Applying a two-stage Bayesian dynamic model to a short lived species, the anchovy in the Aegean Sea (Eastern Mediterranean). Comparison with an Integrated Catch at Age stock assessment model.

GIANNOURAKI M. Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters

IBARLAIRA L. AZTI-Tecnalia, Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain

ANTONAKAKIS K. Department of Biology, University of Crete, Vassiliki Vouton, P.O. Box 2208, 71409 Heraklion Crete, Greece

URIARTE A. AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain

MACHIAS A. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, PO Box 2214, GR 71003, Iraklion, Greece

SOMARAKIS S. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, PO Box 2214, GR 71003, Iraklion, Greece

SANCHEZ S. AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain

ROEL B. Cefas, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK

http://dx.doi.org/10.12681/mms.509
To cite this article:

Applying a two-stage Bayesian dynamic model to a short-lived species, the anchovy, in the Aegean Sea (Eastern Mediterranean). Comparison with an Integrated Catch at Age stock assessment model

M. GIANNoulaki1, L. IBAIBARRIAGA2, K. ANTONAKAKIS3, A. URIARTE3, A. MACHIAS1, S. SOMARAKIS1, S. SANCHEZ2 and B.A. ROEL5

1 Hellenic Centre for Marine Research, Institute of Marine Biological Resources, PO Box 2214, GR 71003, Iraklion, Greece
2 AZTI-Tecnalia, Txatxarramendiugarria z/g, 48395 Sukarrieta, Spain
3 Department of Biology, University of Crete, Vassilika Vouton, P.O. Box 2208, 71409 Heraklion Crete, Greece
4 AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
5 Cefas, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK

Corresponding author: marianna@hcmr.gr
Handling Editor: Argyro Zenetos

Received: 20 June 2013; Accepted: 7 May 2014; Published on line: 19 June 2014

Abstract

Two different stock assessment models were applied to the North Aegean Sea anchovy stock (Eastern Mediterranean Sea): an Integrated Catch at Age Analysis and a Bayesian two-stage biomass based model. Commercial catch data over the period 2000-2008 as well as acoustics and Daily Egg Production Method estimates over the period 2003-2008 were used. The results of the two models were consistent, indicating that the anchovy stock is exploited sustainably in relation to an exploitation rate reference point. Furthermore, the stock biomass appears to be stable or increasing. However, the limitations in age-composition data, potential problems related to misinterpretation of age readings along with the existence of missing values in the survey data seem to favour the two-stage biomass method, which is based on a simplified age structure.

Keywords: Anchovy, Integrated Catch at Age Analysis, Bayesian, stock assessment, two-stage biomass-based model.

Introduction

The European anchovy (*Engraulis encrasicolus*) along with the European sardine (*Sardina pilchardus*) are the two most important small-sized pelagic fish species in the Mediterranean basin both in terms of economic and ecosystem parameters (Lleonart & Maynou, 2003). Anchovies are mainly fished by purse seiners although midwater pelagic trawls also operate in the Adriatic Sea, the Sicily Channel and French coastal waters (Lleonart & Maynou, 2003; Basilone et al., 2006; Machias et al., 2008). Gear operation and fishing practice are based on the spatial detection of major anchovy aggregations by means of echosounders. At the moment, no quotas apply to small pelagic stocks in the Mediterranean Sea and fisheries management is based on technical measures such as spatio-temporal closures, gear and mesh size, engine, Gross Tonnage restrictions and a minimum landing size at 9 cm.

Small pelagic fish like anchovy are known to exhibit high fluctuations regarding their abundance and distribution, largely depending on environmental conditions (Freon & Misund, 1999; Freon et al., 2005). Most anchovy stocks suffer a high exploitation rate (ICES, 2009a; Cardinale et al., 2009, 2010) that renders in-year monitoring, assessment and management of the stocks increasingly necessary. Due to the highly aggregative behaviour of small pelagic species, Catch per Unit Effort (CPUE) indices are considered unreliable (Csirke, 1988). The most effective monitoring programs are based on fishery-independent surveys such as egg or hydro-acoustic surveys (Barange et al., 2009). Population size estimates can be integrated either directly into management plans (Barange et al., 2009) or as input for stock assessment models (Daskalov & Mamedov, 2007; Chen et al., 2008; Kirchner et al., 2010; Antonakakis et al., 2011).

One of the most important population features of anchovies is their short life span, which strengthens the dependence of these stocks on the in-year successful recruitment, causing fluctuations of population size. Specifically, the European anchovy in the Atlantic is known to live up to 3-4 years old (Uriarte et al., 1996; ICES, 2009b). In the Mediterranean, the bulk of anchovy individuals live up to 4 years in the western basin, with...
only a few reaching the age of 5 (e.g. Spanish Mediterranean waters, see Morales-Nin & Perttiere, 1990; Cardinale et al., 2009). In the Adriatic Sea, the life span can reach 6 years (Santojanni et al., 2003) whereas in the Strait of Sicily and the Aegean Sea anchovy individuals rarely exceed the age of 3 years (Cardinale et al., 2009). This is also the case in the Gulf of Cadiz (Ruiz et al., 2009). Therefore, the effective application of fully age-structured stock assessment models can be questionable, especially in cases where the age of individuals does not exceed 3 years.

A simpler and less data demanding approach is a two-stage model (Collie & Sissenwine, 1983; Roel & Butterworth, 2000; Mesnil et al., 2009; Roel et al., 2009) that separates the recruits from the rest of the population. This type of models have been implemented to the Bay of Biscay anchovy stock (Ibaibarriaga et al., 2008, 2011; Trenkel, 2008) and shown to track sufficiently the main dynamics of the population. The two-stage biomass-based model (BBM) in Ibaibarriaga et al. (2008, 2011) was implemented within a Bayesian context (Punt & Hilborn, 1997; Gelman et al., 2004) accounting for the level of catches occurring throughout the year. The two-stage biomass random-effect model applied to the same stock by Trenkel (2008), is based on survey abundance indices and no catches were used. In both cases, the population is separated into two distinct age groups, the recruits (1-year old fish) and the fish being 2 or more years old, and the dynamics is described in terms of biomass.

The Aegean Sea anchovy stock is the most important pelagic resource in the Greek Seas and together with sardine comprise about one third of the total fisheries catch. It belongs to the eastern Mediterranean anchovy stock that presents reduced gene exchange with the respective stocks of the NW Mediterranean and the Adriatic Sea (Magoulas et al., 1996), presenting also differences in terms of population characteristics (Somarakis et al., 2004). The main anchovy distribution grounds in the Aegean Sea (Figure 1) are located within the continental shelf of the North Aegean Sea and the semi-closed areas along the western coast (see more details in Giannoulaki et al., 2004, 2008; Somarakis et al., 2007). Anchovy spawning in the North Aegean Sea occurs from May till September with a peak during June – July. Anchovies mature after completing their first year of life (Somarakis et al., 2004). However, differences can be observed between the eastern part (Thracian Sea and Strymonikos Gulf) and the western part (Thermaikos and North Evoikos gulfs) as shown in Somarakis et al. (2012). The stock is harvested, almost exclusively, by the purse seine fleet since pelagic trawls are banned and benthic trawls are allowed to fish small pelagics in percentages less than 5% of their total catch, according to Greek legislation. Commercial catch is sampled regularly since 2003. Fishery independent monitoring with the Daily Egg Production Method and hydro-acoustic survey also takes place once a year since 2003, during early summer at the peak of the spawning season.

In the present study, the North Aegean Sea (N. Aegean Sea) anchovy stock was assessed using two different models: The Integrated Catch-at-age Analysis (ICA) by Patterson & Melvin (1996), which is a fully age-structured model that assumes a period in which fishing mortality is separable into age- and year-effects. The earlier years are modelled backwards by Virtual Population Analysis (VPA). In addition, a Bayesian two-stage biomass-based model, similar to the one used in ICES for the Bay of Biscay anchovy (Ibaibarriaga et al., 2008; ICES, 2009a) was applied. This application takes into account data on maturity to estimate spawning stock biomass, and the parameter accounting for growth and natural mortality is allowed to differ by age group. Our work aims to compare how both stock assessment models describe the exploitation status of this stock.

Materials and Methods

Data

Representative anchovy landings data were obtained on a seasonal basis from 2000 to 2002 and on a monthly basis since 2003 to 2008 for the estimation of the length frequency distribution, the age structure and the biological parameters of landed anchovy. Anchovy landings data were obtained within the framework of the Hellenic Centre for Marine Research (HCMR) data collection system that supports the European Data Collection Framework requirements for the entire Greek part of the N. Aegean Sea (Fig. 1). Length frequency distribution was obtained on a semester basis and on average 20 to 25 otoliths (sagittae) from each sample and per each length class were removed and used for age determination. Age groups range from 0 to 4, with age 0 being less than 1% of the total catch (as it is practically bycatch) and age 4 being around 0.5% of the total catch due to the limited presence of this age group in the anchovy population. Prior to 2003, length frequency distribution was obtained on a semester basis and no Age – Length Key (ALK) was available. Thus, age determination was done based on the Von Bertalanffy Growth Function, using the ALK R library (Loff et al., 2013). For years after 2003 the ALK was obtained based on otolith readings and applied on a semester basis, and subsequently the age structure of the landings was pooled on an annual basis. The Length-Weight relationships were estimated annually for the period 2003-2008. Landings in terms of biomass and numbers, catch at age, mean length and mean weight at age in the catch were also available.

Fishery independent information regarding the state of the anchovy stock was obtained from acoustic surveys (Giannoulaki et al., 2008) and the Daily Egg Production Method (DEPM; Somarakis et al., 2012) that were concurrently implemented during June 2003-2006 and 2008 in the N. Aegean Sea. A pelagic trawl was used
to qualify the acoustic targets and to obtain biological samples. The trawl catches were used to determine the length and the age distribution of the anchovy stock locally weighted by the acoustic abundance of the species (Simmonds & MacLennan, 2005). The weight at age in the stock was also estimated. Moreover, the maturity at age, based on biological sampling, was estimated from histological and macroscopic determination of the gonads (Somarakis et al., 2004, 2007). The N. Aegean Sea was post stratified into two strata and the acoustic biomass estimation and the DEPM biomass estimation were applied separately in each stratum (Somarakis et al., 2012). Details on survey characteristics, the acoustic methodology followed and the application of the DEPM are described extensively in in Somarakis (2005) and Somarakis et al. (2004, 2012).

Stock assessment

Integrated Catch at Age Analysis (ICA) for stock assessment (Patterson & Melvin, 1996; Patterson, 1998) as well as a two-stage biomass-based model (BBM), similar to the one used for the Bay of Biscay anchovy (Ibaibariaga et al., 2008), were applied to the N. Aegean Sea anchovy stock. ICA was was implemented within the FLR framework (the Fisheries Library in R, Kell et al., 2007), whereas the BBM was implemented in WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs; Lunn et al., 2000) using the R2WinBUGS package (Sturtz et al., 2005). The analysis of the results was conducted in R (http://www.r-project.org; R Development Core Team, 2012).

Integrated Catch at Age Analysis (ICA)

ICA is a fully age-structured model that considers, for a specific dataset, a period of 8 years (2000-2008) in which the catch-at-age data are measured with error and on which the fishing mortality is separable into age- and year- effects. Age-structured and spawning stock biomass indices are included as tuning indices.

Details about the equations used by ICA for the estimation of the numbers at age, the catch, the SSB and the fishing mortality are presented in Needle (2003). The optimal parameter values are obtained by minimization of the objective function, which is the sum of squared differences (SSQ) between the observed and the modelled values for the catch at age and the spawning stock biomass and age-structured tuning indices:

\[
\sum_{a,y} \lambda_{a,y} (\ln C_{a,y} - \ln C'_{a,y})^2 + \sum_{y,B} \lambda_{B} (\ln I_{y,B} - \ln I'_{y,B})^2 + \sum_{a,y,A} \lambda_{a,y,A} (\ln I_{a,y,A} - \ln I'_{a,y,A})^2,
\]

Where \(C, C', I, I'\) are the observed and the estimated values for the catches by age and the indices (total and age-structured) respectively. The subscripts \(a, y\) refer to age and year, \(A\) and \(B\) denote the survey’s age-structured and SSB indices respectively. The weighting factor of each term in the objective function is denoted by \(\lambda\) with the corresponding subscripts.

For the N. Aegean Sea anchovy stock, the tuning indices were an age-structured index based on acoustic surveys and a non-age structured measure of the spawning-stock biomass (SSB) based on DEPM surveys over the period 2003-2006 and 2008. Since acoustics and DEPM

![Fig. 1: Map of N. Aegean Sea, the main distribution area of anchovy in Aegean Sea, showing transects along which the acoustic and DEPM surveys were carried out in June 2003-2006 and 2008 (redrawn from Giannoulaki et al., 2008).](http://epublishing.ekt.gr)
have been applied concurrently during June-July using the same research vessel in the N. Aegean Sea, the assumed relationship between the age-structured indices was selected to have a linear formulation whereas the non-age structure measure was selected to have an absolute formulation (catchability fixed at 1). This selection was made due to the higher uncertainty in the acoustic estimates (age structure index) compared to the SSB estimates by DEPM (non-age structure measure). Using acoustic estimates as a relative index of abundance (thus linear formulation) is a common choice for the assessment of small pelagics stocks (e.g. ICES, 2006). ICA estimates take into account that the survey indices correspond to the middle of the year. The rest of the necessary data to fit the model comprised annual landings, annual catch at age data (numbers at age), and mean weight at age both in the catch and in the stock for the period 2000-2008. Information on age group 5 was added ad hoc because a minimum number of 5 age groups are required for ICA to run. Input (i.e. mean weight at age, natural mortality, etc) for this “fake” age group was based on the available information for age group 4, whereas the catch number at age was set to a minimum number of 100 individuals in all years. The maturity at age estimates and the results of acoustic and DEPM surveys that were used as tuning indices are presented in Table 1. Discards were estimated at less than 1% of the purse seine fishery total catch (Tsagarakis et al., 2012), added to the total reported landings. Reference age for the fishery was age group 2, as fully exploited and fully recruited, for which the selectivity at age is fixed at 1. An eight-year separability period was selected. The age groups 0, 4 and 5 were down weighted in the analysis (i.e. 0.01, 0.01 and 0.001, respectively) given that ages 0 and 4 are considered undersampled in the catch and their numbers are associated with high uncertainty (Fig. 2). The small weight assigned to age group 5 reduces the effect of this “fake” age class in the analysis. Moreover, age 1 in the acoustic surveys was down weighted by 50% because it was assumed that only a part of the juvenile fraction of the population was available to the surveys, due to the coastal distribution of young anchovies and the loss from the analysis of a non-negligible part of age 1 anchovies that is distributed in the eastern part of the Thracian Sea, within Turkish terri-

Table 1. ICA input: Natural mortality (M) of the anchovy stock in the N. Aegean Sea (Greek part) based on three different approaches; maturity at age, average biomass growth rates, age-structure indices from acoustics (age 3 is a plus group) and spawning biomass indices (SSB) from DEPM for the anchovy stock in the N. Aegean Sea (Greek part) over the period 2003-2008, NA: Non available.

<table>
<thead>
<tr>
<th>Natural Mortality Equation</th>
<th>Age 0</th>
<th>Age 1</th>
<th>Age 2</th>
<th>Age 3</th>
<th>Age 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abella et al. (1997)</td>
<td>1.50</td>
<td>1.00</td>
<td>0.74</td>
<td>0.66</td>
<td>0.62</td>
</tr>
<tr>
<td>Gislason et al. (2010)</td>
<td>1.55</td>
<td>0.89</td>
<td>0.66</td>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>Chen and Watanabe (1989)</td>
<td>0.85</td>
<td>0.61</td>
<td>0.52</td>
<td>0.49</td>
<td>0.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Age 0</th>
<th>Age 1</th>
<th>Age 2</th>
<th>Age 3</th>
<th>Age 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0</td>
<td>0.62</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0.67</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0.46</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>0.4</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>0.4</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0.4</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numbers at age (10^3)</th>
<th>Age 1</th>
<th>Age 2</th>
<th>Age 3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>850404</td>
<td>2177712</td>
<td>83246</td>
</tr>
<tr>
<td>2004</td>
<td>1888498</td>
<td>1362566</td>
<td>10562</td>
</tr>
<tr>
<td>2005</td>
<td>2003094</td>
<td>1029206</td>
<td>11681</td>
</tr>
<tr>
<td>2006</td>
<td>5206168</td>
<td>1428316</td>
<td>132910</td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2008</td>
<td>4469332</td>
<td>2495923</td>
<td>95920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Age 1</th>
<th>Age 2</th>
<th>Age 3+</th>
<th>SSB (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>850404</td>
<td>2177712</td>
<td>83246</td>
<td>40042</td>
</tr>
<tr>
<td>2004</td>
<td>1888498</td>
<td>1362566</td>
<td>10562</td>
<td>22799</td>
</tr>
<tr>
<td>2005</td>
<td>2003094</td>
<td>1029206</td>
<td>11681</td>
<td>20533</td>
</tr>
<tr>
<td>2006</td>
<td>5206168</td>
<td>1428316</td>
<td>132910</td>
<td>48700</td>
</tr>
<tr>
<td>2007</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2008</td>
<td>4469332</td>
<td>2495923</td>
<td>95920</td>
<td>37404</td>
</tr>
</tbody>
</table>
torial coastal waters. Within the framework of sensitivity analysis, three ICA runs were applied based on different natural mortality estimates. Specifically, natural mortality (M) values were estimated based on a) the ProBiom empirical equation (Abella et al., 1997), b) the one proposed by Gislason et al. (2010) and c) the one proposed by Chen & Watanabe, (1989). In order to estimate the parameters for the above equations, the Von Bertalanffy Growth Function parameters (i.e. \(L_\infty = 19.1, t_w = 1.559\), \(K = 0.385\) according to Cardinale et al., 2009) and the L-W relationship parameters were used. The resulting vector of M varied per age group and was assumed to be constant across years (Table 1). Concerning the lack of acoustic and DEPM information for 2007, average values were used for the maturity ogive and the weight at age in the stock. The data series of catch and survey data are presented in Table 1.

The model fit was examined based on the possible detection of a pattern in the separable model residuals, the spawning biomass residuals, the age structured index residuals, the fitted selection pattern, the total sum of squared differences between the observed and the modelled values for the catches and the tuning indexes (SSQ plot) and the statistical diagnostics, such as the skewness and kurtosis values.

Moreover, the exploitation rate for each age group \(a\) in year \(y\) \(E_{y,a}\) was calculated as the ratio of fishing to total mortality \(E_{y,a} = F_{y,a} / (F_{y,a} + M_{y,a})\). The mean exploitation rate in year \(y\), \(E_{y,1-3}\), was computed as the arithmetic average across ages 1-3.

Bayesian two-stage biomass-based model

A Bayesian two-stage biomass-based model based on the one used for the Bay of Biscay anchovy (Ibaibarriaga et al., 2008) was developed for the N. Aegean Sea anchovy stock for the period 2003 - 2008. The population dynamics are described in terms of biomass with two distinct age groups, fish aged 1 year and fish that are 2 or more years old (i.e. age group 2+). Biomass of each age group \(a\) decreases continuously in time according to an instantaneous rate of biomass decrease \(g_a\). For biomass at age 1 and older:

\[
B(a,y) = B(a-1,y-1) \exp{-g_a} + \beta(a-1,y-1) \exp{(-g_{a-1})} + \gamma(a-1,y-1) + \delta\]

Thus, assuming that individuals at age 0 are fully immatures at age 1 are considered fully mature (Somarakis et al., 2012), that resulted in the addition of maturity parameters for age 1. Thus, assuming that individuals at age 0 are fully imma-

\[
B(0,y) = B(0,y-1) \exp{-g_0} + \beta(0,y-1) \exp{(-g_1)} + \gamma(0,y-1) + \delta
\]

Applied these equations recursively, total biomass at survey time in any year \(y\) can be expressed as a function of the initial biomass (\(B_0\)), defined as the total biomass at the beginning of the second period of year 0, i.e.

\[
B_y = B(f(y,0) \exp{-g_0} + \beta(f(y,0) \exp{(-g_1)} + \gamma(f(y,0) + \delta)
\]

and all previous recruitment \(R_1, R_2, ..., R_y\) and catch values.

Age 1 proportion in the population at survey time is calculated as the ratio between the biomass at age 1 and the biomass at age 1 and older:

\[
P(1) = B(f(1,0) / B(f(1,0)) + B(f(1,1) / B(f(1,1)) + B(f(1,2) / B(f(1,2)) + ...
\]

In the Aegean Sea anchovy stock, not all individuals at age 1 are considered fully mature (Somarakis et al., 2012), that resulted in the addition of maturity parameters for age 1. Thus, assuming that individuals at age 0 are fully imma-
ture and individuals aged 2 and older are fully mature, the spawning stock biomass at survey time

\[iSSB(f_y) = B(f_y,1) + B(f_y,2+) \]

Where \(O_{ij} \) is the proportion of individuals that are mature at age 1 in year \(y \) (in terms of biomass).

Annual harvest rate (\(H \)) is defined as the ratio of the total catch at age 1 and older (ages targeted by the fishery) over the biomass (\(B \)) at age 1 and older:

\[H_y = \frac{(C(h_{y,1}) + C(h_{y,2}))/B(f_y,1))}{B(f_y,1)+B(f_y,2+)} \]

The estimates of spawning stock biomass from the DEPM and total biomass from the acoustic surveys are assumed to be log-normally distributed as follows:

\[\log(B(f_y,1)) \sim \text{Normal} (\log(q_{y,1}), 1/\psi_{ac}) + \log(B(f_y,1)), 1/\psi_{ac}) \]

and

\[\log(SSB_{depm}(f_y)) \sim \text{Normal} (\log(q_{y,depm}) + \log(SSB(f_y)), 1/\psi_{depm}) \]

The parameters \(q_{y,depm} \) and \(q_{y,ac} \) denote the catchability of DEPM and acoustic surveys, whereas the parameters \(\psi_{depm}\) and \(\psi_{ac} \) represent the precision of the respective normal distributions.

In addition, the acoustic survey is assumed to provide estimates of the age structure of the population. The age 1 biomass proportions are taken as beta distributed with the mean given by the age 1 biomass proportion in the population and variance proportional to the product of age 1 and age 2+ biomass proportions, which is parameterized as follows:

\[\log(q_{depm}) \sim \text{Normal} (\mu_{\log(q_{depm})}, 1/\psi_{depm}) \]

\[\log(q_{ac}) \sim \text{Normal} (\mu_{\log(q_{ac})}, 1/\psi_{ac}) \]

\[\psi_{depm} \sim \text{Gamma} (\alpha_{\psi_{depm}}, \beta_{\psi_{depm}}) \]

\[\psi_{ac} \sim \text{Gamma} (\alpha_{\psi_{ac}}, \beta_{\psi_{ac}}) \]

\[\mu_{\log(q_{depm})} \sim \text{Normal} (\mu_{\log(q_{depm})}, 1/\psi_{depm}) \]

\[\log(B(f_y,1)) \sim \text{Normal} (\mu_{\log(q_{ac})}, 1/\psi_{ac}) \]

\[\log(R_y) \sim \text{Normal} (\mu_{\log(q_{ac})}, 1/\psi_{ac}) \]

\[\log(g_y) \sim \text{Normal} (\mu_{\log(q_{ac})}, 1/\psi_{ac}) \]

Table 2 shows the data series of survey data and Table 3 specifies the hyper-parameters for the prior distributions and the corresponding 90% probability intervals.

From Bayes’ theorem, the joint posterior probability density function of the unknowns is proportional to the product of the probability density functions of priors and observations. Inference is conducted by sampling from the posterior probability density function using Markov Chain Monte Carlo (MCMC) techniques (Gilks et al., 1996). All posterior results are based on MCMC runs with a burn in period of 5E iterations, followed by 5E iterations, of which one out of 500 are kept. Inspection of the MCMC draws and analysis of the convergence was carried out using the CODA package (Convergence Diagnostics and Output Analysis; Plummer et al., 2006).

Four different cases were explored depending on whether the DEPM spawning stock biomass is considered as absolute (i.e. \(q_{depm} \) fixed to 1) or relative (i.e. \(q_{depm} \) estimated) and the biomass decrease parameters by age \(g_1 \) and \(g_2 \) were considered estimated or fixed. Fixed biomass decrease parameters were set similar to ICA where natural mortality \(M \) at ages 1 and 2+ was fixed at the values estimated by ProBiom (Abella et al., 1997) and Gislason et al. (2010) (Table 1), and the average biomass growth rates (\(G_a \)) were fixed at 0.1 for age 1 and 0.25 for ages 2+, as estimated from weight-at-age data.

The unknown parameters are \(q_{depm}, q_{ac}, \psi_{depm}, \psi_{ac}, \alpha_{\Psi_{depm}}, \alpha_{\Psi_{ac}} \), with \(\alpha = 1,2 \) for \(y = 1,...,Y \) (2003-2008) and the corresponding prior distributions considered are:

Table 2. BBM input: Historical data series of catch data by period with the corresponding timing and observations from the DEPM and acoustic surveys. \(h_{ho}, h_{ho}^{a} \): time fractions from the beginning of the year to the time point within each period when commercial catch is assumed to take place; \(C(h_{ho,1}), C(h_{ho,1}^{a}) \): catch at age 1 and age 1+ in tons at time instant \(h_{ho} \) of year \(y; \)
\[C(h_{ho,2}), C(h_{ho,2}^{a}) \]: catch at age 1 and age 1+ in tons at time instant \(h_{ho} \) of year \(y; B_1 \) : total biomass from the acoustic survey at age 1 (or 1+) at year \(y; \) SSB_{depm} \): spawning stock biomass from the DEPM at year \(y; f \) : the fraction of the year that corresponds to the first period.

<table>
<thead>
<tr>
<th>Year</th>
<th>(h_{ho})</th>
<th>(h_{ho}^{a})</th>
<th>(C(h_{ho,1}))</th>
<th>(C(h_{ho,1}^{a}))</th>
<th>(C(h_{ho,2}))</th>
<th>(C(h_{ho,2}^{a}))</th>
<th>(B_1(f_{ho,1}))</th>
<th>(B_1(f_{ho,1}^{a}))</th>
<th>(B_1(f_{ho,1}^{a}))</th>
<th>(SSB_{depm}(f_{yo,1}^{a}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.35</td>
<td>0.68</td>
<td>1351</td>
<td>6070</td>
<td>1852</td>
<td>8450</td>
<td>12117</td>
<td>47199</td>
<td>40042</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>0.36</td>
<td>0.66</td>
<td>2610</td>
<td>9479</td>
<td>2569</td>
<td>7234</td>
<td>24156</td>
<td>46323</td>
<td>22799</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.37</td>
<td>0.68</td>
<td>1013</td>
<td>7643</td>
<td>1961</td>
<td>9665</td>
<td>19520</td>
<td>31825</td>
<td>25353</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0.31</td>
<td>0.67</td>
<td>3532</td>
<td>12641</td>
<td>2521</td>
<td>11806</td>
<td>41807</td>
<td>61369</td>
<td>48700</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.37</td>
<td>0.68</td>
<td>1596</td>
<td>3120</td>
<td>3440</td>
<td>8998</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0.39</td>
<td>0.67</td>
<td>2756</td>
<td>8746</td>
<td>4238</td>
<td>14545</td>
<td>34499</td>
<td>59772</td>
<td>37404</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Hyper-parameters specifying the prior distribution and corresponding median (P50) and 90% probability intervals (P5 and P95) for the model parameters. \(q_{\text{surv}} \): catchability of the survey; the parameters defining and intervening in the precision of the observation equations \(y_{\text{surv}} \) and \(x_{\text{surv}} \) for surv: depm, acoustic; \(B_g \): initial biomass; \(R_g \): recruitment at year \(y \); \(g \): instantaneous rate of biomass decrease; \(\mu \): the average of the respective distribution; \(y \): the precision of the normal process error for the respective observation equations \(y \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hyper-parameters</th>
<th>P5</th>
<th>P50</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{\text{surv}})</td>
<td>(m = 0)</td>
<td>0.250</td>
<td>1.000</td>
<td>3.200</td>
</tr>
<tr>
<td>y</td>
<td>(a = 0.8)</td>
<td>0.183</td>
<td>10.027</td>
<td>51.903</td>
</tr>
<tr>
<td>(y_{\text{surv}})</td>
<td>(b = 0.05)</td>
<td>0.617</td>
<td>5.000</td>
<td>8.678</td>
</tr>
<tr>
<td>(x_{\text{surv}})</td>
<td>(m = 5)</td>
<td>5116</td>
<td>36316</td>
<td>188123</td>
</tr>
<tr>
<td>(y = 1)</td>
<td>(y = 0.0202)</td>
<td>2774</td>
<td>44356</td>
<td>454146</td>
</tr>
<tr>
<td>(B_g)</td>
<td>(m = 15.5)</td>
<td>5116</td>
<td>36316</td>
<td>188123</td>
</tr>
<tr>
<td>(y = 1)</td>
<td>(y = 1)</td>
<td>2774</td>
<td>44356</td>
<td>454146</td>
</tr>
<tr>
<td>(g)</td>
<td>(m \text{ LNLN}(60,65))</td>
<td>0.092</td>
<td>0.650</td>
<td>3.367</td>
</tr>
</tbody>
</table>

based on the M for age 1 and the mean M for ages 2 to 4 as well as the corresponding growth rate, respectively.

- Run2: \(g_i \) and \(g_j \) are fixed to 0.9 and 0.4 respectively and \(q_{\text{dynm}} \) fixed to 1.
- Run3: \(g_i \) and \(g_j \) are estimated and \(q_{\text{dynm}} \) estimated.
- Run4: \(g_i \) and \(g_j \) are estimated and \(q_{\text{dynm}} \) fixed to 1.

Results

Stock assessment

Integrated Catch at Age analysis – ICA

The fitted selection pattern and the catch residuals scatter plot did not indicate any inconsistency in the model. For practical reasons, the statistical and graphical diagnostics of the model fit are only shown for the best fitted ICA run which was based on the M estimates of the ProBiom equation (Fig. 3). This behaviour was similar for all ICA models (see graphical diagnostics of the separable model in Figures 3a to 3b and Table 4). The plot of the catch residuals (Fig. 3A) shows a different pattern between the years before and after 2003, which is probably due to the different splitting procedure used (i.e. growth parameters and von Bertalanffy equation before 2003 and ALK afterwards) and the lack of landings data on a seasonal basis prior to 2003. This pattern most likely drives the first negative and then positive catch residuals resulting from ICA for ages 1 and 2 in particular. This is something to be considered in future assessments and implies the need for monthly landings sampling and age splitting based on ALK instead of growth parameters.

The residuals of the DEPM index (Fig. 3F) and the acoustic surveys index at age 1, 2 and 3 (Figs 3C to 3E) also generally indicate good model fit besides 2006. This might be partly driven by the lack of survey data in 2007. Parameter estimation for the separable model indicated, consistently in all ICA runs, acceptable values of the coefficient of variation (CVs lower than 33%, Table 4A). The estimated catchabilities of the acoustic surveys for age 2 were 70% higher than for age 1 and almost 92% for age 3. The estimated CVs of the catchabilities were also considered acceptable (Table 4B). Pseudo analysis of variance table (ANOVA) for weighted fits (Table 4C) showed that the model variance remained at low levels although most of it derives from the SSB tuning index variance. The kurtosis and skewness values for the catches and the tuning indices were well below 2, showing no apparent overfitting or underfitting (Table 4D). The total sum of squared differences (SSQs) between the observed and the modelled values for the catches and the tuning indexes (i.e. DEPM, acoustics) generally presented a fairly minimum under the assumption of log-normally-distributed errors (Needle, 2000; 2003). However, the SSQ plot of the ICA run based on the ProBiom equation estimates of M was the one with the best fit.

ICA model results for the three runs are presented in Figures 4A-4C (stock population abundance) whereas recruitment (abundance at age 0 at the beginning of the year), spawning stock biomass (SSB at survey time coinciding with the middle of the year) as well as mean fishing mortality (F) for ages 1 to 3 are presented in Figures 5A to 5D. Abundance of age groups 1 to 3 is rather stable up to 2004. Since then, the abundance of age groups 0, 1 and 2 sharply increases (Figs 4, 5A). SSB also presents an increasing trend, especially since 2005 (Fig. 5B). Mean F1,5 and E1,5 follow a decreasing trend, almost stabilizing at lower levels since 2004, varying between 0.31 (ProBiom run) and 0.37 (Chen and Watanabe run) (Figs 5C, 5D).

In order to determine whether the status of anchovy stock is harvested within safe levels, we compared stock status based on ICA model results and a biological ref-
reference point. Most biological reference points are either minimum acceptable biomass level or maximum fishing mortality rates (Collie & Gislason, 2001). However, in the current stock we were not able to define any reliable spawning stock biomass reference point due to the short time series available (less than 10 years). Available information was insufficient to estimate an explicit stock-recruitment relationship, thus hampering ad hoc estimation of \(F_{\text{MSY}} \) (F at Maximum Sustainable Yield) and any biological reference point calculated based on this relationship (see Collie & Gislason, 2001 for biological reference points). In addition, the yield-per-recruit analysis applied showed that neither the commonly proposed fishing mortality level at \(F_{0.1} \) (Gulland & Boerema, 1973), could be estimated due to the flat-topped shape of the yield-per-recruit estimated curve (not shown). Thus, we evaluated anchovy stock status based on the empirical reference point proposed by Patterson (1992) who concluded that a sustainable exploitation rate for small pelagic fishes \((E=F/Z) \) is around 0.4. We consider this as a precautionary reference point. Recently, Zhou et al. (2012) concluded that \(F_{\text{MSY}} \) for teleosts is around 0.87·\(M \) (corresponding to an \(E \) of around 0.47). This further supports our choice of the aforementioned precautionary reference point. Specifically, ICA model results show that \(E_{1-3} \) (mean for the ages 1 to 3 targeted by the fishery) lies well below the 0.4 value (being around 0.32 to 0.36 depending on the run), denoting that the anchovy stock is likely to be harvested sustainably.

Bayesian two-stage biomass-based model

Chain behaviour was examined by visually inspecting traces, cumulative plots, and autocorrelation functions. Convergence diagnostics implemented in CODA confirmed that chain length, burn-in period, and thinning interval were sufficient to estimate the posterior median and 90% probability intervals with the reported accuracy.
Summary statistics (posterior median and 90% probability intervals) of the model parameters for the four different cases (runs) are presented in Table 5. The recruitment (age 1 biomass at the beginning of the year) series for the respective cases are shown in Figure 6. When DEPM spawning stock biomass is relative (runs 1 and 3) the catchabilities of the two surveys (DEPM and acoustics) are below 1 (Table 5) and the recruitment estimates present the same trend but with larger values and wider posterior probability intervals compared to the results from the runs with absolute DEPM biomass estimates (Figure 6). When the biomass decrease rates by age, g_1 and g_2, are estimated, their posterior medians are around 0.39 when both DEPM and acoustics spawning
stock biomass are considered relative and around 0.34 for age 1 and 0.28 for age 2+ when DEPM spawning stock biomass is taken as absolute (Table 5). This leads to lower recruitment levels compared to when the biomass decrease rates are fixed at 0.9 and 0.4 for ages 1 and 2+, respectively. For comparison with the ICA assessment of this stock, the case in which g_1, g_2, and q_{depm} are fixed is studied in detail (Table 6).

Table 5. BBM results: Posterior median (P50) and 90% probability intervals (P5 and P95) depending on the assumptions on biomass decrease parameters (g_1 and g_2) and the catchability of the DEPM survey. Fixed & estimated explanations, NA: Not available estimates, q_{depm}: catchability of the DEPM survey, q_{ac}: catchability of the acoustic survey, the parameters defining and intervening in the precision of the observation equations y_{depm}, y_{ac}, x_{ac}, for the DEPM and the acoustic survey respectively, B_0: initial biomass, g_1: instantaneous rate of biomass decrease at age 1, g_2: instantaneous rate of biomass decrease at age 2+.

<table>
<thead>
<tr>
<th></th>
<th>DEPM RELATIVE</th>
<th>DEPM ABSOLUTE</th>
<th>DEPM RELATIVE</th>
<th>DEPM ABSOLUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P5</td>
<td>P50</td>
<td>P95</td>
<td>P5</td>
</tr>
<tr>
<td>q_{depm}</td>
<td>0.34</td>
<td>0.54</td>
<td>0.86</td>
<td>NA</td>
</tr>
<tr>
<td>q_{ac}</td>
<td>0.37</td>
<td>0.57</td>
<td>0.86</td>
<td>0.56</td>
</tr>
<tr>
<td>y_{depm}</td>
<td>2.50</td>
<td>9.23</td>
<td>25.40</td>
<td>1.38</td>
</tr>
<tr>
<td>y_{ac}</td>
<td>4.21</td>
<td>15.70</td>
<td>43.70</td>
<td>3.66</td>
</tr>
<tr>
<td>x_{ac}</td>
<td>2.56</td>
<td>5.01</td>
<td>8.20</td>
<td>1.73</td>
</tr>
<tr>
<td>B_0</td>
<td>55530</td>
<td>73300</td>
<td>98000</td>
<td>39279</td>
</tr>
<tr>
<td>g_1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>g_2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Biomass at age 1 at the beginning of the year (considered as recruitment in BBM) and at age 1+ (at survey time) (i.e. ages targeted by the fishery), as estimated by the BBM model (run 2), are presented in comparison to the three runs of the ICA model in Figure 7. The specific BBM model allowed comparisons in consistency with ICA due to the underlying assumptions on DEPM and \(g_1 \) and \(g_2 \) estimates. The trend in both approaches is generally quite similar concerning the biomass at age 1 at the beginning of the year (Fig. 7B), with the exception of the estimates in 2006 when the BBM model predicts higher values and 2008 when ICA has resulted in higher estimates.

Fig. 5: ICA model results for the anchovy stock assessment in N. Aegean Sea (Greek part) over the period 2000-2008. (A): Recruitment (abundance in age 0) in numbers in the beginning of the year, (B): SSB in the survey time and Annual catches in t (C): mean F for ages 1-3 (Fbar), and (D): exploitation rate for ages 1 to 3 and Patterson empirical Reference Point (RP). Results are based on three different runs for natural mortality estimates.

Fig. 6: Median and 90% probability intervals of recruitment, when the biomass decrease rates by age are fixed (left panel) and estimated (right panel). The dashed line corresponds to the case when the DEPM biomass is relative and the solid line when it is absolute.

Biomass at age 1 at the beginning of the year (considered as recruitment in BBM) and at age 1+ (at survey time) (i.e. ages targeted by the fishery), as estimated by the BBM model (run 2), are presented in comparison to the three runs of the ICA model in Figure 7. The specific BBM model allowed comparisons in consistency with ICA due to the underlying assumptions on DEPM and \(g_1 \) and \(g_2 \) estimates. The trend in both approaches is generally quite similar concerning the biomass at age 1 at the beginning of the year (Fig. 7B), with the exception of the estimates in 2006 when the BBM model predicts higher values and 2008 when ICA has resulted in higher estimates. In any
In this case, the ICA estimates are found generally within the 90% posterior probability intervals from the BBM. Differences are slightly larger when it comes to biomass at age 1+, where the Bayesian estimates are higher than the ICA ones. Consequently, ICA estimates indicate higher harvest ratio (i.e. expressed as the ratio of the catch at age 1+ to biomass at age 1+) at 0.38 to 0.40 (depending on the run) compared to the BBM model estimate at 0.28.

Discussion

The N. Aegean anchovy stock is characterized by a short life span, with individuals seldom exceeding 3 years of age. This is also one of the most pronounced features of anchovy stocks in most areas of the Mediterranean basin (Cardinale et al., 2009) and in the Atlantic (Uriarte et al., 1996; De Oliveira et al., 2005). This feature renders these stocks particularly sensitive since their abundance and composition is highly dependent on the annual successful recruitment and can fluctuate widely with changes in the environmental conditions (Freon et al., 2005).

VPA based approaches such as the ICA model are often used to assess the status of small pelagic fish stocks (e.g. ICES, 2006; Daskalov & Mamedov, 2007; Antonakakis et al., 2011). However, the application of a fully age-structured stock assessment model for a short lived species might be questionable, especially when missing values occur in certain years or for the relatively old age classes (Ibaibarriaga et al., 2008). The short time series of data, as in our case, can cause additional difficulties regarding the model’s fit and produce poor convergence properties. The two-stage Bayesian BBM is a simpler and less data demanding stock assessment model based on biomass estimates from surveys. Considering the aforementioned high dependence of the anchovy stock on in-year successful recruitment, the separate modelling of recruits and the “fully recruited” fraction of the population, as in the Bayesian BBM model, can sufficiently illustrate the status and potential changes of the entire population (Ibaibarriaga et al., 2008).

Herein, the exploitation status of the N. Aegean anchovy stock was assessed using the ICA model (Needle, 2000) with 3 runs based on different natural mortality (M) values and a Bayesian two-stage BBM similar to the one used for the Bay of Biscay anchovy stock (Ibaibarriaga et al., 2008).

Table 6. BBM estimates: Posterior median (P50) and 90% probability intervals (P5 and P95) of recruitment, biomass and harvest rates when the biomass decrease rates and the catchability of the DEPM surveys are fixed.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>RECRUITMENT</th>
<th>BIOMASS</th>
<th>HARVEST RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P5</td>
<td>P50</td>
<td>P95</td>
</tr>
<tr>
<td>2003</td>
<td>15380</td>
<td>27450</td>
<td>42450</td>
</tr>
<tr>
<td>2004</td>
<td>28840</td>
<td>48870</td>
<td>65682</td>
</tr>
<tr>
<td>2005</td>
<td>34570</td>
<td>55950</td>
<td>79210</td>
</tr>
<tr>
<td>2006</td>
<td>52870</td>
<td>89110</td>
<td>144405</td>
</tr>
<tr>
<td>2007</td>
<td>15537</td>
<td>61865</td>
<td>114205</td>
</tr>
<tr>
<td>2008</td>
<td>39000</td>
<td>67360</td>
<td>107905</td>
</tr>
</tbody>
</table>

Fig. 2: (A) Biomass at age 1 (B age 1) in t as estimated by ICA and BBM (run 2) in the beginning of the year, (B) Biomass at age 1+ (B age 1+) in t as estimated by ICA and BBM (run 2) in the time of survey and (C) harvest rate expressed as catch at age 1+ / B at age 1+ ratio as estimated by ICA and BBM (run 2).
Different ICA runs showed similar estimates of abundance at age 2, SSB, and F_{ISC}, independently of the M applied. Deviations were observed in terms of abundance estimates at age 1 and 0 (recruitment) where the ICA run based on the Chen & Watanabe (1989) M estimates provided the lowest values. Results of both the ICA and the BBM models indicated reasonable agreement in terms of trends besides the differences in the absolute values.

For the given time series 2000-2008, ICA indicated a slightly increasing trend for biomass at age 1+ (i.e. the age group targeted by the fishery) and a more apparent increasing trend regarding the biomass of age 1. With the same assumptions regarding g values (as known) and DEPM catchability (as 1), the BBM model estimated higher biomass values and a more moderate increasing trend compared to ICA. According to the BBM model, biomass at age 1+ seems to stabilize around a mean value of 62000 tons in the period 2006-2008. Harvest rates expressed as the catch of age 1+ to biomass of age 1+ ratio seem to stabilize around 0.28 in the case of the Bayesian model and at the higher level of 0.38 to 0.40 in the case of ICA.

The Bayesian two-stage biomass-based model for anchovy in the N. Aegean Sea provides an extension of the model in Ibaibarriaga et al. (2008). The model allows the biomass decrease parameters to differ by age classe (g_1 and g_2) and, using the maturity at age 1 (as known input parameter), it converts total biomass into spawning stock biomass. Model output corresponds to the biomass indices provided by the DEPM. Results of this model largely depend on the assumptions regarding the catchability of the DEPM survey and the biomass decrease rates. When DEPM biomass is considered relative, recruitment presents higher values with increased uncertainty. In addition, when the biomass decrease rates (g_1 and g_2) are considered fixed, recruitment values are at higher levels compared to when g_1 and g_2 are estimated, regardless of the DEPM survey’s catchability assumptions. The indeterminacy of the assessment as revealed by the high correlation between the parameters (such as survey catchability and recruitment) was also observed in Ibaibarriaga et al. (2008). Thus, similarly to ICA, when the DEPM survey catchability is considered fixed at 1, the assessment is scaled to the survey’s catchability assumption. When the biomass decrease rates are estimated, the results suggest that they might be rather similar between ages and smaller than the ones assumed when fixed. As a result, the annual recruitments and the biomass estimates are also lower when g_1 and g_2 are estimated. Contrary to the BBM, where the acoustic survey catchabilities are assumed equal across age groups, in ICA the catchability at ages 1 and 3 are estimated to be less than 1/3 of the one estimated for age 2.

The similarity of the g_1 and g_2 estimates (with g_2 at a lower value than believed) and the differences in the acoustic catchability at ages 1 and 2, could be related to undersampling of age 1 during the survey. The survey loses a percentage of age 1 that presents a very coastal distribution over non-sampled shallow waters as well as because a part of age 1 although contributing to the anchovy population in the next year, is distributed in the Turkish territorial waters of the Thracian Sea. This could explain the large differences in the catchability, for the assumed pattern of natural mortality in ICA as well as the similar values of g_1 and g_2 as estimated by the BBM. Nevertheless, this cannot explain the very low catchability at age 3 compared to age 2, which might be due to several phenomena, either particular catchability anomalies associated with the survey, or incorrect age determination or higher natural mortalities than the ones estimated. Therefore, the former results could also be indicative of inconsistencies between the pattern of natural mortality and the observation of population at age from the acoustic survey.

According to both the ICA and Bayesian two-stage models, the N. Aegean anchovy stock is considered to be harvested sustainably, with the fishery operating below but close to an optimal yield level with respect to Patterson’s (1992) empirical reference point ($E=0.4$) and well below the sustainable exploitation rate recently suggested by Zhou et al. (2012) ($E=0.47$). Mean exploitation rate of the anchovy stock was below 0.35 whilst both recruitment and catch to biomass ratio appeared rather stable for the whole time series. Nevertheless, in terms of management, the mixed nature of the anchovy and sardine fishery as well as the fact that the anchovy stock in the Aegean Sea is shared between Greek and Turkish fishing fleets should be considered. In a future perspective, it would be interesting to see the outcome of the application of two-stage BBMs to different stocks presenting different age range and subject to a different degree of exploitation.

It is worth discussing the suitability of Bayesian two-stage stock assessment models compared to VPA based ones. A fully age-structured model in terms of numbers-at-age, such as ICA, has been argued as inappropriate by several authors (e.g. Roel & Butterworth, 2000; Ibaibarriaga et al., 2008; Trenkel, 2008), favouring the application of a Bayesian two-stage model. Estimating "quantities of interest for management" like biomass can be more reliable than using a more reality reflective method on the one hand but a more complex one on the other hand (Roel & Butterworth, 2000; Ibaibarriaga et al., 2008; Trenkel, 2008). Moreover, the short life span of a species renders the application of ICA rather questionable as rooted by Ibaibarriaga et al. (2008). Additionally, quite often the paucity of age, the lack of reliable age-size data and/or the total absence of age-size data due to methodological difficulties or high costs, are reasons that favour the use of the two-stage biomass method, which is based on a simplified age structure (e.g. Roel & But-
terworth 2000; Beare et al., 2005; Trenkel, 2008; Roel et al., 2009, Cook, 2013).

Misreporting of landings and un- or misreported discarded fish result in erroneous stock abundance estimates (Quinn & Deriso, 1999; Cook, 2013). Additionally, Catch per Unit Effort (CPUE) indices for small pelagics present low reliability due to highly aggregative behaviour. This rather inevitable uncertainty within commercial catch information has also raised concern and queries regarding the use of VPA based approaches. In our Bayesian approach, the way catches are used only serves setting minimum biomass levels that explain the level of catches, thus avoiding unrealistic low biomass level estimates. Cotter et al. (2009) and Mesnil et al. (2009) have recently presented some ideas and considerations on the advantages and drawbacks of using fishery-independent stock assessment methods. Survey-based methods avoid the introduction of catch data uncertainty and the temporal delay of the assessment as they provide direct information on the status of the stock while they do not require an estimation of questionable assessment parameters such as natural mortality values. Nevertheless, the strongest drawback of these methods is that they mainly use one source of information thus rendering the planning of surveys and the quality of the data obtained the most determining factor for the assessment (Mesnil et al., 2009).

Acknowledgements

The study was partially supported and financed by the Greek National Fisheries Data Collection Program, the European Commission (“SARDONE: Improving assessment and management of small pelagic species in the Mediterranean”, FP6 – 44294). We wish to thank the captain and the crew of RV “Philia” as well as all the scientists on board for their assistance during the surveys. Moreover, we feel the need to thank Mark Payne for his help with the FLICA code in FLR.

References

Giannoulaki, M., Machias, A., Somarakis, S., Tsimenides, N.,

