Feeding and ecomorphology of three clupeoids in the N Aegean Sea

KARACHLE P. Hellenic Centre for Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavyssos Attiki

STERGIOU K. Aristotle University of Thessaloniki, School of Biology, Department of Zoology, Laboratory of Ichthyology, Box 134, 54124, Thessaloniki

http://dx.doi.org/10.12681/mms.350

Copyright © 2014

To cite this article:

Feeding and ecomorphology of three clupeoids in the North Aegean Sea

P. K. KARACHLE12 and K. I. STERGIOU2

1 Hellenic Centre for Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavissos Attiki, Greece
2 Aristotle University of Thessaloniki, School of Biology, Department of Zoology, Laboratory of Ichthyology, Box 134, 54124, Thessaloniki, Greece

Handling Editor: Argyro Zenetos

Received: 6 February 2013; Accepted: 12 June 2013; Published on line: 30 July 2013

Abstract

This study examines the feeding habits of anchovy (Engraulis encrasicolus), sardine (Sardina pilchardus) and round sardinella (Sardinella aurita). The results are combined with previously published information on feeding-related morphological features (i.e. mouth area, intestine length and tail area) in order to explore morphological affinities between species and the effect of ecomorphology on their co-existence. These species were mainly zooplanktivorous and no dietary differences were found with sex and season. Anchovy preyed mainly on Crustacea larvae, whereas sardine and round sardinella on Copepoda. In the majority of cases (>90%), the individual fractional trophic level of all species ranged between 3.0 and 3.5, classifying them as omnivores with preference to animals. The feeding-related morphological features differed between anchovy and the two other species, whereas only intestine length differed between sardine and round sardinella. The fact that the diet and morphology of round sardinella show a greater resemblance to those of sardine further supports the hypothesis that round sardinella is a particulate feeder, as is sardine. Hence the three species tend to exploit the same food resources differently throughout the year. Thus, they make best use of the environment and its resources, in order to avoid competition and achieve optimum feeding conditions throughout their life cycles.

Keywords: Engraulis encrasicolus, Sardina pilchardus, Sardinella aurita, seasonal feeding, diet, ecomorphology.

Introduction

The small pelagic European anchovy (Engraulis encrasicolus (L., 1758)), European pilchard or sardine (Sardina pilchardus (Walbaum, 1792)) and round sardinella (Sardinella aurita Valenciennes, 1847) are distributed throughout the Mediterranean Sea (Froese & Pauly 2012: www.fishbase.org), and are highly commercial, both in terms of landings and economic value (e.g. Dulčić, 1997; Stergiou et al., 1997; Bellido et al., 2000; Tsikliras et al., 2005a). The populations of small pelagics are characterized as ‘wasp-waist’, being considered as crucial components of pelagic ecosystems (Cury et al., 2000). They exercise both top-down and bottom-up control on food webs (Cury et al., 2000), since they constitute the intermediate link in the flow of energy from lower to higher trophic levels (e.g. Tudela & Palomera, 1997; Palomera et al., 2007; Lomiri et al., 2008; Preciado et al., 2008; Espinoza et al., 2009; Coll & Llibralto, 2012).

With respect to their diet and feeding habits, available studies refer to adult feeding in the Atlantic (e.g. anchovy: Plounevez & Champalbert, 1999; sardine: Varela et al., 1988; round sardinella: Pham Thuoc & Szyupa, 1973; Nieland, 1982), the Baltic Sea (anchovy: Schaber et al., 2010), the western Mediterranean (e.g. anchovy: Tudela & Palomera, 1997; Plounevez & Champalbert, 2000; Bacha & Amara, 2009), the central Mediterranean (e.g. anchovy: Borrne et al., 2009; round sardinella: Lomiri et al., 2008), the eastern Mediterranean (e.g. anchovy: Nikolioudakis et al., 2012; round sardinella: Makour 2012) and the Black Sea (e.g. anchovy: Mikhman & Tomanovich, 1977; Sirotenko & Danilevskiy, 1977; Budnichenko et al., 1999). Information is also available on larval feeding (anchovy: Conway et al., 1998; Tudela et al., 2002; sardine: Dulčić, 1999; Munuera Fernández & González-Zuíros, 2006; Voss et al., 2009; Morote et al., 2010; Borne et al., 2013; round sardinella: Moreno & Castro, 1995; Morote et al., 2008). As regards the Greek seas, the only studies concerning their diet are those of Petrakis et al. (1993), Sever et al. (2005) and Nikolioudakis et al. (2011, 2012) on sardine, Catalán et al. (2010) on larval anchovy, and Tsikliras et al. (2005b) on seasonal diet of round sardinella. Yet, the feeding habits of these three species have never been examined in a comparative manner and in relation to their ecomorphology.

In this report, we explored whether the feeding habits of these three small pelagic species, combined with ecomorphology and trophic position, affect their coexist-
ence and potential competition, especially in the light of climate change that favours the expansion of round sardinella to northern latitudes (e.g. Tsikliras et al., 2005a, b; Sabates et al., 2006; Lomiri et al., 2008). To this end we: (a) studied the diet and the feeding habits of anchovy, sardine and round sardinella in the Northern Aegean Sea, their main fishing ground in Greek waters (e.g. Stergiou et al., 1997; 2011), (b) used published information on feeding related morphometrics in order to evaluate the effect of morphometry on diet, and (c) compiled the available literature on their feeding habits and used it to calculate their fractional trophic levels throughout their distribution range. Such information is of great importance for understanding the role and position of these species in the ecosystems, as well as interspecific competition for the same food resources (e.g. Cunha et al., 2005; Tsikliras et al., 2005b; Garrido et al., 2007).

Materials and Methods

Samples were collected from the N Aegean Sea with purse-seiners, using artificial light, on a seasonal basis (spring 2001-winter 2006). In the case of round sardinella, additional samples from professional gillnets, set in the same area and during the same time period, were used. The fish were preserved in 10% formalin and total length (TL, 0.1 cm) was measured at the laboratory; sex was determined by visual examination of the gonads. The digestive tract was removed and stomachs were isolated. For each stomach separately, the contents were analyzed, using a stereomicroscope and the vacuity coefficient (VC) was estimated as the percentage of empty stomachs. Each food item was identified to the lowest possible taxonomic level. Subsequently, each food category was weighed (0.001 g) and its weight was expressed as a percentage of total stomach content (Hyslop, 1980), since quantitative approaches in diet analyses (i.e. estimation of weight and/or volume of food items) are more appropriate for estimating fractional trophic level (τ) (e.g. Stergiou & Karpouzi, 2002). The presence of phytoplankton was recorded using a microscope but was not weighed due to the small quantities found. An extended account on samplings and stomach content analysis is given in Karachle & Stergiou (2008). Additionally, τ per individual per species (τj) was estimated using TrophLab (Pauly et al., 2000) and the mean values were tested for differences between species (t-test, Zar, 1999).

The following equation was used for the estimation of τj (Pauly et al., 2000):

\[\tau_j = 1 + \sum_{i=1}^{G} DC_{ij} \times \tau_i, \]

where DCij is the weight contribution of prey item j in the diet of stomach i; τj is the trophic level of prey item j and G is the number of prey species included in stomach i.

The matrix of the percentage weight contribution of each prey category per species/season/sex was constructed (11 columns x 64 rows). This matrix was then transformed to a triangular one, using the Bray-Curtis similarity index, and subjected to clustering (group-average linking) and multi-dimensional scaling (MDS) multivariate techniques (Field et al., 1982). SIMPER analysis (SIMilarity PERcentages) was used to identify the food items responsible for the formation of groups (Clarke & Gorley, 2001).

Finally, in order to explore the effect of morphometry on dietary preferences between the three species, the relationships of morphologic characteristics related to feeding [i.e. mouth area (MA), intestine length (GL) and tail area (TA)] with TL were compared with analysis of covariance (ANCOVA, Zar, 1999). The above mentioned relationships have been presented elsewhere (MA: Karachle & Stergiou, 2011; GL: Karachle & Stergiou, 2010a; TA: Karachle & Stergiou, 2012).

Finally, three on-line databases (i.e. Web of Science, Scopus and Google Scholar) were used in order to collect previously published data on the feeding habits of the three species. The following information was tabulated: (a) study area and time period, (b) length measurement and range, (c) number of stomachs examined, (d) method of stomach content analysis, and (e) main food items. Based on the reported diet composition, τ was estimated whenever possible, using the corresponding routine of TrophLab (Pauly et al., 2000) (i.e. the “Diet composition” routine, when volumetric or weight data were available, and the “Food item” routine, when frequency or numerical data were presented by the original authors).

Results

Overall, the stomach content of 759, 752 and 230 individuals of anchovy, sardine and round sardinella, respectively, was examined. The size of the specimens ranged between 6.7 and 16.2 cm [mean ± standard error (SE) = 11.4 ± 0.05 cm; median = 11.7 cm] for anchovy, between 7.6 and 16.7 cm (mean ± SE = 12.7 ± 0.05 cm; median = 12.7 cm) for sardine, and between 8.4 and 23.9 cm (mean ± SE = 17.2 ± 0.21 cm; median = 16.7 cm) for round sardinella. The number of empty stomachs was higher for round sardinella (VC = 68.7; Table 1) than that for anchovy and sardine (VC = 31.5% and 51.1%, respectively; Table 1).

For anchovy, VC displayed the highest and lowest values in autumn (42.4%) and spring (25.1%), respectively (Table 1). This species included 45 different food items in its diet, with Crustacean larvae [53.3%; dominant larval groups: Brachyura and Euphasiacea (Table 1, Fig. 1)] being the most important taxon, in terms of weight contribution.

For sardine, VC displayed the highest value in spring
Forty three different food items were identified in the stomach contents, with Copepoda being the most numerous. Copepoda (42.9%) and Brachyuran larvae (39.9%) had the highest % weight contribution to the overall diet of sardine (Table 1, Fig. 1).

Round sardinella displayed high VC values, ranging from 64.3% in summer to 80.0% in autumn (Table 1). The analysis of the stomach contents revealed 31 different food items, and Copepoda had again the highest contribution. Overall, in the diet of round sardinella, Copepoda (50.0%) and Appendicularia (22.1%) displayed the highest % weight contribution (Table 1, Fig. 1).

The difference of feeding habits between the sexes was rather small in all species (Table 2).

The range of the estimated τ_i was 2.0-4.5 [mean ± standard deviation (SD): 3.17 ± 0.30] for anchovy, 2.66-4.5 (mean ± SD: 3.11 ± 0.29) for sardine and 3.0-4.5 (mean ± SD: 3.27 ± 0.34) for round sardinella (Fig. 2). For anchovy, the majority (91.7%) of τ_i values ranged between 3.00 and 3.45, with only six values (1.2%) below 3.00 and 37 values (7.1%) above 3.45 (Fig. 2). Accordingly, for sardine 93.8% of τ_i values ranged between 3.00 and 3.40, with only three values (0.8%) being below and 20 values (5.4%) above this range (Fig. 2). For round sardinella, the majority of τ_i values (91.7%) ranged between 3.00 and 3.53, with only six values (8.3%) exceeding this range (Fig. 2). The mean τ_i differed significantly (ANOVA: p < 0.01) between the three species.

Cluster analysis revealed the formation of four groups, at the 25.20% level of similarity (Fig. 3): (a) Group I consisted of round sardinella in summer, (b) Group II consisted of sardine and anchovy in summer, (c) Group III consisted of sardine in winter and round sardinella in spring and autumn, and (d) Group IV consisted of sardine in autumn and spring and anchovy in spring, autumn and winter. Food items responsible for the dissimilarities among the four groups according to

Fig. 1: Main prey items of (a) the European anchovy (*Engraulis encrasicolus*), (b) sardine (*Sardina pilchardus*), and (c) round sardinella (*Sardinella aurita*), totally, in spring (SP), summer (SU), autumn (AU), winter (WI), males (m) and females (f) from the N-NW Aegean Sea, Greece, spring 2001- winter 2006.
Table 1. Food items and their contribution (expressed as % wet weight) per season for *Engraulis encrasicolus*, *Sardina pilchardus* and *Sardinella aurita*, N-NW Aegean Sea, Greece, spring 2001 - winter 2006. SP=spring; SU=summer; AU=autumn; WI=winter; N.i.=not identified/digested; N=number of individuals; VC=vacuity coefficient; TL=total body length; τ ± SE=fractional trophic level ± standard error. Asterisk (*) denotes presence of a food item in the diet with a percentage of <0.1.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>E. encrasicolus</th>
<th>S. pilchardus</th>
<th>S. aurita</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP</td>
<td>SU</td>
<td>AU</td>
<td>WI</td>
</tr>
<tr>
<td>Detritus</td>
<td>3.4</td>
<td>1.9</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Microalgae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennales</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinophyceae</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proorocentrum spp.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ageisporangia</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Phanerogama</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Cymodoceae</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polydactyla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.i. Polychaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteropoda</td>
<td>*</td>
<td>0.4</td>
<td>7.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Bivalvia</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia larvae</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalopoda</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladocera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eudiadnes spp.</td>
<td>*</td>
<td>*</td>
<td>0.1</td>
<td>*</td>
</tr>
<tr>
<td>Penilia spp.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Podon spp.</td>
<td></td>
<td>0.1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia spp.</td>
<td>2.8</td>
<td></td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Aromocarae patersoni</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candacia spp.</td>
<td>3.8</td>
<td>0.2</td>
<td>*</td>
<td>0.9</td>
</tr>
<tr>
<td>Candacia armata</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candacia simplex</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropages spp.</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropages typicus</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clausocalanus spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycae spp.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Corycaeus limbatus</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycella spp.</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Euchaeta hebes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harpacticoida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivisia spp.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsetella spp.</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Nanocalanus minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oithona spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oenops spp.</td>
<td>*</td>
<td>0.1</td>
<td>0.1</td>
<td>*</td>
</tr>
<tr>
<td>Sapphirina spp.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapphirina bicuspidata</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 1

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Sardina pilchardus</th>
<th>Sardinella aurita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP</td>
<td>SU</td>
</tr>
<tr>
<td>Sapphirina migromaculata</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Temora stylifera</td>
<td>5.8</td>
<td>0.4</td>
</tr>
<tr>
<td>n.i. Copepoda</td>
<td>0.6</td>
<td>*</td>
</tr>
<tr>
<td>Squilla spp. larvae</td>
<td>4</td>
<td>43.3</td>
</tr>
<tr>
<td>Zoarhippocampa brevis larvae</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>*n.i. Copepoda</td>
<td>5.8</td>
<td>45.7</td>
</tr>
<tr>
<td>*n.i. Squilla</td>
<td>0.6</td>
<td>*</td>
</tr>
<tr>
<td>Sardina pilchardus</td>
<td>4</td>
<td>43.3</td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sardina pilchardus</td>
<td>3.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>2.2</td>
<td>1.2</td>
</tr>
<tr>
<td>*n.i. Pisces</td>
<td>2.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Others</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TL range (cm)
- 8.6-16.2
- 10.3-16.0
- 8.5-14.0
- 16.7-16.0
- 17.8-16.8
- 9.7-16.7
- 10.4-16.5
- 12.7-16.7
- 12.1-23.9
- 8.4-23.7
- 7.9-16.7
- 12.1-23.9
- 8.4-20.0

TL mean ± SE (cm)
- 11.5±0.09
- 12.0±0.06
- 13.0±0.17
- 10.7±0.09
- 11.4±0.05
- 12.2±0.10
- 13.0±0.10
- 12.9±0.12
- 12.7±0.10
- 12.7±0.05
- 17.0±0.56
- 16.3±0.25
- 19.9±0.20
- 17.2±0.21

VC (%)
- 25.3
- 35.8
- 42.4
- 30.6
- 31.5
- 58.6
- 50.8
- 41.3
- 50.0
- 51.1
- 64.4
- 64.3
- 80.0
- 68.7

τ ± SE in FishBase
- 3.19±0.35
- 3.58±0.53
- 3.22±0.34
- 3.11±0.30
- 3.38±0.44
- 3.12±0.29
- 3.56±0.52
- 3.12±0.32
- 3.00±0.06
- 3.14±0.29
- 3.58±0.57
- 3.71±0.57
- 3.19±0.32
- 3.20±0.32

Values from Karachle & Stergiou (2008)

Values from FishBase (Froese & Pauly, 2012)
Table 2. Food items and their contribution (expressed as % wet weight) per sex for *Engraulis encrasicolus*, *Sardina pilchardus* and *Sardinella aurita*, N-NW Aegean Sea, Greece, spring 2001- winter 2006. N.i.=not identified/digested; N=number of individuals; VC=vacuity coefficient; TL=total body length; τ ± SE=fractional trophic level ± standard error. Asterisk (*) denotes presence of a food item in the diet with a percentage of <0.1.

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Engraulis encrasicolus</th>
<th>Sardina pilchardus</th>
<th>Sardinella aurita</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
</tr>
<tr>
<td>Detritus</td>
<td>1.3</td>
<td>2.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Microalgae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinophyceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protenocentrum spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ageisosperma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phanerogama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymodocea spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>larvae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.i. Polychaeta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacostraca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteropoda</td>
<td>0.4</td>
<td>0.2</td>
<td>*</td>
</tr>
<tr>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia larvae</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Cephalopoda</td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereidida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereidida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achelata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achelata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartia spp.</td>
<td>1.2</td>
<td>*</td>
<td>1.2</td>
</tr>
<tr>
<td>Anomalovera patersoni</td>
<td></td>
<td>*</td>
<td>0.9</td>
</tr>
<tr>
<td>Candacia spp.</td>
<td>1.6</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Candacia armata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropages spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropages typicus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clasacalanus spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycaeus spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycaeus limbatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycella spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euchaeta hebes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harpacticoida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issis spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsetella spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanocalanus minor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onchopia spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncella spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapphirina spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapphirina bicuspidata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temora stylifera</td>
<td>0.4</td>
<td>*</td>
<td>0.1</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>8.0</td>
<td>3.5</td>
<td>46.4</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>0.3</td>
<td>0.1</td>
<td>*</td>
</tr>
<tr>
<td>Zoa Euphausia brevis</td>
<td>18.1</td>
<td>32.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Larvae</td>
<td>1.8</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Brachyura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corycytes cristivellatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphausia spinifrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maja squinado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portunus puber</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Metazoa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethusa mascarone</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Macropadia spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portunus puber</td>
<td>26.7</td>
<td>26.8</td>
<td>26.1</td>
</tr>
</tbody>
</table>

(continued)
SIMPER analysis are given in Table 3.

For the same TL, the MA for anchovy was larger than that of sardine and round sardinella, whereas GL and TA were smaller for anchovy compared to those of sardine, and in sardine smaller than that of round sardinella (Fig. 4). The GL-TL relationships (Fig. 4) of the three species differed significantly (ANCOVA: all cases p < 0.01).

In the case of MA-TL and TA-TL relationships (Fig. 4) the GL-TL relationships (Fig. 4) of the three species differed significantly (ANCOVA: all cases p < 0.01).

<table>
<thead>
<tr>
<th>TAXA</th>
<th>Engraulis encrasicolus</th>
<th>Sardina pilchardus</th>
<th>Sardinella aurita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Decapoda larvae</td>
<td>2.3</td>
<td>3.5</td>
<td>*</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>0.1</td>
<td>1.0</td>
<td>*</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>13.0</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Isopoda</td>
<td>*</td>
<td>*</td>
<td>0.1</td>
</tr>
<tr>
<td>Crustacea larvae</td>
<td>1.1</td>
<td>6.4</td>
<td>9.3</td>
</tr>
<tr>
<td>n.l. Crustacea</td>
<td>0.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>0.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chordata –Urochordata</td>
<td></td>
<td></td>
<td>12.7</td>
</tr>
<tr>
<td>Appendicularia</td>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>Chordata –Vertebrata</td>
<td></td>
<td></td>
<td>19.4</td>
</tr>
<tr>
<td>Pisces</td>
<td></td>
<td></td>
<td>26.5</td>
</tr>
<tr>
<td>eggs</td>
<td>15.6</td>
<td>6.7</td>
<td>6.1</td>
</tr>
<tr>
<td>larvae</td>
<td>16.7</td>
<td>16.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Armoglossus spp.</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sardina pilchardus</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.i. Pisces</td>
<td>0.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eggs</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>various</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

N | 389 | 370 | 391 |
TL range (cm)	7.2-16.2	6.7-14.8	7.6-16.5
TL mean ± SE (cm)	11.5±0.07	11.3±0.08	12.6±0.07
VC (%)	28.0	35.1	56.3
τ ± SE	3.40±0.43	3.36±0.45	3.16±0.30

1 values from Karachle & Stergiou (2008)

SIMPER analysis are given in Table 3.

For the same TL, the MA for anchovy was larger than that of sardine and round sardinella, whereas GL and TA were smaller for anchovy compared to those of sardine, and in sardine smaller than that of round sardinella (Fig. 4). The GL-TL relationships (Fig. 4) of the three species differed significantly (ANCOVA: all cases p < 0.01). In the case of MA-TL and TA-TL relationships (Fig. 4)

![Fig. 2](http://epublishing.ekt.gr) #: Box-whisker plots for fractional trophic level (τ), as they were estimated for each individual separately, for anchovy (*Engraulis encrasicolus*), sardine (*Sardina pilchardus*) and round sardinella (*Sardinella aurita*) from the N-NW Aegean Sea, Greece, spring 2001- winter 2006. The central box indicates the range of values representing the 50% of cases around the median (vertical lines); the whiskers (horizontal lines) show the range of the values and the cross (+) indicates the mean value. Right: relation of estimated τ and individual total length (TL).
Fig. 3: Cluster analysis for anchovy (Engraulis encrasicolus: A), sardine (Sardina pilchardus: S) and round sardinella (Sardinella aurita: R), based on their seasonal feeding habits (data from Table 1), from the N-NW Aegean Sea, Greece, spring 2001- winter 2006. AU=autumn, WI=winter, SP=spring, SU=summer.

Fig. 4: Relationships of total length (TL) and (a) mouth area (MA; from Karachle & Stergiou 2011), (b) intestine length (GL; from Karachle & Stergiou 2010a) and (c) tail area (TA; Karachle & Stergiou 2012) for anchovy (Engraulis encrasicolus: dashed line), sardine (Sardina pilchardus: solid line) and round sardinella (Sardinella aurita: dotted line). N=number of individuals, R²=coefficient of determination, SE_b=standard error of slope b.
there was a significant difference between anchovy and the two other species (ANCOVA: all cases \(p < 0.01 \)), whereas no significant difference was found between sardine and round sardinella (ANCOVA: \(p = 0.8309 \) and \(0.0911 \), for MA-TL and TA-TL relations respectively).

Information on the diet of the three species was found for 139 data sets, the majority of which concerned anchovy (68 data sets; Table 4) mainly in the Black and Azov Seas (26 data sets; Table 4), followed by round sardinella (43 data sets; Table 4). In half of the cases (70 data sets) sample size was not reported (Table 4). The estimated \(\tau \) values ranged from 2.18 ± 0.16 to 4.28 ± 0.74 (mean ± SD= 3.135 ± 0.30) for anchovy, from 2.00 ± 0.00 to 3.56 ± 0.52 (mean ± SD=3.058 ± 0.28) for sardine and 2.05 ± 0.03 to 3.71 ± 0.57 (mean ± SD=2.935 ± 0.39) for round sardinella (Table 4, Fig. 5). Finally, no variations were recorded between larval and adult \(\tau \), in all three species (Table 4).

Discussion

In this study, we examined the feeding habits by season and sex, for anchovy, sardine and round sardinella in the N Aegean Sea. Sardine in the study area included both phytoplankton and zooplankton in its diet, with Copepoda being the dominant food item in terms of weight. These results are in accordance with previous studies on sardines (e.g. Varela et al., 1988; Petrakis et al., 1993; Cunha et al., 2005; Sever et al., 2005; Espinoza et al., 2009). Anchovy, on the other hand, fed almost exclusively on zooplankton. With the exception of the Black Sea populations of anchovy that, in most cases examined, included phytoplankton in their diets (e.g. Mikhail & Tomanovich, 1978; Bulgakova, 1993; Budnichenko et al., 1999); anchovy in the Mediterranean (Tudela & Palomera, 1997;...
Table 4. Feeding habits of *Engraulis encrasicolus*, *Sardina pilchardus* and *Sardinella aurita*, according to the relevant literature. SP=sampling period; LM=length measurement; LR=length range (in cm); N=number of individuals; TL=total length; FL=fork length; τ ± SE=fractional trophic level ± standard error (estimated in the present study by the authors); F = frequency of occurrence; N= numerical percentage; W = percentage by weight; V = percentage by volume; VC=vacuity coefficient; IoP = index of preponderance; RA=relative abundance; IRI=index of relative importance.

<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>τ ± SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea of Azov</td>
<td>1933</td>
<td></td>
<td></td>
<td></td>
<td>Copepoda</td>
<td>W</td>
<td>3.2 ± 0.36</td>
<td>Mikhman & Tomanovich (1977; data of Smirnov)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1937</td>
<td></td>
<td></td>
<td></td>
<td>Copepoda</td>
<td>W</td>
<td>3.2 ± 0.32</td>
<td>Mikhman & Tomanovich (1977; data of AzChernRO)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1948</td>
<td></td>
<td></td>
<td></td>
<td>Copepoda, Polychaeta</td>
<td>W</td>
<td>3.1 ± 0.30</td>
<td>Mikhman & Tomanovich (1977; data of Logvinovich)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1949</td>
<td></td>
<td></td>
<td></td>
<td>Polychaeta, Copepoda</td>
<td>W</td>
<td>3.1 ± 0.32</td>
<td>Mikhman & Tomanovich (1977; data of Logvinovich)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4 ± 0.48</td>
<td>Mikhman & Tomanovich (1977; data of Kornilova)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3 ± 0.43</td>
<td>Mikhman & Tomanovich (1977; data of Kornilova)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1956</td>
<td></td>
<td></td>
<td></td>
<td>larvae of Cirripedia & Mollusca, others</td>
<td>W</td>
<td>3.3 ± 0.43</td>
<td>Mikhman & Tomanovich (1977; data of Kornilova)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1972</td>
<td></td>
<td></td>
<td></td>
<td>larvae of Cirripedia & Mollusca, Phytoplankton, larvae of Cirripedia & Mollusca</td>
<td>W, VC</td>
<td>3.2 ± 0.40</td>
<td>Mikhman & Tomanovich (1977)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1973</td>
<td></td>
<td></td>
<td></td>
<td>larva of Cirripedia & Mollusca</td>
<td></td>
<td>2.7 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>Black Sea</td>
<td>5-7/1973</td>
<td>8.1-13.0</td>
<td>405</td>
<td></td>
<td></td>
<td></td>
<td>3.3 ± 0.42</td>
<td>Sirotenko & Danilevskiy (1977)</td>
</tr>
<tr>
<td>NW Black Sea</td>
<td>25-26/5/1988</td>
<td>6.2-12.5</td>
<td>147</td>
<td></td>
<td>Copepoda, Copepoda eggs</td>
<td>N, W, VC</td>
<td>3.17 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>NW Black Sea</td>
<td>20-21/6/1989</td>
<td>8.7-13.0</td>
<td>238</td>
<td></td>
<td>Mysidacea, fish larvae</td>
<td>N, W, VC</td>
<td>3.17 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>NW Black Sea</td>
<td>6-7/7/1990</td>
<td>7.1-12.8</td>
<td>188</td>
<td></td>
<td>fish larvae, Copepoda</td>
<td>N, W, VC</td>
<td>3.17 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>NW Adriatic</td>
<td>6-7/1996</td>
<td>2.4-10.9</td>
<td>326</td>
<td></td>
<td>Copepoda</td>
<td>F</td>
<td>3.0 ± 0.00</td>
<td>Conway et al. (1998)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>5/1995</td>
<td></td>
<td></td>
<td></td>
<td>larva of Cirripedia & Mollusca, Phytoplankton</td>
<td>W</td>
<td>2.97 ± 0.34</td>
<td>Bednichenko et al. (1999; data of Lutz et al.)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>6/1995</td>
<td></td>
<td></td>
<td></td>
<td>larva of Cirripedia & Mollusca, Copepoda</td>
<td>W</td>
<td>3.2 ± 0.41</td>
<td>Bednichenko et al. (1999)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>6/1995</td>
<td></td>
<td></td>
<td></td>
<td>larva of Cirripedia & Mollusca</td>
<td>W</td>
<td>3.3 ± 0.43</td>
<td>Bednichenko et al. (1999)</td>
</tr>
<tr>
<td>Sea of Azov</td>
<td>8/1995</td>
<td></td>
<td></td>
<td></td>
<td>larva of Cirripedia & Mollusca, Copepoda</td>
<td>W</td>
<td>3.2 ± 0.37</td>
<td>Bednichenko et al. (1999)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Area</th>
<th>Method</th>
<th>τ±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay of Biscay</td>
<td>Copepoda, Cladocera, Crustacea, Appendicularia, Mollusca, other</td>
<td>3.10±0.16</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Gulf of Lions</td>
<td>Copepoda, Cladocera, Crustacea, Appendicularia, Mollusca, other</td>
<td>3.00±0.00</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Catalan Sea & Gulf of Lions</td>
<td>Copepoda, Cladocera, Crustacea, Appendicularia, Mollusca, other</td>
<td>3.40±0.44</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Ghazaouet, Algeria</td>
<td>Copepoda</td>
<td>3.00±0.15</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Bensarif, Algeria</td>
<td>Copepoda</td>
<td>3.00±0.12</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Bejaia, Algeria</td>
<td>Copepoda</td>
<td>3.00±0.10</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>off Pesaro, N Adriatic Sea</td>
<td>Copepoda</td>
<td>3.00±0.07</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>NE Aegean Sea</td>
<td>Copepoda</td>
<td>3.00±0.03</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Catalan Sea</td>
<td>Copepoda</td>
<td>3.00±0.03</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
<tr>
<td>Morote et al.</td>
<td>Copepoda</td>
<td>3.00±0.01</td>
<td>Plounevez & Champalbert (2000)</td>
</tr>
</tbody>
</table>

(continued)
Table 4

<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>τ±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-NW Aegean Sea</td>
<td>6/2001-1/2006</td>
<td>TL</td>
<td>6.7-16.2</td>
<td>759</td>
<td>Brachyura larvae, Euphausia larvae <spring> Amphipoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.38±0.44**</td>
<td>present study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.6-16.2</td>
<td>179</td>
<td></td>
<td></td>
<td>3.19±0.35**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.3-16.0</td>
<td>243</td>
<td></td>
<td></td>
<td>3.58±0.53**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.5-14.0</td>
<td>33</td>
<td></td>
<td></td>
<td>3.22±0.34**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.7-14.1</td>
<td>304</td>
<td></td>
<td></td>
<td>3.11±0.30**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.2-16.2</td>
<td>389</td>
<td></td>
<td></td>
<td>3.40±0.43**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.7-14.8</td>
<td>370</td>
<td></td>
<td></td>
<td>3.36±0.45**</td>
<td></td>
</tr>
<tr>
<td>Sardina pilchardus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vigo, Spain</td>
<td>2-3/1987, 7/1989</td>
<td></td>
<td></td>
<td></td>
<td>Bacillariophyceae</td>
<td></td>
<td>2.00±0.00</td>
<td></td>
</tr>
<tr>
<td>La Coruna, Spain</td>
<td>2-3/1987, 7/1990</td>
<td></td>
<td></td>
<td></td>
<td>Zooplankton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vis Isl, East Central Adriatic</td>
<td>02/04/1990</td>
<td>SL</td>
<td>0.4-2.4</td>
<td>1429</td>
<td><1.0, Copepoda nauplii, 1.0-1.5, Copepoda nauplii, Copepoda</td>
<td>F, N, W, IRI, VC</td>
<td>3.00±0.00</td>
<td>Dodić (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1.5, Copepoda, Copepoda nauplii</td>
<td></td>
<td>2.9±0.20</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>11/2002-1-5/2003</td>
<td>TL</td>
<td>8.5-23.2</td>
<td>970</td>
<td>Copepoda, Siphonophora, fish eggs</td>
<td>V</td>
<td>3.4±0.46</td>
<td>Cunha et al. (2005)</td>
</tr>
<tr>
<td>Istrir Bay, Aegean Sea</td>
<td>1-12/1997</td>
<td>FL</td>
<td>9.6-14.9</td>
<td>365</td>
<td>Copepoda, Crustacea larvae</td>
<td>F, N, W, VC</td>
<td>3.08±0.25</td>
<td>Sever et al. (2005)</td>
</tr>
<tr>
<td>central Cantabrian slope, Spain</td>
<td>5/2000</td>
<td>SL</td>
<td>0.45-2.21</td>
<td>618</td>
<td>0.45-0.76, Copepod eggs</td>
<td>N</td>
<td>3.10±0.16</td>
<td>Munuera Fernandez & Gonzales-Quintos (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.77-1.3, Copepod eggs</td>
<td></td>
<td>3.00±0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.31-2.21, Copepodites</td>
<td></td>
<td>3.00±0.00</td>
<td></td>
</tr>
<tr>
<td>German Bight, North Sea</td>
<td>6/2003</td>
<td>SL</td>
<td></td>
<td>451</td>
<td>Copepoda</td>
<td>N, W</td>
<td>3.08±0.21</td>
<td>Vous et al. (2010)</td>
</tr>
<tr>
<td>Catalan Sea</td>
<td>6 & 11/2005</td>
<td>SL</td>
<td></td>
<td>147</td>
<td>Copepoda, Tintinnida</td>
<td>N, F, IRI</td>
<td>3.10±0.24</td>
<td>Morante et al. (2010)</td>
</tr>
<tr>
<td>Thracian Sea, North Aegean</td>
<td>7/2007</td>
<td>TL</td>
<td></td>
<td>145</td>
<td>Copepoda</td>
<td>N</td>
<td>3.10±0.15</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 4

<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>e±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2007</td>
<td></td>
<td></td>
<td></td>
<td>217</td>
<td>Bacillariophyceae, Dinoflagellata, Tintinnida</td>
<td>N, F, VC, IRI</td>
<td>3.00±0.00</td>
<td>Borme et al. (2013)</td>
</tr>
<tr>
<td>12/2007</td>
<td></td>
<td></td>
<td></td>
<td>227</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.14±0.29**</td>
<td>present study</td>
</tr>
<tr>
<td>7/2008</td>
<td></td>
<td></td>
<td></td>
<td>199</td>
<td>Copepoda, Brachyura larvae, Euphausiaceae</td>
<td>W, VC</td>
<td>3.12±0.06**</td>
<td></td>
</tr>
<tr>
<td>7/2008</td>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.12±0.06**</td>
<td></td>
</tr>
<tr>
<td>2/2009</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>Copepoda</td>
<td>W, VC</td>
<td>3.00±0.06**</td>
<td></td>
</tr>
<tr>
<td>6/2001-1/2006</td>
<td></td>
<td></td>
<td></td>
<td>391</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.16±0.30**</td>
<td></td>
</tr>
<tr>
<td>6/2001-1/2006</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.14±0.29**</td>
<td></td>
</tr>
<tr>
<td>10.4-16.5</td>
<td></td>
<td></td>
<td></td>
<td>227</td>
<td>Bacillariophyceae, Dinoflagellata, Copepoda</td>
<td>W, VC</td>
<td>3.12±0.29**</td>
<td></td>
</tr>
<tr>
<td>7.6-16.5</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>Copepoda</td>
<td>W, VC</td>
<td>3.14±0.29**</td>
<td></td>
</tr>
<tr>
<td>7.0-16.7</td>
<td></td>
<td></td>
<td></td>
<td>217</td>
<td>Copepoda</td>
<td>N, F, VC, IRI</td>
<td>3.00±0.00</td>
<td>Borme et al. (2013)</td>
</tr>
<tr>
<td>10.4-16.5</td>
<td></td>
<td></td>
<td></td>
<td>391</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.16±0.30**</td>
<td></td>
</tr>
<tr>
<td>7.6-16.5</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.14±0.29**</td>
<td></td>
</tr>
<tr>
<td>6/2001-1/2006</td>
<td></td>
<td></td>
<td></td>
<td>391</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.16±0.30**</td>
<td></td>
</tr>
<tr>
<td>7.6-16.5</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>Copepoda, Brachyura larvae</td>
<td>W, VC</td>
<td>3.14±0.29**</td>
<td></td>
</tr>
</tbody>
</table>

Sardinella aurita

<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>e±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegean</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Copepoda, Crustacea larva</td>
<td>F</td>
<td>2.90±0.00**</td>
<td>Ananiades (1952)</td>
</tr>
<tr>
<td>Aegean</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Isopoda, Amphipoda, Schizopoda</td>
<td>F</td>
<td>3.10±0.24**</td>
<td>Ananiades (1952)</td>
</tr>
<tr>
<td>Aegean</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Crustacea, Anchoy larvae, Bacillariophyceae</td>
<td>F</td>
<td>3.08±0.32**</td>
<td>Ananiades (1952)</td>
</tr>
<tr>
<td>NW African coasts</td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>Copepoda, Lamellibranchia, Ostracoda</td>
<td>F</td>
<td>3.10±0.35**</td>
<td>Pham Hue & Szypuła (1973)</td>
</tr>
<tr>
<td>Senegal (Cayar)</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>Copepoda, Ostracoda, Phytoplankton</td>
<td>W</td>
<td>2.96±0.23**</td>
<td>Nieland (1982)</td>
</tr>
<tr>
<td>Senegal (Bel Air)</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>Copepoda, Fish eggs, Phytoplankton</td>
<td>W</td>
<td>2.90±0.25**</td>
<td>Nieland (1982)</td>
</tr>
<tr>
<td>Senegal (Bel Air)</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>Phytoplankton, Copepoda</td>
<td>W</td>
<td>2.27±0.11**</td>
<td>Nieland (1982)</td>
</tr>
<tr>
<td>Senegal (Bel Air)</td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>Detritus, Phytoplankton, Copepoda</td>
<td>W</td>
<td>2.05±0.03**</td>
<td>Nieland (1982)</td>
</tr>
<tr>
<td>Senegal (Bel Air)</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>Detritus, Phytoplankton, Zooplankton</td>
<td>W</td>
<td>2.05±0.03**</td>
<td>Nieland (1982)</td>
</tr>
<tr>
<td>Canary Islands</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
<td>Copepoda, Appendicularia</td>
<td>N, W, VC</td>
<td>3.31±0.43</td>
<td>Moreno & Castro (1995)</td>
</tr>
</tbody>
</table>

N Aegean Sea

<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>e±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4-16.5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>Amphipoda, other Crustacea, Copepoda</td>
<td>W, VC</td>
<td>3.06±0.29**</td>
<td>Tsikliras et al. (2005b)</td>
</tr>
<tr>
<td>10.4-16.5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>Copepoda, other Crustacea, Amphipoda</td>
<td>W, VC</td>
<td>3.06±0.29**</td>
<td>Tsikliras et al. (2005b)</td>
</tr>
<tr>
<td>10.4-16.5</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>Decapoda larvae, Amphipoda</td>
<td>W, VC</td>
<td>3.06±0.29**</td>
<td>Tsikliras et al. (2005b)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Area</th>
<th>SP</th>
<th>LM</th>
<th>LR</th>
<th>N</th>
<th>Main prey</th>
<th>Method</th>
<th>τ±SE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalan Sea</td>
<td>SL</td>
<td>>0.8</td>
<td>66</td>
<td>6/2005</td>
<td>Copepoda</td>
<td>F, N, IRI</td>
<td>3.10±0.16</td>
<td>Morote et al. (2008)</td>
</tr>
<tr>
<td>N-NW Aegean Sea</td>
<td>TL</td>
<td>8.4-23.9</td>
<td>230</td>
<td>6/2001-1/2006</td>
<td>Copepoda, Appendicularia</td>
<td>W, VC</td>
<td>3.20±0.32"</td>
<td>present study</td>
</tr>
</tbody>
</table>

* τ values estimated by Catalán et al. (2010)
** τ values estimated by Karachle & Stergiou (2008)
*** τ values estimated by Tsikliras et al. (2005b)
Plounevez & Champalbert, 2000; Borde et al., 2009) and the Atlantic (Plounevez & Champalbert, 1999) probably feeds exclusively on zooplankton. Such a contrasting difference may be attributed to the high eutrophication of the Black Sea and therefore the high abundance of phytoplankton (e.g. Yunev et al., 2005). Thus, the feeding preference of anchovy in the Black Sea is similar to anchovies thriving in upwelling areas (see van der Lin- gen et al., 2009 and references therein). In addition, the feeding habits and \(\tau \) values of anchovy and sardine did not show great variations along the different parts of the Atlantic and the Mediterranean (Fig. 5). The diet of round sardinella in the study area included zooplankton only, as reported for this species in other areas of its northern distribution (Ananiades, 1952; Tsikiras et al., 2005b; Lomiri et al., 2008). However, in more southern areas, like Senegal and Egypt, considerable quantities of detritus and phytoplankton are also part of its diet (Nieland, 1982; Madkour, 2012), leading to lower \(\tau \) values (Fig. 5), a fact probably related to the existence of upwelling in both Senegalese waters (e.g. Mittelstaedt, 1983) and air-driven upwelling in Egyptian waters (e.g. Elsayed et al., 1985).

All three species are planktivores and according to their 90% range of \(\tau \) values (Fig. 2) they are classified as omnivores with preference to animal material (see Stergiou & Karpouzi, 2002) and this agrees with the classification derived from the overall \(\tau \) value (anchovy: 3.38 ± 0.44, sardine: 3.14 ± 0.29, and round sardinella: 3.20 ± 0.32; Tables 1 and 4; Karachle & Stergiou, 2008). Nevertheless, for all three species, there were individuals that had much higher and lower \(\tau \) values. This is attributed to the fact that, at the time of capture, these individuals included large quantities of low (i.e. phytoplankton and detritus) or high (i.e. fish eggs and larvae) \(\tau \) food items in their diet. Stomach content analysis offers ‘snapshots’ of diet (Stergiou & Karpouzi, 2002; Karachle & Stergiou, 2008), and this is reflected in the \(\tau \) values. Yet, the analysis of large samples from all seasons and length ranges is a good indicator of the feeding habits and estimation of \(\tau \) (Stergiou & Karpouzi, 2002; Karachle & Stergiou, 2008).

The mixed diet of sardine (i.e. phyto- and zooplankton) and the zoo-planktivoros diet of anchovy are also reflected in their intestine lengths. Species that include plants in their diet display lengthier guts than carnivorous species (e.g. Kapoor et al., 1975; Kramer & Bryan, 1995a, b; Karachle & Stergiou, 2010a, b), in order to achieve optimum nutrient and energy gain from the food consumed. In the study area, sardine had a lengthier intestine than anchovy (Fig. 4), a fact allowing sardine to consume and process both zooplankton and phytoplankton, the latter being a food source that is not used by anchovy, which possess a relatively shorter intestine compared to that of sardine, in the Northern Aegean Sea.

The gut of round sardinella was longer than that of the other two species despite the fact that it feeds on zooplankton and thus its gut length should have been similar to that of anchovy. Round sardinella is an opportunistic species (Tsikiras et al., 2005b), and in the southern areas of its distribution, such as the Senegalese (Nieland, 1982) and Egyptian Mediterranean waters (Madkour, 2012), round sardinella feeds mainly on detritus and phytoplankton. In the study area, and in the northern parts of the Mediterranean, it is a recent colonizer (e.g. Tsikiras et al., 2005a, b; Lomiri et al., 2008). Perhaps, a lengthier gut is more advantageous for the opportunistic feeding nature of round sardinella, in order to use the available food resources, especially in the light of competition with anchovy and sardine. Additionally, apart from the environmental conditions that have favoured its northward expansion (e.g. Sabatés et al., 2006; Tsikiras, 2008) such a morphological feature might also enhance its successful establishment in its new environment.

Information on the feeding mode exists only for anchovy and sardine. Both species display two major types of feeding strategies (Bulgakova, 1996; Tudela & Palomera, 1997; Garrido et al., 2007; Borde et al., 2009; Espinoza et al., 2009; van der Lin- gen et al., 2009): filter feeding and particulate feeding. Although prey size is used by both species as a criterion for the selection of the feeding mode, anchovy switches from particulate feeding to filtering as the concentration of prey increases (Bulgakova, 1996), whereas prey density does not affect the selection of feeding mode by sardine (Garrido et al., 2007). This shift in the feeding mode in anchovy could befavoured by the morphology of its mouth. In this study, for the same TL, mouth area of anchovy was found to be larger than that of sardine (Fig. 4), and a larger mouth gape allows the filtration of a greater volume of water, making filter feeding more profitable. On the other hand, sardine displays a more protractile mouth that might be more advantageous in the case of particulate feeding. For round sardinella, given the resemblance of mouth shape, area and position with those of sardine, one could speculative that round sardinella is also a particulate feeder, as suggested by Madkour (2012), a hypothesis that requires further investigation.

Tail area in fishes has been related to food consumption and is used for the estimation of annual food consumption per unit biomass, i.e. Q/B (Palomares & Pauly, 1989), whereas tail shape shows greater affinities between species occupying the same ecological niche (Karachle & Stergiou, 2012). Despite the fact that the tail of the three species studied here was fork-shaped, the tail area differed between anchovy and sardine, but not between round sardinella and the other two species. In the first case, for the same TL, tail area in anchovy was smaller than that of sardine (Fig. 4). This difference could be attributed to the response of anchovy to prey concentration and change of feeding mode, which is not observed in sardine (Bulgakova, 1996; Garrido et al., 2007). Addi-
tionally, smaller tail aspect ratios (the latter being negatively related to tail area: aspect ratio = square tail height/tail area), and in turn higher aspect ratios led to higher Q/B [since aspect ratio is a factor in the numerator of the Q/B equation (Palomares & Pauly, 1989)]. Furthermore, it has been shown that particulate feeding requires higher velocities (Videler, 1993), which can be achieved with forked shape tails (Keast & Webb, 1966), such as those of the three species studied here. On the other hand, filter feeding is more costly, in terms of energy (Videler, 1993), and thus requires tails with comparatively smaller tail areas, as in the case of anchovy. Therefore, the fact that the tail area of round sardinella was similar to that of sardine further supports the hypothesis of round sardinella being a particulate feeder. Feeding intensity, as revealed in this study, differs considerably in the three species and, along with the quality of food consumed, appears to be strongly affected by the reproductive cycle and its energy demands. Anchovy in the study area reproduces from April to September (i.e. during spring and summer; Tsianis, 2003), sardine from October to April (i.e. during spawning season for anchovy and round sardinella, and just before spawning for sardine), when their content (such as fish larvae) before its reproduction and stores this energy, as mesenteric fat, to be used later at the time of reproduction (Gianias, 2003). In accordance with our results, such differences are found because: (a) when anchovy and round sardinella display the highest VC values, sardine showed the lowest ones and vice versa; and (b) all species exhibited their highest υ values in summer (i.e. during spawning season for anchovy and round sardinella, and just before spawning for sardine), when their diet included large quantities of fish eggs (in the case of round sardinella) and fish larvae (in the case of anchovy and sardine).

Acknowledgements

The authors would like to thank Drs E. Christou and E. Michaloudi for their valuable assistance in the identification and classification of zooplankton, as well as the two reviewers for their useful comments on the manuscript.

References

Tsikliras, A.C., 2008. Climate-related geographic shift and sudden population increase of a small pelagic fish (Sardinella aurita) in the eastern Mediterranean Sea. Marine Biological Research, 4 (6), 477-481.

