First record of an exotic hippolytid shrimp in the eastern Mediterranean Sea

FROGLIA C. C.N.R. - ISMAR
DEVAL M.C. Akdeniz University, Faculty of Fisheries, TR-07058 Antalya, Turkey

https://doi.org/10.12681/mms.651

Copyright © 2014

To cite this article:

First record of an exotic hippolytid shrimp in the eastern Mediterranean Sea

C. FROGLIA1 and M. C. DEVAL2

1 C.N.R. - Istituto di Scienze del Mare, u.o.s. Ancona, 60015 Ancona, Italy
2 Akdeniz University, Faculty of Fisheries, TR-07058 Antalya, Turkey

Abstract

The alien hippolytid shrimp Lysmata kempi Chace, 1997 (= Hippolysmata dentata Kemp, 1914), never recorded after its original description from the Eastern Indian Ocean, is reported for the first time in the eastern Mediterranean Sea (Gulf of Antalya), with remarks on its taxonomy.

Keywords: Decapoda, Hippolytidae, Lysmata kempi, alien species, Mediterranean Sea.

Introduction

The eastern Mediterranean biota are undergoing dramatic changes, since the opening of the Suez Canal in 1869 and its progressive widening, due to the introduction of hundreds of Indo-Pacific species (Katsanevakis et al., 2013). The addition of exotic species has modified the regional biodiversity (Por, 2010). The newcomers sometime have outcompeted the populations of autochthonous species with similar ecological niches (Galil & Shlagman, 2010) and some have become a valued resource for local fishermen (Galil, 2007).

By 2010, the checklist of crustacean decapod fauna in the Israeli Mediterranean Sea (Galil & Shlagman, 2010) included 166 species and that for the Turkish Mediterranean waters included 184 species (Ates et al., 2010). Two years later the decapod species recorded from the Levantine Sea reached 187 (Corsini-Foka & Pancucci-Papadopoulou, 2012), and other records have been added since. About one fifth of the decapod fauna in the region is of Indo-Pacific origin.

Among the “shrimps” (suborders Dendrobranchiata, Pleocymata), the families Penaeidae and Alpheidae are the most successful Indo-Pacific invaders of the eastern Mediterranean Sea accounting, respectively, for 9 and 4 species, followed by the families Palaemonidae, Pasiphaeidae and Ogyrididae with 3, 2 and 1 species respectively.

Here we report the capture in the eastern Mediterranean Sea (Gulf of Antalya, Turkey) of the first Indo-Pacific representative of the family Hippolytidae: Lysmata kempi Chace, 1997 (= Hippolysmata dentata Kemp, 1914, nec Lysmata dentata (de Haan, 1844) = Lysmata ternatensis de Man, 1902).

Materials and Methods

As part of a study on selectivity of bottom-trawl nets used by Turkish Mediterranean trawlers, experimental trawling operations were carried out monthly, at night time, in a circalitoral ground, at depths of 35–38 m, located in the eastern side of the Gulf of Antalya. A sparse Posidonia oceanica meadow borders this ground landward. The otter-trawl, made of polyethylene, had ground-rope of 17 m, head-line of 15.3 m, and cod-end, stretch mesh opening 44 mm, equipped with a polyamide cover cod-end (stretch mesh opening 24 mm).

In one sample, two small ovigerous shrimps were noticed among the catch and were later identified, using the key provided by Chace (1997), as Lysmata kempi Chace, 1997 and compared with the original description of Hippolysmata dentata in Kemp (1914). A second haul made one year latter, almost in the same location, made with a 3.5 m beam-trawl equipped with a polyamide cover cod-end (stretch mesh opening 24 mm), yielded two more specimens.

Size of shrimps (Standard carapace length (c.l.): distance from the posterior orbital edge to the middorsal posterior border of carapace; Total carapace length: distance from the tip of rostrum to the middorsal posterior border of carapace) was measured with a digital calliper to the nearest 0.1 mm.

Results

Lysmata kempi Chace, 1997 (Fig. 1, Fig. 2A-D)

Material examined: Eastern Mediterranean, Gulf of Antalya: (36°49.2’N 30°57.4’E - 36°43.4’N 31°10.9’E), depth 35–38 m, silt, 16 April 2010, 2 specimens, ovigerous,
c.l. 7.6–7.9 mm; (36°49.1'N 31°00.6'E - 36°48.7'N 31°02.9'E), depth 30 m, silt, 21 April 2011, 2 specimens, ovigerous, c.l. 6.3–7.4 mm.

The specimens are deposited in the Reference Collection of the Faculty of Fisheries, Akdeniz University, Antalya (Turkey) and in the senior author (CF) Crustacea Collection (to be deposited later in the Museo civico di Storia naturale, Verona, Italy).

Specimens can be distinguished immediately from all the other species in the genus by their long rostrum, exceeding scaphocerite and slightly shorter than carapace (Fig. 2A).

In all 4 specimens, the rostrum has 7 dorsal teeth, including 2 placed posteriorly to orbital margin, whereas the number of ventral teeth ranges between 5 and 7 (Table 1). The dorso-lateral flagellum of the antennula has the proximal 26 – 29 articles thickened and setigerous without an accessory branch. The scaphocerite just over-reaches the antennular peduncle. The second pereopods have the carpus subdivided in 14 -17 articles and the carpo-merus articulation reaches the base of the scaphocerite. The dactylius of the 3rd to 5th pereopods is long and falciform with only 2-3 thin articulated spines on the proximal third of the flexor margin (Fig. 2D). The telson has 2 pairs of acute prominent spines on the dorsal surface and its distal margin is acute mesially and armed with 2 pairs of spines, the inner longer, separated by a mesial pair of long plumose setae (Fig. 2C); long setae border the lateral margins. The endopod of the first pleopods is devoid of apical cincinnuli and the second pleopods have only appendix interna. No male gonopore could be detected on the coxa of the fifth pereopods, which could be due to the condition of the preserved specimens, as the protandric simultaneous hermaphroditism is suspected to be a fixed trait in the genus (Baeza, 2009).

The shrimps were dark-red when caught, and turned to light-pink with sparse reddish chromatophores after a few hours (Fig. 1); cornea brownish.

The four specimens are ovigerous and the eggs, emerald green in life (Fig. 1), measure 0.45 mm in diameter. The largest specimen (TL, about 35 mm, CL 7.9 mm) is slightly larger than Kemp’s type specimen.

The decapod assemblage associated with these hippolytid shrimps was characterized by the following lessepsian species, listed in order of abundance: Charybdis longicollis Leene, 1938, Metapenaeus monoceros (Fabricius, 1798), Metapenaeopsis aegyptia Galil &

Table 1. Morphometric and meristic data of the specimens of L. kempi caught in the Gulf of Antalya.

<table>
<thead>
<tr>
<th>Sampling date</th>
<th>16 Apr 2010</th>
<th>16 Apr 2010</th>
<th>21 Apr 2011</th>
<th>21 Apr 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Carapace Length c.l. (mm)</td>
<td>7.6</td>
<td>7.9</td>
<td>6.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Total Carapace Length (mm)</td>
<td>15.0</td>
<td>16.8</td>
<td>11.8</td>
<td>14.1</td>
</tr>
<tr>
<td>Rostrum teeth (dorsal/ventral)</td>
<td>2+5 / 7</td>
<td>2+5 / 7</td>
<td>2+5 / 5</td>
<td>2+5 / 7</td>
</tr>
<tr>
<td>Carpus of 2nd pereopods, number of articles (left – right)</td>
<td>15 – 15</td>
<td>15 – 15</td>
<td>15 – 14</td>
<td>17 – 16</td>
</tr>
</tbody>
</table>

Fig. 1: Lysmata kempi, Gulf of Antalya, Turkey. Colour few hours after capture and storage in chilled sea-water.

Fig. 2: Lysmata kempi, ovigerous, c.l. 7.4 mm, Gulf of Antalya (Turkey): A – carapace and anterior appendages, B – 2nd pereopod, C – telson (lateral setae omitted), D – dactylus 5th pereopod; Exhippolysmata ensirostris: E – carapace and anterior appendages, F – telson, G – dactylus 5th pereopod, (from Kemp, 1914); Lysmata seticaudata, ovigerous, c.l. 9.8 mm, Gulf of Alghero (Italy): H – carapace and anterior appendages, I – telson (lateral setae omitted), J – dactylus 5th pereopod. Scale bars = 2 mm.

http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 09/04/2021 22:12:30 |
Golani, 1990, *Marsupenaeus japonicus* (Bate, 1888), *Penaeus semisulcatus* De Haan, 1844, *Melicertus hathor* (Burkenroad, 1959), *Ixa monodi* Holthuis & Gottlieb, 1959, and *Alpheus rapacida* De Man, 1908; the autochthonous Mediterranean decapods were represented by few *Melicertus kerathurus* (Forskål, 1775), *Aegaean cataphractus* (Olivi, 1792) and *Macropodia rostrata* (Linnaeus, 1761).

Discussion

Members of the genus *Lysmata* have attracted the interest of several investigators for their unique reproductive biology that is characterized by protandric simultaneous hermaphroditism (see: Baeza et al., 2009, and references therein).

De Grave & Fransen (2011) listed 42 species in the genus *Lysmata* Risso, 1816, type species *Lysmata seticaudata* (Risso, 1816), as currently understood (i.e. including the species previously placed in *Hippolysmata* Stimpson, 1860, type species *Hippolysmata vittata* Stimpson, 1860).

Hippolysmata dentata was established by Kemp (1914) on two specimens collected in the Bay of Bengal: off the mouth of River Irrawaddy (Myanmar) and off False Point Harbour (State of Orissa, India). As far as we know, no other specimen has been collected thereafter. The nomenclatorial status of *H. dentata*, clearly depicted by Holthuis (see: Chace, 1997, pag. 71), motivated Chace to rename it *Lysmata kempii*.

Recent phylogenetic studies based on the sequences of 16S 12S and COI mitochondrial DNA (Baeza, 2010; Baeza & Fuentes, 2013) or 16S mtDNA and 28S rDNA (Fiedler et al., 2010) suggest that the genus *Lysmata* s.l. is paraphyletic, with 3 - 4 clades and with the genus *Exhippolysmata* Stebbing, 1915 - type species *Exhippolysmata ensirostris* (Kemp, 1914) - nested within it.

Members of the genus *Lysmata -sensu lato-* have short rostrum, at most reaching the distal end of the antennular peduncle, pereopods 3⁴ to 5⁴ with short and biunguiculate dactylus, and tip of telson rounded and flanked by two pairs of articulate spines (Fig 2H-J), whereas in the genus *Exhippolysmata* the rostrum is long, exceeding the distal end of the scaphocerite, pereopods 3⁴ to 5⁴ have a long falcate dactylus, not biunguiculate, and the telson ends in an acute tip without distal articulate spines (Fig. 2 E-G).

The present species, due to its long rostrum and falcate, not biunguiculate, dactylus (Fig. 2A-C), set apart from all the species currently placed in the genus *Lysmata*, may belong to the genus *Exhippolysmata*. In the future, combined morphological and molecular studies may confirm our assumption, in which case Kemp's name will take priority and the correct name of the species would be *Exhippolysmata dentata* (Kemp, 1914).

The species was never recorded since its description by Kemp in 1914 from the eastern Indian Ocean; thus, the vector of its introduction in the eastern Mediterranean Sea is only a matter of speculation, even if shipping may be likely.

References

