First report of the North Atlantic myrionematoid brown alga Ulonema rhizophorum Foslie (Phaeophyceae, Chordariaceae) in the Mediterranean Sea

TASKIN E.
https://doi.org/10.12681/mms.330
First report of the North Atlantic myrionematoid brown alga

Ulonema rhizophorum Foslie (Phaeophyceae, Chordariaceae) in the Mediterranean Sea

E. TAŞKIN

Department of Biology, Faculty of Arts and Sciences, Celal Bayar University, Muradiye-Manisa 45140, Turkey

Corresponding author: ergun.taskin@cbu.edu.tr

Received: 29 June 2012; Accepted: 30 January 2013; Published on line: 6 March 2013

Abstract

The myrionematoid brown alga _Ulonema rhizophorum_ Foslie (Phaeophyceae, Chordariaceae) is reported for the first time from the Mediterranean Sea. This species was collected growing as an epiphyte on _Ulva_ sp. from the Dardanelles (Sea of Marmara, Turkey) in the midlittoral zone. _Ulonema rhizophorum_ is characterized by downwardly produced rhizoids from the basal system. A key to the Mediterranean related genera of _Ulonema_ is provided.

Keywords: Brown algae, Mediterranean Sea, seaweeds, Turkey, _Ulonema rhizophorum_.

Introduction

The monospecific genus _Ulonema_ was established by Foslie (1894: 131), with the species _Ulonema rhizophorum_ Foslie from Norway. Foslie (1894) reported that this species was growing on the red algal host _Dumontia filiformis_ (Hornemann) Greville [=_Dumontia contorta_ (S.G. Gmelin) Ruprecht]. _Ulonema_ closely resembles another myrionematoid genus, namely _Myrionema_ Greville, but it differs from that in having rhizoids arising from the basal system (Fletcher, 1987; Taşkın et al., 2006). _U. rhizophorum_ has been recorded from the north-eastern Atlantic Ocean [Ireland and Great Britain (Fletcher, 1987), the Faroes (Nielsen & Gunnarsson, 2001), France (Dizerbo & Herpe, 2007), The Netherlands (Stegenga & Mol, 1983), Norway (Jaasund, 1951, 1965), Sweden (Kylin, 1947)], Germany [Schories _et al._, 1997; as _Ulonema rhizophorum_ (Foslie) Sauvageau] and the north-western Atlantic Ocean (Mathieson & Hehre, 1986).

Six species encompassing four genera of the myrionematoids have previously been recorded to occur in Turkey (Taşkın _et al._, 2008): _Microspongium globosum_ Reinke, _Myrionema furcatum_ Jaasund, _M. orbiculare_ J. Agardh, _M. strangulans_ Greville, _Protectocarpus speciosus_ (Bergesen) Kornmann and _Compassoma saxicola_ (Kuckuck) Kuckuck. This paper reports the first record of a seventh species, namely, _Ulonema rhizophorum_, in Turkey. _U. rhizophorum_ was probably introduced into the Sea of Marmara (Turkey) by aquaculture or ballast water. The Dardanelles is a very important strait in the Mediterranean Sea; a transition zone for ships travelling to the Black Sea. Recently, 33 taxa - at specific and infra-specific level - of alien marine macrophytes were reported to occur on the coasts of Turkey (Taşkın _et al._, 2011a; Taşkın, 2012). However, the species could be native and have been overlooked in previous studies because of its close resemblance with _Myrionema strangulans_.

Materials and Methods

Ulonema rhizophorum was collected in the midlittoral zone, as an epiphyte on the green alga _Ulva_ sp. from the Dardanelles (Sea of Marmara, Turkey) in the midlittoral zone. _Ulonema rhizophorum_ is characterized by downwardly produced rhizoids from the basal system.

Results

Ulonema rhizophorum Foslie 1894: 132, pl. III, figs 11-17.

Type locality: Lyngöy, Tromsö, Norway (Foslie, 1894).

Thalli were epiphytic on the green alga _Ulva_ sp., forming light brown circular spots up to 1mm in diameter (Fig. 1). In a squash preparation, the thallus consists of a monostromatous basal layer of cells, with basal...
cells measuring 10-20µm long and 7-8µm wide; erect filaments simple or rarely branched, uniseriate, 60-80µm long (Figs 2 & 3); cells of the erect filaments 15-20µm long, 5-6µm wide, each one contains one or two plate-like chloroplasts; downwardly produced rhizoids from the basal system present, single or multicellular (Fig. 2); phaeophycean hairs present, arising from the basal layer; unilocular sporangia common, spherical to pyriform, measuring 20-25 x 35-45µm, borne directly from the basal cells, sessile or on one-celled stalks at the base of the paraphyses (Figs 2 & 3); plurilocular sporangia were not observed in our plants.

This species was collected from the Dardanelles (40°01’03″N; 26º19’17″E), Sea of Marmara, Turkey in March 2012; water temperature was 13°C and salinity of 25‰. The collection site is characterized partially by both sandy and stony bottoms. Other algal species that were present at the collection site were: *Ceramium ciliatum* (J. Ellis) Ducluzeau, *Cladophora* spp., *Codium fragile* (Suringar) Hariot subsp. *fragile*, *Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier, *Corallina elongata* J. Ellis & Solander, *Dictyota dichotoma* (Hudson) J.V. Lamouroux, *Ectocarpus siliculosus* (Dillwyn) Lyngbye, *Feldmannia irregularis* (Kützing) G. Hamel, *Giraudia sphacelarioideae* Derbès & Solier, *Gracilaria gracilis* (Stackhouse) Steentoft, *Halopteris scoparia* (L.) Sauvageau, *Halothrix lumbricalis* (Kützing) G. Hamel, *Laurencia obtusa* (Hudson) J.V. Lamouroux, *Myrionema stranguulans* Greville, *Padina pavonica* (L.) Thivy, *Punctaria latifolia* Greville, *Scytosiphon lomentaria* (Lyngbye) Link, *Strigaria attenuata* (Greville) Greville, and *Ulva* spp., as well as the seagrasses *Posidonia oceanica* (L.) Delile and *Zostera* sp.

Discussion

Turkish plants identified here as *Ulonema rhizophorum* strongly resemble the figures of the species provided by Foslie (1894, Figs 11-17). Plurilocular sporangia were not observed by Foslie (1894), but later Sauvageau (1897), Hamel (1935) and Fletcher (1987) showed that plurilocular sporangia are present in this species. However, they were absent in our specimens.

Ulonema rhizophorum has been assigned to the Myrionermae (Sauvageau, 1897; Hamel, 1935; Fletcher, 1987). Recently, this species was assigned to the Chordariaeae with other myrionematoids (*Myrionema* Greville, *Microspongium* Reinke) (Guiry & Guiry, 2012).

The genus *Ulonema* shows similarities to the other myrionematoid genera *Myrionema* and *Microspongium*, but differs from those in having irregularly spreading basal filaments and downwardly produced branched rhizoidal filaments from the basal system (Foslie, 1894; Sauvageau, 1897; Fletcher, 1987; Taşkın et al., 2006). More
specifically, *U. rhizophorum* is similar to *Myrionema strangulans* (Fig. 4) as regards the monostromatic basal layer and shape of unilocular sporangia, but it differs from that species by its downwardly produced rhizoidal filaments from the basal cells, the rarely branched erect filaments (erect filaments are simple in *M. strangulans*) and by the uniseriate plurilocular sporangia (occasionally biseriate in *M. strangulans*).

Some authors have further discussed the possible conspecificity between *Ulonema rhizophorum* and *Myrionema strangulans* (Fletcher, 1987). There is a need for further experimental and culture studies to test this possibility. Loiseau (1972) described two microscopic discs that macroscopic filamentous thalli occur in the life history of *M. strangulans*. Pedersen (1984) included *Myrionema*-like microthalli in the life history of *Giraudiaceae* and *Chordariaceae*. Recently, *Myrionema*-like microthalli of *Cladosiphon* were observed in nature from Turkey by Taşkin et al. (2011b).

Jaasund (1951) recognized *Ulonema rhizophorum* from Norway, and he claimed that “it appears desirable to keep it as a separate species until it has been cultured”. Jaasund (1951) described two new species, *Myrionema irregularare* Jaasund, which grew on the surface of *Scytosiphon lomentaria* (Lynghy) Link, and *Myrionema furcatum* Jaasund, which grew on the surface of *Dumontia incrassata* (O.F. Müller) J.V. Lamouroux (=*Dumontia contorta* (S.G. Gmelin) Ruprecht). *M. irregularare* was considered as a stage of *Myriotrichia filiformis* Harvey (=*Myriotrichia clavaeformis* Harvey) by Athanasiadis (1996). *Myrionema furcatum* differs from *Ulonema rhizophorum* in plurilocular sporangia (on the upper part of the erect filaments, biseriate or uniseriate and furcate in *M. furcatum* (Jaasund, 1951), sessile or shortly stalked on basal layer, uniseriate and simple in *U. rhizophorum* (Fletcher, 1987)), by habit (*M. furcatum* exhibits a papillary under-side of *Dumontia*, while *U. rhizophorum* develops real rhizoids), and by the cell size of the erect filaments [8-12]μm wide in *M. furcatum* (Jaasund, 1951), 6-9μm wide in *U. rhizophorum* (Foslie, 1894)]. Jaasund (1951) reported that the shape of the plurilocular sporangia of *M. furcatum* is similar to that of *Stereobnema fasciculatum* Thuret. The plurilocular sporangia were abundant and the unilocular sporangia were very rare in *M. furcatum*, while unilocular sporangia were abundant in *U. rhizophorum* (Jaasund, 1965). Taşkin et al. (2008) reported that *M. furcatum* should be confirmed in Turkey and the Mediterranean Sea.

Molecular analysis and culture studies comparing the Mediterranean material of *Ulonema* and the Atlantic species should be carried out for progress. *Ulonema rhizophorum* and *Myrionema strangulans* also need experimental and culture studies to investigate the microthalli of *Cladosiphon*.

Fig. 4: *Myrionema strangulans*, monostromatic basal layer, simple filaments and unilocular sporangia.

Key to the Mediterranean Myrionematoideae related with *Ulonema*:

1. Basal layer monostromatic or distromatic ……………
 Chiloneoma
2. Presence of irregularly spreading basal filaments and downwardly produced branched rhizoidal filaments from the basal system *Ulonema*
3. The erect filaments simple or pseudodichotomously branched *Microspongium*
3. The erect filaments simple or secundly branched *Myrionema*

Acknowledgements

I am grateful to Prof. Michael J. Wynne (University of Michigan Herbarium, USA) and the late Prof. Poul M. Pedersen (Copenhagen University, Denmark) for critically reviewing the manuscript. A part of this study has been supported by TOTAL FOUNDATION research grant for “Brown algal biodiversity and ecology in the Eastern Mediterranean Sea” led by Prof. Christos Katsaros (Greece).

References

Pedersen, P.M., 1984. Studies on primitive brown algae (Fucophyceae). Opera Botanica, 74, 1-76.

Taşkın, E., Pedersen, P.M., Öztürk, M., 2011b Observations on the some marine brown algae in nature from Turkey. European Journal of Phycology, 46 (Suppl.1), 121.