Morphology vs Genetics: the hybrid origin of a sea turtle disproved by DNA

GAROFALO L.
Centro di Referenza Nazionale per la Medicina Forense Veterinaria. Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Via Tancia 21, 02100 Rieti Dipartimento di Biologia, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, s.n.c., 00133, Roma, Italy

ZACCARONI A.
Gruppo Grandi Vertebrati Pelagici, Corso di Laurea in Acquacoltura ed Igiene delle Produzioni Ittiche, Dipartimento Scienze Mediche Veterinarie, Università di Bologna, Viale Vespucci 2, 47042, Cesenatico (Forlì-Cesena)

SCARAVELLI D.
Gruppo Grandi Vertebrati Pelagici, Corso di Laurea in Acquacoltura ed Igiene delle Produzioni Ittiche, Dipartimento Scienze Mediche Veterinarie, Università di Bologna, Viale Vespucci 2, 47042, Cesenatico (Forlì Cesena)

INSACCO G.
Sicilian Wildlife Fund, Centro Regionale Recupero Fauna Selvatica e Tartarughe Marine, Via Gen. Girlando 2, 97013, Comiso (Ragusa)

ZANGRILLI M.P.
Gruppo Grandi Vertebrati Pelagici, Corso di Laurea in Acquacoltura ed Igiene delle Produzioni Ittiche, Dipartimento Scienze Mediche Veterinarie, Università di Bologna, Viale Vespucci 2, 47042, Cesenatico (Forlì Cesena)

NOVELLETO A.
Dipartimento di Biologia,
To cite this article:

Morphology vs Genetics: the hybrid origin of a sea turtle disproved by DNA

L. GAROFALO1,2, A. ZACCARONI1, D. SCARAVELLI1, G. INSACCO1, M.P. ZANGRILLI1, A. NOVELLETTO1 and R. LORENZINI2

1 Centro di Referenza Nazionale per la Medicina Forense Veterinaria. Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, Via Tancia 21, 02100 Rieti, Italy
2 Dipartimento di Biologia, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, s.n.c., 00133, Roma, Italy
3 Gruppo Grandi Vertebrati Pelagici, Corso di Laurea in Acquacoltura ed Igiene delle Produzioni Ittiche, Dipartimento Scienze Mediche Veterinarie, Università di Bologna, Viale Vespucci 2, 47042, Cesenatico (Forlì-Cesena), Italy
4 Sicilian Wildlife Fund, Centro Regionale Recupero Fauna Selvatica e Tartarughe Marine, Via Gen. Giurlando 2, 97013, Comiso (Ragusa), Italy

Corresponding author: luisa.garofalo@uniroma2.it

Received: 10 February 2012; Accepted: 30 June 2012; Published on line: 7 September 2012

Abstract

A putative hybrid sea turtle juvenile was evaluated with discriminant DNA markers. When compared with standard values for sea turtles, the general morphological features assigned the specimen to Caretta caretta, while the shape and coloration of the head and the beak profile fell within the Eretmochelys imbricata range; the front flippers were instead like those of a Chelonia mydas. Moreover, prefrontal scale number was outside the putative parental species’ ranges. The mitochondrial D-loop sequence was from C. caretta, and matched haplotype CC-A2.1, the most common in the Mediterranean. Sequence profiles at three nuclear loci with species-specific substitutions (Cmos, BDNF and R35) revealed only C. caretta variants, thus excluding that the individual was an F1 hybrid. This study highlights the importance of integrating different methodological approaches to understand reproductive animal biology and to set the boundaries for specific morphological traits. In particular, we propose the genetic analysis of a new combination of mitochondrial and nuclear markers as a standard procedure which can be adopted in the identification of sea turtle hybrids.

Keywords: Genetics, hybrid, morphology, mtDNA, nuclear DNA, sea turtle.

Inter-specific hybridization in sea turtles has been reported for the Pacific and the Atlantic, but it was never documented for the Mediterranean. In this latter basin three species are usually present: the most common is the loggerhead turtle (Caretta caretta), followed by the green turtle (Chelonia mydas), found mainly in the eastern Mediterranean, while the least frequent is the leatherback turtle (Dermochelys coriacea). Two other species have been occasionally observed in central-western Mediterranean waters: the hawksbill (Eretmochelys imbricata) and the Kemp’s ridley (Lepidochelys kempi) turtles (Casale & Margaritoulis, 2010). Hybrids C. caretta x C. mydas, C. mydas x E. imbricata, C. caretta x E. imbricata, L. kempii x C. caretta, L. olivacea x E. imbricata and L. olivacea x C. caretta are all reported in the literature. The study of these hybrid individuals were based either on morphological analysis alone (Kamezaki et al., 1983, 1996; Frazier, 1988; James et al., 2004), or the use of allozymes (Wood et al., 1983; Coincecão et al., 1990), or the genetic analysis of the mitochondrial (mt) and single-copy nuclear (scn) DNA with Restriction Fragment Length Polymorphisms (RFLPs) (Karl et al., 1995; Seminoff et al., 2003; Witzell & Schmid, 2003), or the combined use of the morphological and mtDNA analyses (Lara-Ruiz et al., 2006, Reis et al., 2010).

In August 2003 a juvenile sea turtle (Curved Carapace Length = 40 cm) was found stranded in Torre Faro (Messina, Sicily) and rescued by the “Centro Regionale Recupero Fauna Selvatica e Tartarughe Marine” (Comiso, Ragusa). The specimen, nicknamed Matilde, was in good general health conditions and, at a glance, it seemed a loggerhead turtle (Fig. 1). Going into more depth, its morphology and lepidosis departed from those typical for C. caretta. In order to assess whether the turtle was the result of hybridization, a double step procedure was carried out, which included morphometric evaluation and genetic typing.

Morphological traits of the animal were recorded and compared with standard values for sea turtles (Table 1) (Márquez, 1990; Wyneken, 2001; Kamezaki, 2003). Most of Matilde’s features were in line with those commonly observed in C. caretta. Variations were neverthe-
less found in the shape and coloration of the head and in the beak profile, resembling those of *E. imbricata* (Fig. 2). Moreover, the animal showed only one claw on the front flippers, like *C. mydas* and unlike both *C. caretta* and *E. imbricata*. Finally, the number of prefrontal scales did not fit the value for any of the putative parental species (Fig. 3). In summary, the morphological analysis alone could not determine whether the individual was a hybrid and, if so, which parental species (*E. imbricata* or *C. mydas*) contributed in addition to *C. caretta*.

In order to determine both maternal and paternal contribution to Matilde’s genome, genetic analysis consisting in the characterization of maternally inherited mtDNA and biparentally inherited nuclear loci was carried out. DNA was extracted from whole blood using the QIAamp DNA Blood Mini Kit (QIAGEN). We amplified and sequenced a fragment of 815 bp in the mitochondria.

Table 1. Morphological features of the putative hybrid compared to those usually reported for *E. imbricata*, *C. mydas* and *C. caretta*.

<table>
<thead>
<tr>
<th>Morphological features</th>
<th>E. imbricata</th>
<th>C. mydas</th>
<th>C. caretta</th>
<th>Matilde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefrontal scales</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marginal scutes</td>
<td>12</td>
<td>11</td>
<td>12 - 13</td>
<td>12</td>
</tr>
<tr>
<td>Supracaudal scutes</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Intergular scute</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Postanal scute</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Nuchal scute</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Lateral scutes</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Vertebal scutes</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Inframarginal scutes</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Beak</td>
<td>upper part strongly curved</td>
<td>rounded, large</td>
<td>rounded</td>
<td>upper part strongly curved</td>
</tr>
<tr>
<td>Anterior claws</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
The mitochondrial sequence was unequivocally from *C. caretta*. In particular, it matched the most common Mediterranean haplotype CC-A2.1, shared by individuals from nesting colonies of this basin, and also present at Mediterranean foraging areas sea turtle hybrids originate in the basin. Nevertheless, the possibility to encounter in the Mediterranean Sea. Probably, this is due to the rare occurrence of species other than *C. caretta* in the basin. Nevertheless, the possibility to encounter in Mediterranean foraging areas sea turtle hybrids originated there, as well as hybrid individuals of Atlantic origin.

Although in the past hybridization among sea turtles has been reported sometimes for the Atlantic Ocean and seldom for the Pacific one, this phenomenon remains still unobserved in the Mediterranean Sea. Probably, this is due to the rare occurrence of species other than *C. caretta* in the basin. Nevertheless, the possibility to encounter in Mediterranean foraging areas sea turtle hybrids originated there, as well as hybrid individuals of Atlantic provenance, cannot be excluded.

This study highlights the importance of integrating different methodological approaches to understand reproductive animal biology. In particular, genetics is a valid tool in the identification of hybrids, and is capable to prove/disprove hypotheses based on morphology.

As compared to the less expensive RFLPs, sequences from mitochondrial and nuclear markers do not require

Table 2. Summary of the nuclear loci analysed, gene lengths, number of sea turtle species (out of the three putative parents hereby considered) distinguishable with each marker and diagnostic variations for each gene. Abbreviations: C.c. = Caretta caretta; E. i. = Eretmochelys imbricata; C. m. = Chelonia mydas.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Gene length (bp)</th>
<th>Distinguishable species</th>
<th>Nº of diagnostic variations</th>
<th>Transitions</th>
<th>Transversions</th>
<th>Three-state sites</th>
<th>Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>R35</td>
<td>942</td>
<td>C.c. vs E. i. vs C. m.</td>
<td>42</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Cmos</td>
<td>602</td>
<td>C.c. vs E. i. vs C. m.</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>BDNF</td>
<td>718</td>
<td>C.c. and E. i. vs C. m.</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
any reference samples of the putative parental species for comparison, but can be simply matched to the already web-registered sequences. Furthermore, besides the identification of the maternal species, mtDNA haplotypes can also help in the assignment of unknown individuals to specific source populations. Finally, the three nuclear markers chosen contain on the whole 53 informative positions (Table 2), which allow distinction among the three species considered. In summary, we propose the new methodological approach hereby tested as a standard procedure to be adopted in the identification of sea turtle hybrids, which can also be extended to other crosses between species not analysed in this work.

Acknowledgements

We would like to thank all the staff at the rescue and rehabilitation center “Centro Regionale Recupero Fauna Selvatica e Tartarughe Marine” (Comiso, Ragusa). We are also grateful to Sibelle Torres Villaca for her precious suggestions in the selection of molecular markers. An earlier version of the manuscript was greatly improved thanks to valuable comments of four anonymous referees. Work supported by funds of the Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana.

References

