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Abstract

Ten cores from the southern Aegean Sea have been logged for their lithological composition and sev-
enty-three sub-samples were analysed for the determination of major and trace elements concentrations.
Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the
“Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimat-
ed at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elements associated with:
(1) biogenic carbonates; (2) terrigenous alumino-silicates and (3) sapropelic layers. R-mode factor analy-
sis applied on the carbonate-free corrected data-set defined four significant factors: (1) the “detrital alu-
mino-silicate factor” represented by Si, Al, Na, K, Rb, Zr, Pb and inversely related to Ca, Mg, and Sr; (2)
a “hydrothermal factor” loaded with Cr, Ni, Co, Cu, Fe; (3) the “volcanic ash factor” with high loadings
for Ti, Al, Fe, Na and (4) a “sapropel factor” represented by Ba, Mo, and Zn. High factor scores for the
“hydrothermal factor” were observed in sediment samples proximal to Nisyros Isl., suggesting a potential
hydrothermal influence. Red-brown oxides and crusts dredged from this area support further this possi-
bility. The use of factor analysis enabled for a better understanding of the chemical elements associations
that remained obscured by correlation analysis.

Keywords: Geochemistry, Factor analysis, South Aegean Sea, Volcanic ash, Sapropel, Turbidite.

Introduction

The Mediterranean Sea is a semi-enclosed from the Miocene to the Holocene. Major
marginal sea of long and complex geological climatic changes, volcanic eruptions, eustat-
history; from west to east it is divided into a ic and tectonic oscillations have been
series of individual basins that provide rela- recorded in the sediments and therefore,
tively uninterrupted sedimentary sequences the eastern Mediterranean received a con-
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siderable amount of attention from marine
scientists.

Since the early work of BRADLEY (1938),
KULLENBERG (1952) and OLAUSSON (1961)
many investigations were concentrated into
the recovery and study of organic carbon
enriched layers (named as sapropels after
KiDpD et al., 1978) that were further related
to abrupt climatic changes in the eastern
Mediterranean. Despite the extensive litera-
ture, the depositional processes which have
resulted in the sapropels formation, remain
unresolved. To date, two theories exist over
the sapropel formation mechanism: (a) the
anoxia due to stagnation, as a mechanism
preserving carbon and (b) the enhanced pri-
mary production theory that provides in-
creased carbon flux (for reviews, see CITA &
GRIGNANI, 1982; VERGNAUD-GRAZZINI,
1985; ROHLING, 1994, CRAMP & O’SULLIVAN,
1999). The sapropel layers have been exten-
sively described and dated, thus establishing
an excellent chronology of the late Quater-
nary sediment sequence. For example, sa-
propel S; which is the most recently depo-
sited and also common sapropel is da-ted
between 5.3 and 9.0 kyr B.P. (THOMSON et
al, 1999), while the oldest sapropel S,, cor-
responds to 400,000 yr B.P. (McCoy, 1974).

Volcanic ash layers in Quaternary sedi-
ments of the eastern Mediterranean were
first discovered by MELLIS (1954) and initi-
ated the use and refinement of tephrachro-
nology. The ash layers are widespread geo-
graphically and may act as stratigraphic ma-
rkers in order to date the sediment sequ-
ences (e.g. NINKOVICH & HEEZEN, 1967;
McCoy, 1974; PICHLER & FRIEDRICH, 1976;
THUNELL et al., 1979; McCoy, 1981; VINCI,
1987; KNox, 1993). During the last 200,000
yr, 20 widespread ash layers have been
deposited over the eastern Mediterra-nean
deriving from the Hellenic arc and the
Calabrian arc volcanic provinces (KELLER et
al., 1978; THUNELL et al., 1979). One of the
largest known eruptions in post-glacial time
is the Santorini eruption (“Z-2” Minoan ash
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layer, 1500 yr B.P.). The eruption produced
at least 28 km? of tephra, deposited over east-
ern Crete as a 5 cm thick layer, often re-cov-
ered in deep-sea cores (WATKINS et al., 1978).

Turbidite and slump deposits interbedded
with pelagic sediments are often observed in
the eastern Mediterranean and may be
readily distinguished with the naked eye
(HERMAN, 1972)

The present contribution examines the
geochemical composition of core sediments
from the southern Aegean Sea and focuses
on the differentiation of the Upper-
Quaternary sedimentary record into dis-
crete lithological facies according to their
geochemical signature. The frequency dis-
tribution of major and trace elements are
evaluated by R-mode factor analysis and
inter-element relations are discussed. In
addition, the implication of submarine hy-
drothermal activity is addressed in order to
identify recently active regions.

Area under investigation

The part of the Aegean Sea extending
between the Hellenic volcanic arc (Milos,
Santorini, Nisyros and Kos Islands) and
Crete Isl. determines the boundaries of the
working area (Fig. 1). The Aegean is situat-
ed on a small, rapidly moving (3.5 cm yr-l,
southwest direction) microplate (JACKSON,
1994; DRuUITT et al., 1999). The Hellenic vol-
canic arc formation has resulted from the
subduction of the African plate under the
Aegean microplate, an activity that current-
ly continues.

The bottom morphology (Fig. 1) is charac-
terised by a narrow continental shelf that
extends a few kilometres offshore the islands.
The central part of the Cretan Sea is general-
ly deeper than 1000 m, while depths more
than 2000 m are encountered in two areas of
the eastern part, west of Karpathos Isl.

The sedimentological and geochemical
characteristics of the late Quaternary sedi-
ments have been described in general by
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Fig. 1: Working area location, core sampling sites

Russian scientists who visited the area in the
early 60’s (for reviews see SHIMKUS, 1981;
EMELYANOV & SHIMKUS, 1986). Several
“sapropel-like” muds were analysed and
their formation was attributed to increased
supply of organic detritus to the sea origi-
nating in dinoflagellates. Numerous vol-
canic eruptions mainly of Santorini volcano
were identified in a core from the central
Cretan Sea, represented by colourless glass
(EMELYANOV & SHIMKUS, 1986). Sedime-
ntation rates in the Holocene were estimat-
ed at 10-20 cm kyr-! for the central Cretan
Sea (SHIMKUS, 1981), reflecting the relative-
ly low sedimentation rates observed over the
eastern Mediterranean region.

Materials and methods

Fieldwork was carried out on-board R/V
“Aegaeo” during two cruises: (1) from
31/6/1990 to 6/11/1990 and (2) from 7/2/1991
to 2/3/1991. Geophysical data (air-gun pro-
files and magnetometry) from the area
under investigation were used in order to
depict areas of interest for core sampling.
Selected sites were related to ascending sub-
bottom formations accompanied with in-
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and simplified bathymetry.

tense faulting. In this respect a number of
thirty-two cores were recovered with a
Benthos gravity corer. Core lengths ranged
between 0.40 and 4.50 m. All cores were
split and logged at the laboratory of the
National Centre for Marine Research and
ten were selected for further analysis. Sele-
cted cores were obtained from three regi-
ons: (1) south of Milos Isl.; (2) southeast of
Anafi Isl. and (3) the area between the
Astypalaia, Kos and Nisyros Isles (for core
locations see Fig. 1 and Table 1).

Several smear slides were prepared from
each core, approximately in a 10-cm inter-
val, and observed under the polarising mi-
croscope in order to obtain a first estimate
of the cores’ sedimentological characteris-
tics. Core sub-sampling and subsequent geo-
chemical analysis was based upon these
observations, across colour changes, and
from both sides of lithological boundaries: a
number of seventy-two samples were finally
selected for bulk geochemistry.

Major elements were determined from
L:5 lithiumborate-mix fused beads by XRF
using a PHILIPS PW 1400 spectrometer
(C.W. Devey analyst) after pre-ignition of
the sample powder at 1000°C. Alpha matrix
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Table 1
Core locations, water depth and recovered core length.

Core Latitude (N) Longitude (E) Water Depth (m) Core length (cm)
MIPC-6 36°15.1309 24° 24.3996 990 235
MIPC-15 35° 51.7210 25° 59.6730 1250 267
MIPC-19 35° 56.7736 26° 13.0495 980 180
MIPC-20 36° 06.2195 26° 08.1355 912 340
MIPC-21 36° 07.3887 26° 08.0988 870 180
MIPC-22 36° 04.3886 26° 03.3064 980 160
MIPC-25 36° 35.9242 26° 39.3931 477 160
MIPC-27 36° 26.1302 26° 45.5473 320 160
MIPC-28 36° 28.2898 26° 52.1487 403 180
MIPC-29 36° 28.5769 26° 59.8693 593 179

factors were used for correcting analytical
results.

Trace elements were determined by Indu-
ctively-Coupled-Plasma Mass Spectrometry
(ICP-MS) using a VG PlasmaQuad 1 instru-
ment after pressurized acid digest. All pres-
surized acid digestions were performed in
SavillexTM 15 ml screw top TeflonTM PFA
vials with conventional heating on a hot
plate. All acids used were freshly subboiled.
HF-HClIO,-aqua regia decomposition pro-
cedure: 250 mg pulverized and 105°C dried
sample were weighed into Teflon vials and
moistened with deionized water. Then 4 ml
HF and 4 ml freshly prepared aqua regia
were added. After ceasing of gas formation
vials were closed and taken to 160°C on a
hot-plate overnight (>10 hrs). After cooling
vials were opened, 1 ml HCIO, added and
evaporated at 190°C to incipient dryness.
The evaporation step was repeated with
addition of 1 ml HNOj; and a few ml deion-
ized water. Then 1 ml HNO; and 5 ml
deionized water were added and warmed on
a hot plate. This solution was transferred to
50 ml polyethylene sample bottles and made
up to 50g total sample weight with deionized
water. The resulting digestion solution with
0.5 g 1-1 sample concentration (dilution fac-
tor = 200) was stored until measurement.
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Both a blank solution and a sample dupli-
cate were prepared for every batch of ten
samples. Carbonate samples were decar-
bonized by dilute HNO; or acetic acid; sam-
ples rich in organic carbon were preoxidized
by hot concentrated HNO; prior to closed
vessel digestion. The results presented here
were acquired with one single routine-pro-
cedure covering the complete element suite.
Each sample was acquired in 3 runs and
blank-subtracted mean and standard error
were calculated. Each calibration was brack-
eted by a batch of ten samples, comprising:
of 1 blank sample, 1 drift control sample
(e.g. multielement calibration solution), 1 in-
house or international rock standard for
accuracy control, 1 duplicate sample which
was analysed with a previous sample set and
6 unknown samples. Accuracy, precision
and the "real" detection limits for the whole
analytical system could be estimated and
monitored from the control samples and
duplicates. The day-to-day-precision of
results estimated from independent dupli-
cate analyses over a long period (2 years) is
for most elements better than 2-10%. This is
valid for concentrations greater than 10
times the respective detection limit. The
instrument was optimised in a first grade to
minimize oxide formation. This was achie-
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ved by a reduction of nebulizer flow and
sample uptake rates and readjustment of
the sampling depth (i.e., the distance bet-
ween sample cone orifice and the load coil).
More details of the analytical procedure and
instrument set-up as well as results for inter-
national standard reference material are
given in GARBE-SCHONBERG (1993).
Sediment carbonate content varies consid-
erably (Table 2) and variations in the distri-
bution of other elements are obscured.
Therefore chemical elements concentrations
have been recalculated on a carbonate-free
basis, except for Sr that is primarily associat-
ed with carbonates (Table 2). Corre-lation
and R-mode factor analysis was performed
with the statistical package Statigraphics.

Results and Discussion

Lithological units

Late Quaternary sediments of the south-
ern Aegean Sea consist of four major litho-
logical units, namely mud, volcanic, turbidite
and sapropel. The lithological units down-
core variations are illustrated in Figures 2 to
11, along with the analysed chemical ele-
ments vertical distribution.

The mud unit is the most common and
widespread lithological facies characterised
by homogenous thin bedding of yellowish
brown to light olive grey silt and clay hori-
zons (muds). The upper part of all cores,
except for MIPC-21, consisted of mud. Its
thickness varies between 0.1 m (MIPC-27,
Fig. 9) and 1.67 m (MIPC-29, Fig. 11); both
minimum and maximum thickness of this
upper sedimentary unit exists in the same
area (Astypalaia, Kos, and Nisyros Isles).
The same layer in the core MIPC-28 (Fig.
10), that lies in-between the previous ones, is
0.14 m thick. This irregular sedimentation
pattern is related to the bottom morphology,
as MIPC-27 and MIPC-28 were recovered
from the continental slope and MIPC-29
from a narrow local basin (for water depths
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see Table 1). The upper mud unit correspo-
nds to the Holocene calcareous marl (0oze)
that has been reported over extensive areas
of the eastern Mediterra-nean (OLAUSSON,
1961; EMELYANOV & SHIMKUS, 1986; AKSU et
al, 1995a; 1995b). The muddy sequence is
observed again down-core with similar char-
acteristics and is interrupted by occurrences
of the other three lithological units.

The volcanic unit is readily recognised as a
sandy dark coloured facies. It consists of
numerous elongated glass shards and feld-
spar grains and represents volcanic ash
(tephra) horizons deposited during various
eruptions of the Hellenic arc volcanoes. The
most recent ash layer in the Aegean Sea, *Z-
2’ Minoan ash layer (KELLER et al, 1978;
WATKINS et al., 1978), has a radiocarbon age
of 3370 yr B.P. (PICHLER & FRIEDRICH,
1976). AKsU et al. (1995a; 1995b) identified
the “Z-2” ash layer in two cores from the ea-
stern Cretan Trough and south of Nisyros
Isl., below 7 and 28 cm of Holocene mud,
respectively, and estimated the average sedi-
mentation rate at 5.2 cm kyr-!. We identified
at least one ash layer in five cores (MIPC-20,
MIPC-21, MIPC-27, MIPC-28 and MIPC-
29), while two ash layers were identified in
cores” MIPC-20 and MIPC-28. On the basis
of the cores geographic location, the ash lay-
ers down-core depth and the data of AKSU et
al. (1995a; 1995b), we correlated “Z-2” with
the volcanic unit of cores MIPC-27 (at 0.11
m, thickness 10 cm) and MIPC-28 (at 0.14 m,
thickness 8 cm). The calculated sediment
accumulation rates are 3.26 and 4.15 cm kyr-
I'and are in close agreement with the values
reported by AKSU et al. (1995a; 1995b). As
the “Z-2” ash layer is always found only a few
centimetres under the sea bed (THUNELL et
al., 1979; Vincy, 1985; Vinc, 1987) we con-
clude that ash layers found in cores MIPC-20
(at 1.2 m), MIPC-21 (at 0.98 m) and MIPC-
29 (at 1.58 m) are deposits of older erup-
tions. In respect to the down-core location
of these layers we may assume that they cor-
relate to the “Y-2” Cape Riva layer, that
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Fig. 2: Lithology and down-core plots of major and trace element concentrations in core MIPC-6.

Core location in Fig. 1.

was deposited 18,000 yr B.P. during an erup-
tion of Santorini volcano (VINcI, 1987). The
estimated sedimentation rates for this peri-
od range from 5.4 to 8.7 cm kyr-l. However,
these estimates are lower than the sedimen-
tation rates proposed by EMELYANOV &
SHIMKUS (1986) for the Cretan Sea: (1) 10-
20 cm kyr-! for the Holocene and (2) 15-20
cm kyr-! for the Upper Wurm (11-30 kyr-!).
Finally, the second volcanic ash layer
observed at 2.82 m down-core of MIPC-20
may be correlated to the “Y-5” tephra hori-
zon that was deposited approximately 25,000
yr B.P. (THUNELL et al., 1979; Vinc, 1985).
The turbidite unit is recognised by bare eye
or under the microscope as a mixture of
mud with numerous glass shards originating
from the volcanic ash layers. Turbidites are
found in most of the cores, occasionally
more than once, with a thickness varying
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from a few centimetres to 1.5 m (MIPC-20).
Turbidite layers are formed by submarine
slides, slumps, debris flows and turbidity
currents, mechanisms that carry sediments
from the continental slope to the deep
ocean-floor. DE LANGE et al. (1987) report-
ed the existence of 29 turbidites obtained
from two long cores of the Madeira Abyssal
Plain (north Atlantic). Based on geochemi-
cal characteristics the authors classified the
turbidites in: (1) organic-rich; (2) volcanic
and (3) calcareous. SACCANI (1986) discrim-
inated the sedimentary sequences of the
Cretan Sea in: (1) quartzolithic sand suite
derived from the outer arc and (2) lithovol-
canic suite derived from the Hellenic vol-
canic arc. In this respect turbidites of the
southern Aegean seem to be related with
the second cluster as they were identified by
the presence of volcanic ash along the cores.
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Fig. 3: Lithology and down-core plots of major and trace element concentrations in core MIPC-15.

Core location in Fig. 1.

In the central Aegean Sea, Lykousis et al.
(1995) reported hemipelagic-turbiditic mud
sequences in the upper part (0.35-0.45 m) of
several cores. Turbidite layers mostly trigge-
red by earthquakes have been identified by X-
ray radiography in cores recovered from the
deep Ionian Sea (PoOuULOS et al., 1999).

The sapropelic unit is easily recognised due
to its characteristic olive black colour, which
lies in sharp contrast to the upper and lower
sediments. The dark colour results from the
elevated organic carbon content that is greater
than 2% (e.g. KipD et al,, 1978). Three out of
ten cores of the southern Aege-an Sea con-
tained one (MIPC-21, MIPC-27) or more
sapropel horizons (three layers in MIPC-19).
The sapropel layer thickness in the cores stud-
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ied varied bet-ween 5 and 12 cm. The upper
sapropel unit corresponds to the well-known
S, sapropel of the eastern Mediterranean
(e.g., CRAMP & O’SULLIVAN, 1999; THOMSON
et al, 1999) that was deposited between 5.3
and 9.0 kyr B.P. (THOMSON et al, 1999).
However, this range may be confined at 7-9
kyr B.P., following the AMS radi-ocarbon
dates reported by Lykousis ez al. (1995) from
the central Aegean Sea. It has recently
become evident that post-depositional oxida-
tion significantly controls the appearance of S;
sapropel horizons, removing ap-proximately
half or, in some cases, all visual evidence
(THOMSON et al., 1995; THOMSON et al., 1999).

Although many cores were recovered from
relatively short distances (five cores were col-
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Fig. 4: Lithology and down-core plots of major and trace element concentrations in core MIPC-19.

Core location in Fig. 1.

lected southeast of Anafi Isl. and four more
southwest of Nisyros Isl., Fig. 1), their litho-
logical structure is highly irregular i.e., in some
cases distinct lithological units are completely
missing (volcanic ash horizons or sapropels),
while others appear in variable thickness
(upper mud, tubidites). This pattern is an indi-
cation of the high complexity that governed
sedimentation processes over the eastern
Mediterranean during late Quaternary.

Bulk geochemistry

The southern Aegean Sea sediments show
a considerable range of major and trace ele-
ments content (Table 2). All measured ele-
ments and CaCO; (calculated from CaO)
values down-core distributions are illustrated
in Figures 2 to 11.

(i) Carbonates and associated biogenic ele-
ments

CaO levels range from 3.8 to 53.0%
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(Table 2) and the majority of the highest
concentrations come from the upper mud
unit. Carbonate material originates in the
biogenous phase in the form of shell detritus
(mostly molluscs and bivalves) or well pre-
served foraminifera and cocolithofores
tests, therefore we may assume that the
most of calcium exists in calcium carbonate
form. Although carbonate values fluctuate
considerably along the cores, a general de-
crease with depth is observed (e.g. MIPC-
15, MIPC-28). Volcanic ash horizons exhib-
it minimum carbonate content, whilst sapro-
pel horizons show substantial variability; for
example, maximum carbonate content ap-
pears in the sapropel unit (S,) of MIPC-27
(Fig. 9), while S; in core MIPC-19 contains
66.28, 60.55, and 62.35% CaCO3, respec-
tively (Fig. 4). In general, the late Quate-
rnary sediments analysed are composed of
biogenous carbonates in a percentage that
exceeds 50% (Table 2).

Magnesium content varies from 1.13 to
8.31% and its distribution is fairly irregular.
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Magnesium often follows the distribution of
calcium carbonate because organisms may
construct their tests from high-Mg calcite,
or aragonite (CALVERT, 1976; CHESTER &
ASTON, 1976). This seems to be the case
within the mud and turbidite units, where
Ca and Mg exhibit similar vertical variation
(e.g., MIPC-15, MIPC-20). By contrast Ca
and Mg show antipathetic relation in some
turbidite units (e.g. MIPC-6), indicating that
turbidites may have different composition.
The correlation coefficient of the two ele-
ments is 0.65 (Table 3). Strontium is posi-
tively correlated to the previous elements
(Sr-Ca: 0.85, Sr-Mg: 0.66) forming the
group of biogenous autochthonous ele-
ments. Similar geochemical behaviour of
these elements has been widely reported in
the world’s oceans (e.g. TUREKIAN, 1964;
PE-TERMAN & HEDGE, 1974; TUREKIAN,
1974; VEIZER & WENDT, 1976, BUCHARDT,
1977; GOREAU, 1977) as well as for central
Aegean Sea surface sediments (KARAGEO-
RGIS et al, 1997) and also from Milos Isl.

(KARAGEORGIS et al., 1998). Transition met-
als Cr and Ni show positive correlation to
the carbonate group depicting some attrac-
tion of these elements into the biogenous
phase (KARAGEORGIS, 1992).

(ii) Terrigenous elements

Silica, titanium, aluminum, iron, sodium
and potassium oxides compose the non-car-
bonate component of the sediments. Silicon
in late Quaternary sediments of the eastern
Mediterranean originates primarily in alu-
mino-silicates, quartz, feldspars, volcanic
ash and biogenic siliceous remains (diatoms,
radiolarians, and sponge spicules). The high
correlation of Si with Al (r=0.91; Table 3)
demonstrates the direct genetic connection
of silicon with alumino-silicates (clay miner-
als). Maximum Si values are observed in the
volcanic ash units (e.g. MIPC-28: 65.5%;
MIPC-20: 61.67%; see also Figures 2 to 11
and Table 2) and some turbidites (e.g.
MIPC-21: 67.18%), whereas the Al distribu-

Table 3
Correlation coefficients matrix (confidence level at 95%).

Si0, TiO, AL,O3 Fe,03 MgO CaO Nay0 K,0 Cr Mn Co Ni Cu Zn Rb Sr Zr Mo Ba Pb
Si0,  1.00
TiO, 036 1.00
ALO; 091 062 1.00
Fe,03 0.09 061 028 1.00
MgO -071 021 -0.62 013 1.00
Ca0 -098 -045 -095 -022 0.65 1.00
Na,0 094 038 090 009 -0.72 -0.95 1.00
K20 089 012 073 -013 -073 -0.85 0.89 1.00
Cr 0.51 -0.10 050 034 076 045 -0.59 -0.55 1.00
Mn 022 025 035 020 -025 -025 028 008 -022 1.00
Co 032 040 -0.13 052 044 022 -034 -045 0.66 0.13 1.00
Ni 045 -006 -044 033 072 038 -052 -048 098 -0.18 0.69 1.00
Cu  -0.19 033 -005 038 019 0.15 -022 -032 038 -0.03 0.71 040 1.00
Zn 000 0.7 007 018 -001 -0.07 0.10 0.08 011 006 037 017 024 1.00
Rb 067 0.0 051 000 -050 -0.63 0.54 0.72 -0.11 0.08 -0.05 -0.07-0.01 0.08 1.00
Sr 0.84 037 -0.79 -0.14 0.66 085 -0.79 -0.75 051 -0.18 0.38 0.44 027 0.02 -0.52 1.00
Zr 084 0.4 069 -0.15 -0.81 -0.79 081 090 -0.57 0.7 -0.41-0.52 -0.20 0.01 0.79 -0.72 1.00
Mo 008 002 010 013 -0.14 -0.12 0.19 018 0.04 024 030 012 022 0.70 0.08 0.03 0.10 1.00
Ba 054 017 048 020 -0.54 -0.56 058 055 -0.18 0.15 0.13 -0.10 0.18 0.49 0.43-0.38 0.51 0.69 1.00
Pb 041 -0.03 029 -0.17 -037 -035 029 048 -0.12 001 -0.04 -0.09 0.08 -0.06 0.78 -0.22 0.61 0.040.26 1.00
130 Medit. Mar. Sci., 1/2, 2000, 119-142
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Fig. 5: Lithology and down-core plots of major and trace element concentrations in core MIPC-20.

Core location in Fig. 1.

tion shows significant resemblance. In rela-
tion to the grain-size, volcanic ash horizons
are fairly sandy, meaning that Si and Al are
more likely existent in feldspars and vol-
canic glass/pumice, rather than in fine-
grained alumino-silicates.

Titanium as well as aluminum are very
immobile in the marine environment, thus
may be used for normalisation in order to
reduce the variability caused by grain-size or
wide range calcium carbonate variations
(e.g. HIRST, 1962; KEMP et al., 1974; WIN-
DOM et al., 1989). Due to their conservative
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behaviour Ti and Al are also indicators of
the terrigenous sediment components (e.g.
CHESTER et al, 1976; EMELYANOV et al.,
1979). Titanium varies from 0.3 to 1%
(CFB) and exhibits higher concentrations in
the volcanic ash units. Occasionally, tur-
bidite units show high Ti content indicating
the presence of Ti in various terrigenous
phases. EMELYANOV & SHIMKUS (1986) ide-
ntified an increasing trend in Ti content
from the sand fraction toward the fine silt
fraction, Ti being hosted in ilmenite, mag-
netite and accessory minerals (rutile,
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Fig. 6: Lithology and down-core plots of major and trace element concentrations in core MIPC-21.

Core location in Fig. 1.

brookite, sphene, and anatase). It also occurs
as a minor constituent in clays, feldspars and
micas (CHESTER & ASTON, 1976). In the
present work Ti is moderately correlated to
Al and Fe (r=0.62; r=0.61, respectively);
iron showing close variation to Ti. Tron is
also present in all lithological units (except
for the sapropel unit) with fairly irregular
distribution. These elements’ geochemical
behaviour cannot be resolved satisfactory at
this point by means of correlation coeffi-
cient comparison.

Sodium and potassium are largely associ-
ated with the clay minerals in lattice struc-
tures and in surface or inter-sheet positions
(CHESTER & ASTON, 1976). Amongst the
samples analysed, Na and K exhibit very
high correlation coefficients with Si and Al
(e.g. Na-Si: 0.94; Na-Al: 0.89; K-Si: 0.90, see
also Table 3), thus we consider Na and K
being incorporated into the alumino-sili-
cates.

A number of trace elements are directly
correlated to the terrigenous group, i.e., Zr
and Rb. Both elements exhibit positive cor-
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relations with Si (0.84 and 0.67, respective-
ly), as well as with Al (0.69, 0.51, respective-
ly). Zirconium is fixed as mineral in oxide
form (ZrO,), but it may be concentrated in
clay minerals as smectite, illite or kaolinite.
Rubidium is purely lithogenic element and
shows some relationship with the volcanic ash
unit as the maximum concentration (144
ppm) appears in the tephra horizon of MIPC-
21 (Fig. 6). In the Mediterranean, Rb levels
are high in the Tyrrhenian Sea, where
deposits of the Calabrian volcanic arc are
abundant (EMELYANOV & SHIMKUS, 1986).
Correlation coefficients of lead with Rb
(0.78) and Zr (0.61) indicate that Pb is fixed
within the terrigenous phase of the sediments.

(ifi) Sapropel associated elements

Molybdenum, barium and zinc form
another group of elements exhibiting strong
inter-relations, as imposed by their correla-
tion coefficients (e.g. Mo-Zn: 0.70; Ba-Mo:
0.69, Table 3). These elements are associat-
ed with the sapropel horizons and display

Medit. Mar. Sci., 1/2, 2000, 119-142
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Fig. 7: Lithology and down-core plots of major and trace clement concentrations in core MIPC-22.

Core location in Fig. 1.

their maxima in the deepest sapropel of
MIPC-19 (Mo: 19 ppm; Ba: 800 ppm; Zn:
258 ppm, see also Table 2 and Fig. 4).
Barium concentrations were always found
elevated in eastern Mediterranean sapro-
pels (e.g. CALVERT, 1983; SUTHERLAND et
al., 1984; THOMSON et al., 1995) and Ba has
long been considered as a paleoproductivity
proxy (GOLDBERG & Arrhenius, 1958;
DYMOND et al., 1992; THOMSON et al., 1999;
WEHAUSEN & BRUMSACK, 1999). A part of
Ba is detrital, while another part is present
as discrete barite (BaSO,) crystals <5
microns in size (THOMSON er al, 1995).
During the anoxic conditions that prevailed
during sapropel formation sulphur was fixed
as sulphides and, probably, Mo and Zn pre-
cipitate as sulphides (CALVERT, 1983).
Manganese, although not showing any
apparent correlation to the sapropel-associ-
ated elements Ba, Mo and Zn, has an indi-
rect dependence on them. Mn is reduced to
soluble species (Mn2+) when anoxic condi-
tions prevail and therefore, sapropels are
formed. In a post-depositional stage, oxygen
penetrates the sediment column and re-
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mobilises Mn that re-precipitates as oxyhy-
droxides (Mn*+) in the layers overlying the
sapropel. This pattern is illustrated in the
elevated Mn concentrations observed over
S, in cores MIPC-19 and MIPC-21 (Figures
4, and 6, respectively).

(iv) Other trace elements

Trace elements Cr, Co, Ni, and Cu, show
relatively high inter-correlation (e.g. Ni-Cr:
0.98; Cu-Co: 0.71; Ni-Co: 0.69), but they
don’t follow clearly one of the previously
defined groups. Therefore, their geochemi-
cal behaviour will be assessed with the enha-
nced statistical procedure of factor analysis.

Factor analysis

Multivariate statistics and in particular
factor analysis is a technique that enables
grouping of variables (in this case chemical
elements) into a number of factors that
describe common (geochemical) behaviour.
In this way the number of variables under
investigation is decreased and interelement



Table 4
Varimax-rotated factor loadings for four factors obtained for the late Quaternary sediments of
southern Aegean Sea. Data were carbonate-free corrected prior to statistical analysis (n=73).
Bold numbers indicate positive correlation, whereas underlined values negative correlation.

Variable Factor 1 Factor 2 Factor 3 Factor 4
SiO2 0.78 -0.35 0.46 0.05
TiO2 0.09 0.17 0.84 0.02
AI203 0.59 -0.28 0.72 0.07
Fe203 -0.05 0.46 0.67 0.08
MgO -0.54 0.61 -0.24 -0.22
CaO -0.73 0.27 -0.57 -0.09
Na20 0.66 -0.45 0.50 0.19
K20 0.82 -0.44 0.14 0.16
Cr -0.18 0.91 -0.19 -0.05
Mn 0.01 -0.14 0.39 0.21
Co -0.18 0.82 0.25 0.30
Ni -0.13 0.91 -0.15 0.02
Cu -0.07 0.59 0.19 0.25
Zn -0.01 0.17 0.10 0.72
Rb 0.94 0.09 -0.02 0.05
Sr -0.60 0.39 -0.49 0.06
Zr 0.86 -0.40 0.11 0.11
Mo 0.05 0.08 0.02 0.90
Ba 0.48 -0.04 0.20 0.74
Pb 0.75 0.09 -0.21 0.00
Variance (%) 49.5 19.5 10.2 8.8
Cumulative Variance (%) 49.5 69.0 792 88.0

associations may be assessed in greater
detail. DAvis (1986) described effectively the
method’s principles, whilst numerous investi-
gations be-nefited from its use (SHANKAR et
al, 1987; NATH et al, 1989; HODKINSON &
CRONAN, 1991; KARAGEORGIS, 1992). R-
mode factor analysis with varimax rotation
was applied in the carbonate-free sediment
concentrations and a four-factor model
explaining 88% of the total variance was
adopted (Table 4).

Factor 1

Factor 1 accounts for 49.5% of the total
data variance (Table 4) and shows a bipolar
character. High positive loadings concern
Si, Al, Na, K, Rb, Zr, Pb and partly Ba.
These elements are incorporated into the

134

terrigenous alumino-silicates and, there-
fore, this factor can be termed “terrigenous
alumino-silicate factor”, further correspon-
ding to the “mud lithological unit”. The
allochthonous detrital phase is opposed to
the autochthonous biogenous phase, which
is represented by Mg, Ca, and Sr that show
negative loadings.

Factor 2

The second factor accounts for 19.5% of
the data variance (Table 4) and shows high
loadings for a number of metals such as Cr,
Co, Ni, Cu and Fe. These elements are asso-
ciated to hydrothermal processes, thus will
be named “hydrothermal factor”. Factor
scores (Table 5) are higher in the vicinity of
Nisyros Isl. (cores MIPC-28, MIPC-29, see
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Fig. 8: Lithology and down-core plots of major and trace element concentrations in core MIPC-25.

Core location in Fig. 1.

also Fig. 1) where volcanic activity continues
until today. Hydrothermal fluids may have
been responsible for the accumulation of
metal oxides; nevertheless, the absence of
Mn participation in this factor is striking.
Manganese and iron oxides are important
proxies of hydrothermal activity (HoDKI-
NSON & CRONAN, 1991; MURPHY et al,
1991). In our four-factor model iron is also
represented in factor 3 and manganese dis-
tribution is diffused between factors 3 and 4;
the latter being controlled primarily by dia-
genetic re-mobilisation from sapropel layers.
Red-brown oxides and crusts that were
dredged in Nisyros Isl. area (not ana-lysed in
the present study) further support the possi-
bility of modern hydrothermal activity.
VARNAVAS’ et al. (1998) observations are
consistent with this opinion, as they reported
a submarine hydrothermal system offshore
Kos Isl. (see also Fig. 1). Mg and Sr (bio-
genic elements) show positive loadings with
the metals in the “hydrothermal” factor.
HODKINSON ef al. (1994) demonstrated simi-
lar relationship from an extensive geochemi-
cal study of surface sediments from the
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Hellenic volcanic arc, but their geochemical
association remains unclear.

Factor 3

Factor 3 accounts for 10.2% of the total
data variance (Table 4) and shows high
loadings for Ti, Al, Fe, Na and also Si and
Mn. Factor scores (Table 5) are higher in
the samples from volcanic ash horizons, thus
can be termed as “volcanic ash factor”. It is
a second terrigenous factor that shows
antipathetic relation to the “biogenic ele-
ments” Ca, Mg and Sr, which present nega-
tive loadings. Iron and titanium concentra-
tions are often elevated in volcanic sedi-
ments (CHESTER & ASTON, 1976; EMELY-
ANOV & SHIMKUS, 1986). DE LANGE et al
(1987) used Fe and Ti to differentiate tur-
bidites of the Madeira abyssal plain rich in
volcanic material that were subsequently
named “volcanic turbidites”.

Factor 4

The “sapropelic factor” is readily recog-
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Table 5
Factor scores of the southern Aegean Sea late Quaternary CFB sediments concentrations.

Core-depth (cm) Factor Scores Core-depth (cm) Factor Scores
1 2 3 4 1 2 3 4

MIPC6-7 -0.35 024 -046 -0.15 MIPC20-289 193 035 213 1.66
MIPC6-47 -026  0.17 001 -045 MIPC20-319 -022 046  -0.09 -0.78
MIPC6-87 0.59 -0.22 -085  -0.60 MIPC21-2 -0.84  -0.81 051 -0.02
MIPC6-105 0.10 095 -030 -1.26 MIPC21-18 242 -0.93 0.75 0.31
MIPC6-147 -0.40 030 -0.05  -0.31 MIPC21-40 -0.61 025 0.01 -0.81
MIPC-192 -0.37 024 0.11 -0.41 MIPC21-48 -0.51  -0.01  -0.53 -0.15
MIPC6-207 0.08 058 020 -0.54 MIPC21-105 -0.08  -0.17  0.11 -0.31
MIPC6-222 -0.35 0.05 040 0.56 MIPC21-110 1.02 047 097 -1.42
MIPC15-3 -0.93 -096 046 033 MIPC21-113 1.56 049 1.56 -1.77
MIPCI15-11 -0.48 084 -099 -0.12 MIPC21-175 -0.30  1.27  -0.65 -1.43
MIPC15-20 -0.63 0.13 0.41 0.65 MIPC22-7 -0.88  -0.73 0.42 0.04
MIPC15-40 0.14 026  -020 -0.36 MIPC22-73 218  -1.18 1.65 -0.12
MIPC15-42 -0.43 -0.04  -0.18  -0.13 MIPC22-115 245 -1.11 1.83 -0.09
MIPC15-87 -0.56 048 -023 -047 MIPC22-126 1.53 -1.52 231 0.72
MIPC15-152  -0.93 -1.37  -0.30  0.66 MIPC22-140 -0.34  -086 -1.80  -0.09
MIPC15-169  -0.17 1.96  -0.81 -045 MIPC25-3 -0.65  -0.75 0.82 -0.22
MIPCI15-178  -0.81 -1.24 -0.20 0.39 MIPC25-25 -0.46 1.55 0.69 -1.74
MIPC15-210  -0.40 074 -038 -0.55 MIPC25-52 0.11 0.15  -0.68 -0.36
 MIPC15-223  -045 -0.16  -033 -0.19 MIPC25-132 -1.09  -0.68 0.33 -0.28
MIPC15-248  0.08 0.94 0.04  -0.35 MIPC25-157 -1.18  -1.08 0.65 1.36
MIPC15-267 -0.34  -0.12 -0.59  -0.46 MIPC27-14 1.66  -0.29 0.93 -0.55
MIPC19-3 -0.74  -0.64 039 0.1 MIPC27-72 -0.87  -2.30 1.22 0.88
MIPC19-14 -0.86  -0.81 0.00 048 MIPC27-132 41 =151 -0.25 0.86
MIPC19-18 -0.57 124 -009 117 MIPC28-3 -1.04  -0.63 0.57 -0.31
MIPC19-19 -0.49 025 -042 0.00 MIPC28-17 230 -0.60 1.01 -0.01
MIPC19-21 -0.55 0.79 033 0.66 MIPC28-67 -0.26  -0.78 0.56 -0.12
MIPC19-38 -0.31  -1.04 -1.31 1:29 MIPC28-123 -0.73  -1.02 -0.05 0.56
MIPC19-162 -0.03  -0.86  -1.81 1.03 MIPC28-155 0.84 1.68 231 -0.17
MIPCI19-168 -0.20 3.81 3088573 MIPC28-173 134 0.92 -2.29  10.67
MIPC20-5 -0.16 055 -0.05 -0.86 MIPC29-12 0.24 1.60 126 -0.78
MIPC20-139  2.01 063 -223 193 MIPC29-52 -0.62  2.03 1.09  -0.57
MIPC20-200  -0.76 -037 056 -0.28 MIPC29-112 0.54 218 0.04 -0.92
MIPC20-255 -0.85 -0.40 045  -0.16 MIPC29-142 -0.64 1.44 0.04 -2.05
MIPC20-270  1.81 -0.61 148  -0.18 MIPC29-168 1.67  -0.34 1.23  -0.38
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nised from the exclusively high loadings of
Mo, Ba and Zn. This factor explains 8.8% of
the data variance and exhibits high scores
(Table 5) in the samples characterised as
sapropels during visual inspection of the
cores.

Conclusions

In respect to the visual and microscopic
characteristics of sedimentary sequences
from south Aegean Sea cores, four litholog-
ical units were identified:

1. Mud unit that corresponds to the Holo-
cene calcareous marl and comprises the
most widespread lithological facies.

2. Volcanic unit composed of glass shards
and feldspar grains, primarily representing
volcanoclastic deposits of the Hellenic arc
volcanoes. Based on the radiocarbon age of
the most recent “Z-2” Minoan ash layer we
estimated the sedimentation rate for the
upper Holocene period at 3.26 to 4.15 cm
kyr-L.

3. Turbidite unit is a melange of silt and
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clay with components of the volcanic unit,
usually glass shards that are spread through-
out the core. Turbidites may be the result of
sediment transport from the shelf toward
the deep ocean floor, through submarine
slides, slumps, turbidity currents, etc.

4. Sapropel unit was identified in three
cores after its characteristic colour. The
occurrence of sapropels over the eastern
Mediterranean is fairly common; however,
sapropel layers were often missing amongst
neighbouring cores, depicting high irregu-
larity of the depositional and/or post-depo-
sitional processes of the late Quaternary
period.

Interelement associations were studied
according to their down-core distribution
and correlation coefficient matrix, revealing
the following groups:

1. Carbonates group formed by Ca, Mg and
Sr, elements originating in the bio-genous
autochthonous fraction of the sediments.

2. Terrigenous group composed of Si, Ti,
Al, Fe, Na, K, Zr, Rb and Pb, elements orig-
inating in the detrital alumino-silicates
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(mainly clay minerals) and the volcanoclas-
tic material.

3. Sapropel group represented by Mo, Ba
and Zn, characteristic elements of the east-
ern Mediterranean sapropels and, therefore,
related to elevated organic carbon content.

Using multivariate statistics (factor analy-
sis) applied in the carbonate-free corrected
data set, we defined a four-factor model that
explains effectively 88% of the data vari-
ance. The use of factor analysis proved to be
effective in the identification of element
associations that were not resolved by visu-
al-microscopic examination or correlation
analysis. The factors defined are the follow-
ing:

1. The “detrital alumino-silicates factor” is
the most important factor integrating the
elements of the terrigenous group as well as a
part of Ba. The elements of the carbonates
group are inversely correlated to the terrige-
nous group elements, due to the antipathet-
ic relationship of the detrital versus
biogenous phases.

2. The “hydrothermal factor” associates Cr,
Co, Ni, Cu and Fe, elements related to
potential hydrothermal processes. High fac-
tor scores were identified in the Nisyros Isl.
cores, indicating a possible hydrothermal
influence in this area.

3. The “volcanic ash factor” shows high
loadings for Ti, Al, Fe, Na, Si and Mn. The
elements reflect the composition of volcanic
ash horizons rich in glass shards and
feldspars originating in the products of the
Hellenic arc volcanic eruptions.

4. The “sapropel factor” involves Mo, Ba
and Zn elements related to the sapropel lay-
ers identified in the cores.
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