in relation to seismic hazard
(PAPANIKOLAOU et al., 1997). The above
survey involved a total of more than 2,500 km
length of seismic profiling, using different
seismic sources (AIR GUN 1,5,10,40in3,
3,5KHz). The central part of the Gulf, where
the recent Ms6.1 Aigio-earthquake of 15/6/1995
occurred, was particularly investigated. The
neotectonic map obtained from the above study
is the basis of the present application (see
Figure 1a,b). All of the faults in this area are
active since they all displace the recent
Holocene sediments, creating minor or major
morphological discontinuties on the sea
bottom.

Methodology

In the following, fault patterns are assumed
to be self-similar, with certain fractal
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dimensions, ¢f. The fractal dimension is the
similarity fractal dimension as defined in the
theory of non-linear and chaotic dynamics.

Let N(l,r) be the density of faults per unit
length around faults of length l in a box of size
r. Then, N(l,r) may be expressed by the
equation.

so that N(l,r)ñ¢l represents the number of
faults of length between l and ¢l in a box of
size r which is found of the form (SORNETTE
et al., 1990).

where b affects the fractal (similarity)
dimension of the fault barycenters, ·
is an exponent constant measured by
fitting to experimental data, and C is
a normalization constant.

After normalization by the condition

, where Ntot is the total

number of faults larger than lmin in a system
of size §, it is found that,

and

Consequently, N(l,r) can be rewritten

The above equation expresses the fractal
dimension in a box of size r. Thus the fractal
(similarity type) dimension ¢r defined by the
scaling law L(r)�r¢f, should be equal (if ·≥2)
to the barycenter exponent b, whereas if ·<2
then ¢f=b+2-a, and should be independent
from the precise length distribution (DAVY
et al., 1990).

N l,r = ·-1 l
min

-1 Ntot r/Λ b lmin/l
·

(5)

 
C = Ntot • ·-1 Λ-blmin

·-1 (4)

 
Ntot = C/ · - 1 Λblmin

- ·-1 (3)

N l, r = Λ dl = Ntot
lmin

§

N (l, r) = Crb l -· (2)

N (l, r) = dNr / dl (1)
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Fig. 1b: b. Area of application (Squares § and r, enlarged from figure 1a).



Results

In the present application equation (5) is
used to predict the distribution of stable
undeformed regions within the central
Corinthian Gulf, Greece. The consequence of
fractal fault geometry on homogenization
approaches to the modeling of deformation is
furthermore tested.

Two squares of dimension § and r, within
the coordinates presented in figure (1a), are
chosen for the application.

All individual faults, having length greater
than lmin=1km with step of length increase
¢l=1 km, associated with these square areas,
are measured, as presented in Table 1. The
accuracy of measurements is of the order of
±0.1 km.

After computer fitting of equation (2) with
the experimental data (Table 1), using
graphical/observation trial the parameters ·,
b and c are found equal to 2.8, 1.2 and 1.593,
respectively (Figs 2,3). Since the question of
if fractal faults structure exist in the
investigated region is of the main interest in
the present study, rather than the detailed
measured results, the results of the fitting
procedure may be considered reasonably
adequate for our initial degree of
approximation study.

Thus equation (2) yields

In our initial approach the fitting results
were relatively sensitive to variations of · and
less sensitive to variations of b. Nevertheless,
our initial approximation conclusions of the
article may be regarded as valid to a

satisfactory degree of approximation, because
of the approximate regularity of fault patterns,
even in greater spatial scales which include the
region under study.

To test the hypothesis of the existence of
large undeformed areas, as the result of fractal
fault pattern with no need of macroscopic
variations of strength, the scaling law of
equation (5) is used to predict the distribution
of stable areas A, and their maximum size
Amax (§, Ntot).

For a domain D of size L, and area a=L2,
the average number of faults of all lengths, as
follows from equation (5), is Ntot (L/§)b.
Assuming that the fractals are randomly
distributed according to the fractal distribution
given by equation (5), the probability P(A)
that the domain D contains no faults is

The maximum stable domain size Amax
(§, Nt) is obtained from the condition

From (7) and (8) it is obtained

In the present application ·=2.8 (>2.0),

therefore 

From , for Ntot=70, it is
estimated Lmax=1.663. This value is
comparable with the experimental one
obtained from the analysis (Table 1).

Thus, one may conclude in the degree of
approximation we are working that the test in

Lmax = Amax §, Ntot

 
b ≅ Df = 1.2.

Amax §, Ntot /§2 ≅

≅ b+2 /2b logNtot /Ntot
2/b

(9)

 
P Amax §2/Amax ≅1 (8)

P A=L2 ≅ Ntot L/§ b -1/2
exp -Ntot L/§ b (7)

N l,r = 1.593 • r 1.2 • l -2.8
(6)
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l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20      Ntot

¢l ñ N(l, §) 28 35 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1         70
(¢l=1)
¢l ñ N(l, r) 3 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         14
(¢l=1)

Table 1
Faults with length greater than lmin=1 km, associated with square areas of size § and r.



the present hypothesis is positive, suggesting
that fractal structure of fault patterns may be
valid in the region of study. To further explain,
one may recall the fact that fractals in nature
are approximate and statistical (SAUPE, 1988;
WILLIAMS, 1977). These can be composed
according to the same rules as deterministic
(derived from mathematical formulas) fractals
but with the additional element of randomness
or noise included. The random element is
critical for reproducing natural features, such

as landscapes. Such features, when scaled
down or up, never look completely alike; all
differences between the original and scaled
versions are attributable to chance. In the
present case one may consider the fault
patterns as approximately self-similar, at least
in the range of 1 to 20 km in the region of study.

Furthermore, the scaling equation (5)
allows the analysis of the consequence of
fractal fault geometry on homogenization
procedures (DAVY et.al., 1990).
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Fig. 2: Density of number of faults per unit length as a function of faults of length l, for square of size §.
(·=2.8, b=1.2, c=1.593)

Fig. 3: Density of number of faults per unit length as a function of faults of length l, for square of size r.
(·=2.8, b=1.2, c=1.593)
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Assuming a representative volume with
homegeneous length LH, the system is
considered to behave as homogeneous with
effective average rheological laws, if no faults
of size larger than L divide the volume in two
pieces. Using equation (5) the average number
of faults N(l≥LH) is estimated and compared
with the number one, for the chosen
representative homogenization length LH.
For the recent case, from equation (5) is
obtained.

Since the exponent b+1-· is equal to -0.6,
less than 0, it is noted that N(l≥LH)decreases
at larger and larger lengths LH. Therefore, it
is concluded that, in the present case,
homogenization may be considered valid, at
some sufficiently large lengths LH. Because
the exponent · may depend on the viscosities
of the ductile layers (DAVY et al., 1990), great
care should be reccommended before using
the homogenization approach to study systems
that could present fractal fault patterns.

As for the origin of fractal structures, one
may speculate this to be a result of no passive
deformation and self-organization of the
lithosphere. Tectonosphere is a hierarchical
dissipative structure, which resulted in the
process of cooperative behaviour of its
microelements. It may be considered that the
perlocation system of the Earth is the main
structural motive, which provided the structural
arrangement of tectonosphere and its self-
organization. The data here do not contradict
such an idea: the fractal dimension of a fault
is 1.2, as for perlocation clusters.

Future studies may involve a higher degree
of approximation approaches to our theme
and also other geological formations and
comparison of the results with the present
approach will help to better conceptualize the
application of fractal theory to the particular
region, with the aim of a better understanding
of the mechanics of geological structure
formation.
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