Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics

DONNARUMMA L. Stazione Zoologica Anton Dohrn, Laboratorio di Ecologia Funzionale ed Evolutiva, Napoli
Dipartimento di Scienze e Tecnologie, Università di Napoli “Parthenope”, Napoli

LOMBARDI C. ENEA Centro Ricerche Ambiente Marino, La Spezia

COCITO S. ENEA Centro Ricerche Ambiente Marino, La Spezia

GAMBI M.C. Stazione Zoologica Anton Dohrn, Laboratorio di Ecologia Funzionale ed Evolutiva, Napoli

http://dx.doi.org/10.12681/mms.677

Copyright © 2014

To cite this article:

Settlement pattern of *Posidonia oceanica* epibions along a gradient of ocean acidification: an approach with mimics

L. DONNARUMMA1,3, C. LOMBARDI1, S. COCITO2 and M.C. GAMBI1

1 Stazione Zoologica Anton Dohrn, Laboratorio di Ecologia Funzionale ed Evolutiva, Napoli, Italy
2 ENEA Centro Ricerche Ambiente Marino, La Spezia, Italy
3 present address Dipartimento di Scienze e Tecnologie, Università di Napoli “Parthenope”, Napoli, Italy

Handling Editor: Argyro Zenetos

Received: 29 October 2013; Accepted: 4 February 2014; Published on line: 28 February 2014

Abstract

Effects of ocean acidification (OA) on the colonization/settlement pattern of the epibiont community of the leaves and rhizomes of the Mediterranean seagrass, *Posidonia oceanica*, have been studied at volcanic CO₂ vents off Ischia (Italy), using “mimics” as artificial substrates. The experiments were conducted in shallow *Posidonia* stands (2-3 m depth), in three stations on the north and three on the south sides of the study area, distributed along a pH gradient. At each station, 4 rhizome mimics and 6 artificial leaves were collected every three months (Sept 2009-Sept 2010). The epibions on both leaf and rhizome mimics showed clear changes along the pH gradient; coralline algae and calcareous invertebrates (bryozoans, serpulid polychaetes and barnacles) were dominant at control stations but progressively disappeared at the most acidified stations. In these extremely low pH sites the assemblage was dominated by filamentous algae and non calcareous taxa such as hydroids and tunicates. Settlement pattern on the artificial leaves and rhizome mimics over time showed a consistent distribution pattern along the pH gradient and highlighted the peak of recruitment of the various organisms in different periods according to their life history. *Posidonia* mimics at the acidified station showed a poor and very simplified assemblage where calcifying epibions seemed less competitive for space. This profound difference in epiphyte communities in low pH conditions suggests cascading effects on the food web of the meadow and, consequently, on the functioning of the system.

Keywords: Seagrass, epiphytes, mimics, CO₂ vents, colonization pattern, recruitment, biodiversity, Mediterranean Sea.

Introduction

The amount of CO₂ in the atmosphere has steadily increased since the industrial period. According to estimates, if greenhouse gas emissions continue to rise at current rates, the atmospheric CO₂ concentration levels will be 500 ppm by 2050 and 800 ppm by 2100 (IPCC, 2007). The surface ocean pH level may therefore fall to 7.7 or 7.8 with an increase in acidity of 150 % compared to pre-industrial values (Hardt & Safina, 2010). This decrease in the ocean pH level, as a result of atmospheric CO₂ dissolution in the surface waters of the oceans, is termed “ocean acidification” (OA) (Caldeira & Wickett, 2003) or “the other CO₂ problem” (Doney et al., 2009). In particular, OA is the result of carbonic acid formation (H₂CO₃), which dissociates to bicarbonate (HCO₃⁻), carbonate ions (CO₃⁻²) and protons (H⁺).

Acidification affects mainly the process of calcification of organisms such as corals, mollusces, and many other organisms with skeletons and shells composed of calcium carbonate (Royal Society, 2005; Doney et al., 2009; Lombardi et al., 2011a, b). In addition, when the seawater is combined with other kinds of natural and/or anthropogenic stress factors (e.g. warming, pollution and overfishing), it may cause sensible changes in the benthic community structure (Kroeker et al., 2010; Rodolfo-Metalpa et al., 2011), impacting most fundamental biological and geochemical processes (Kleypas et al., 2006; Fabry et al., 2008). Many laboratory studies have shown that the early life stages of several organisms are also negatively influenced by acidified seawater (Kroeker et al., 2010) and this has been observed also in *in situ* experiments at CO₂ vents (Cigliano et al., 2010; Ricevuto et al., 2012). However, the response of multispecies assemblages to OA at naturally acidified water is still poorly documented, especially regarding highly complex systems built by structuring, habitat-forming species, such as seagrass meadows (Martin et al., 2008).

Posidonia oceanica (L.) Delile is the endemic and dominant seagrass in the Mediterranean Sea. It forms extensive meadows from the surface down to a maximum of about 40 m depth (Procaccini et al., 2003). Studies on the fauna associated to *P. oceanica* revealed high diversity of species settled both on leaves and rhizomes (Mazzini et al., 2009).
zella et al., 1992; Cocito et al., 2012) and belonging to different taxonomic groups, which includes many calcifying taxa such as coralline algae, crustaceans, mollusces, serpulid polychaetes, bryozoans (Mazzella et al., 1992; Buia et al., 2000; Borg et al., 2006; Balata et al., 2007; Nesti et al., 2009).

Within the Posidonia complex system, the epiphytes settled on the leaves and the rhizomes play an important role in the food web and functioning of the meadows (Mazzella et al., 1992). The epiphytic algal component represents the main item for energy transfer within the “grazing chain” of the seagrass food-web, from primary producers to higher trophic levels through the consumption due to small mesoherbivores, a guild of grazers that not only fed on the system but also found shelter and permanent habitat in the meadow (Brawley, 1992). The animal component of the epiphytes is also consumed by other specialized invertebrates (Gambi & Morri, 2008) and shows interesting examples of adaptation to the special local conditions of the leaf canopy, with several characteristic and/or exclusive species (e.g. the bryozoan Electra posidoniae).

In addition, the epiphytes represent sensitive indicators of natural or anthropogenic impacts (e.g. eutrophication) (Morri, 1991), and are able to record the environmental alterations resulting from climate change (e.g. seawater acidification) (Martin et al., 2008). In fact, the epiphytic community of P. oceanica, and especially that found on the leaves, mainly consists of short-lived species which show a highly seasonal development, following the cycle of leaf growth (Mazzella et al., 1989), as well as a high degree of small scale spatial variability (Nesti et al., 2009 and literature herein).

Up to date the only study dealing with seagrass epiphytes in relation to OA is that carried out by Martin et al. (2008) along an OA gradient at natural CO₂ vents off Ischia. These authors highlighted big differences in the composition and structure of the calcareous epiphytic community of P. oceanica leaves in acidified seawaters, where coralline algae and other calcifiers were strongly reduced or absent. However, Martin et al. (2008) limited their study to a single spatial transect (on the south side of the study area) and on a single observation period (April), and did not consider the community settled on the rhizomes.

Similar results, showing a reduced colonization of calcareous macroalgae and calcifying benthic invertebrates colonizing the hard rocky reefs, adjacent to the Posidonia stands in the same study area, were shown by other authors (Hall- Spencer et al., 2008; Kroeker et al., 2011; Porzio et al., 2011). Some of the patterns observed in the adult populations of various species of the rocky substrate were due to selective pressure on the larval and juvenile stages (Cigliano et al., 2010; Ricevuto et al., 2012).

The overall aim of this study is to highlight the effects of ocean acidification on the colonization and settlement pattern of the Posidonia epibiont community of the leaves and rhizomes along a gradient of pH reduction, and increased pCO₂, using a new experimental approach with “mimics” (see Methods) (Gambi et al., 2011; Cocito et al., 2012). The plant mimics were used to reduce the impact of experimental studies on the natural Posidonia meadow within the study area. Moreover, mimics are essential for having an un-colonized substrate to examine the seasonal cycles of epiphyte re-colonization at a given time interval and to compare possible quantitative and qualitative differences in species between artificial and natural substrates (i.e. P. oceanica tissue). In detail, our goals are i) to characterize the Posidonia stands where Posidonia mimics were placed; ii) to report colonization pattern on the first three months of exposure along the gradients for both the leaves and rhizome mimics; iii) to study the settlement pattern through time of the main epibionts (limited to the south side only).

Materials and Methods

Study site

The study area is adjacent to Castello Aragonese, a volcanic dome and islet located at the north-eastern side of Ischia island (Gulf of Naples, Italy) (40°43.84’N 13°57.08’E) (Rittmann & Gottini, 1981). Previous and recent gas analyses (Tedesco, 1996; Hall- Spencer et al., 2008) showed that the seawater is acidified by gas comprising 90.1-95.3 % CO₂, 3.2-6.6 % N₂, 0.6-0.8 % O₂, 0.08-0.1 % Ar and 0.2-0.8 % CH₄ (no sulphur present, while both water temperature and salinity do not change respect to normal conditions) (Hall- Spencer et al., 2008; Karrison et al., 2011; Kroeker et al., 2011). The seawater pH varies from the normal value of 8.17 to as low as 6.57 along a continuous gradient occurring both at the north and south-western sides of the Castello (Kroeker et al., 2011; Lombardi et al., 2011b). On both sides of the Castello islet a shallow Posidonia oceanica meadow subjected to CO₂ emission is present (Buia et al., 2003; Hall- Spencer et al., 2008). On the south side, the most intense venting activity include also Posidonia meadow, here in some restricted areas Posidonia can reach very shallow depth (0.5-1 m), and forms a sort of reef. This side of the Castello is also more sheltered to water movement respect to the north side which is exposed to the dominant north-western winds. At the north side, Posidonia meadow is very close to the active venting area, but direct gas bubbling is very limited or absent inside the meadow. In addition, in this area, anecdotal observations of one of us (MCG) as well as other researchers, testify that venting was absent in the early ’80 (Russo G.F., Bou douresque C.-F., Cinelli F., Ott J., Pronzato R., personal communication), so that seawater acidification is a relatively recent phenomenon on the north side of the Castello. The experiments are conducted in shallow Posidonia stands...
at 2.5-3.5 m depth, in three stations located on the north side (N1, N2, N3) and three on the south side (SC, S2, S3) distributed along a gradient of pH. The stations have been selected based on previous studies in relation to proximity to CO2 emissions and mean pH values recorded (see Cigliano et al., 2010 for a map of the area, Lombardi et al., 2011b). The S3 and N3 stations, acidified sites with very low pH, are located in an area with high bubbling and dense emissions (<10 bubbles emissions to m²). Mean pH values are approximately 7.2 at the northern and 6.6 at the southern sites, near the rocky reef (Kroeker et al., 2011). In these stations, the P. oceanica meadow is very dense (over 900 shoots/m²) (Buia et al., 2003) with the short leaves due to the frequent grazing by the herbivorous Sarpa salpa, which is the most abundant fish species in the area (Guidetti & Bussotti, 1998; Bussoiti & Guidetti, 1999). The S2 and N2 stations, low-intermediate pH conditions, are located approximately 60 m far from S3 and N3. S2 and N2 have mean pH values around 7.7-7.8 (Hall-Spencer et al., 2008; Lombardi et al., 2011b), but it has also a considerable variability in time, also at daily scale (Kerrison et al., 2011; Kroeker et al., 2011), and the bubbles emissions are reduced compared to the acidified area (>5 bubbles emissions to m²). The SC and N1 are control stations, located approximately 80 m from the S2-N2, where the CO2 emissions are almost absent and the pH values are those of normal sea waters (8.1). The south side station (SC) has been used as a control site for previous transplant experiments (Lombardi et al., 2010, 2011a,b; Rodolfo-Metalpa et al., 2011), and it does not coincide with the south control station of other studies (e.g., Kroeker et al., 2011, 2013a).

Sampling methods and data analysis

Artificial structures mimicking the plant morphology, both rhizome and leaves have been developed ad hoc for this study. This methodology, implying the use of artificial substrates, is analogous to the use of panels and volcanic tiles to study the fouling, community re-colonization and succession pattern in hard bottom environments (Relini & Faimali, 2004; Kroeker et al., 2013a). Moreover, artificial structures mimicking the physical structure and morphology of a seagrass have already been used by other authors (Pinkney & Micheli, 1998), especially to study the re-colonization of associated flora and fauna (Bologna & Heck, 1999; Lee et al., 2001; Cocito et al., 2012) and to detect the specificity of the epiphytes for the seagrass substrate (Mazzella et al., 1981). Although seagrass mimics are not exact surrogates of the plant (Pinkney & Micheli, 1998), if appropriately designed, they can simulate plant architecture and structure. So they have the merit to reduce variability of plant features, respect to the natural context. Mimics also allow to test the simple influence of plant architecture and physical structure on the epibiont community colonization vs the biological and chemical effect. In addition, in the specific context of the natural CO2 vents, the use of mimics reduces the impact on the Posidonia system caused by shoot collection in the relatively limited extension of the Posidonia meadows here available. Mimics (Fig. 1) of Posidonia rhizomes consist of hol-

Fig. 1: Artificial structures mimicking the P. oceanica rhizome and leaves used to study colonization and settlement patterns of the epibiont populations. A) rhizome mimic; B) 3 metal hooked stick with artificial leaves tied; C) a whole view of a mimic Posidonia shoot.
epibionts over time in the south side stations (SC, S2, S3), 3 additional rhizome mimics and 6 artificial leaves were taken, while 3 new mimics and 6 artificial leaves were reinserted at three month time intervals from September 2009 (December 2009, March, June and September 2010). The south side was selected to reduce the sampling effort, since here the pH gradient is stronger than to the north side (Kroeker et al., 2011). At each station, Posidonia shoot density was measured in September 2010, and samplings of Posidonia natural shoots (6-10 shoots) for the morphometric analysis were done in five periods through the year in order to characterize the features of the Posidonia shoots in the plot used for mimic’s deployment (Buia et al., 2004). On rhizome mimics and artificial leaves, the epibiont identification at the lowest taxonomic level possible was performed using a stereo microscope. The percentage of epibiont coverage and the abundance of the main epibiont algal and animal taxa were calculated using the image-analyzing program Vidana 1.1. Data related to cover, as well as those on shoot morphometric measurements were subjected to statistical analysis using ANOVA (one and two ways) to test differences among stations (pH factor), side and sampling periods. Tukey HSD post-hoc analysis was performed to further highlight differences among stations. Data was checked for homogeneity of variance using a Cochran C test (p > 0.05). Where data was found to be heterogeneous, data was \(\sqrt{X + 1} \) transformed (Underwood, 1997). The analyses were performed with the program STATISTICA 7. Only for the community settled on the rhizome mimics, a matrix was produced (taxa/station) for a multivariate analysis. The distance matrix was calculated using the Bray-Curtis algorithm to obtain the ordination model (MDS) and the ANOSIM test was applied to verify the significance of pHs (stations) and side (north vs south). These analyses were performed with the program PRIMER+PERMANOVA v.6 (Warwick & Clarke, 1991).

Results

Shoot density and morphometric analysis of Posidonia along the pH gradient

Posidonia oceanica shoot density showed, both at the north and south sides, a significant decrease from the most acidic stations (N3 and S3) to the control ones (N1 and SC) (two-way ANOVA, \(F = 14.67, p = 0.000, \text{d.f.} \ 5 \)), although the depth did not vary much between the stations (2-3.5 m). Indeed, the shoot density values were the highest at 2-2.5 m depth at the acidified stations (N3 = mean 858 ± 85 (s.d.) shoot m\(^{-2}\); S3 = 1014 ± 73; N2 = 708 ± 98; S2 = 726 ± 123; N1 = 438 ± 88; SC = 494 ± 125). The mean leaf length and mean shoot surface (pooling the 5 sampling periods) were higher on the south side respect to the north (two-way ANOVA, leaf length \(F = 5.25; p = 0.02, \text{d.f.} \ 1 \); leaf surface \(F = 7.01; p = 0.013, \text{d.f.} \ 1 \)). The mean leaf length was also significantly different among stations, with values in N2, N3 and S3 lower than all the others (two-way ANOVA, \(F = 2.87; p = 0.03, \text{d.f.} \ 5 \), Tukey post-hoc comparisons). Leaf surface varied significantly only in S2 which showed much higher values (two-way ANOVA, \(F = 3.97; p = 0.009, \text{d.f.} \ 5 \), Tukey post hoc comparisons) (Fig. 2A, B). The analysis of the apex erosion coefficient (Fig. 2C) reveals that biological erosion, due to various grazers, is the main source of leaf damaging. The biological erosion was significantly higher in N3 and

Fig. 2: Trends of Posidonia oceanica morphological features measured in the mimic’s plots along the pH gradient (each station is the mean of 5 sampling periods between Sept 2009 - Sept 2010). Bars represent standard deviations. A) mean leaf length; B) mean surface of the shoot (cm\(^2\)); C) percentage of types of leaf apex erosion; D) percentage of types of biological apex erosion.
S3 stations (two-way ANOVA, $F = 5.52; p = 0.001$, d.f. 5). Among the type of biological damaging, *Sarpa salpa* grazing (Fig. 2D) resulted the most common and the dominant type in N3 and S3 stations (two-way ANOVA, $F = 16.55; p = 0.000$, d.f. 5). Grazing by crustaceans (manly isopods) resulted significantly higher in SC (two-way ANOVA, $F = 3.69; p = 0.012$, d.f. 5, Tukey post-hoc comparisons). So overall, the acidified *Posidonia* stands are characterized by extremely high shoots density, short leaf length and consequently low leaf surfaces, mainly due to intense grazing by *Sarpa salpa* fish.

Colonization of mimics along the pH gradient

For the first three months of exposure (Sept-Dec 2009) (Fig. 3), the algal cover on the artificial leaves at both south and north sides showed a large presence of coralline algae (genera *Hydrolithon/Pneophyllum* and *Titanoderma*), found under control or intermediate pH conditions (N1, N2, SC) and significantly reduced or absent at the acidified stations (N3, S3) (Fig. 3) (one-way ANOVA, Table 1). The genus *Titanoderma* was present only at the stations on the north side. On the contrary, the filamentous macroalgae, belonging to Chlorophyceae and Phaeophyceae (Chloro/Phaeo in Fig. 3), were abundant at the most acidified stations (ANOVA, Table 1). The sessile fauna was represented only by Hydrozoa and only at the control station N1. Grazing traces, due to radular marks of large gastropods (e.g. *Gibbula* spp.) on epiphytic biofilm and slime on artificial leaves, were visible at the acidified stations (N3, S3) and in S2, where Chloro/Phaeo algal cover dominated. Rhizome mimics (Fig. 4) showed a large presence of encrusting coralline algae at the control and intermediate stations of the north side (N1, N2) and at the control station of the south side (SC). These coralline algae were absent at the acidified station S3, while they were reduced at N3 and S2 (one-way ANOVA, Table 2). On the contrary, at the acidified stations green and brown filamentous algae (Chloro/Phaeo) increased, and non-calcifying red algae (other Rhodophyceae) were also present (Fig. 4A). The abundance of calcifying sessile fauna, including Ciriropedia (*Balanus* spp.), Bryozoa, and Serpulidae (which include Serpulinae and Spirorbinae) polychaetes, showed a significant decrease from control stations to the acidified ones where all these groups were absent (Fig. 4B). Spirorbinae polychaetes, characterized by spiral calcareous tubes, showed high abundances at control stations and a trend consistent with the other calcifying groups:

![Fig. 3: Trend of cover (%) of the main macroalgal taxa in the artificial leaves of *P. oceanica* after the first 3 months of exposure (Sept. - Dec. 2009) at the north and south sides of Castello Aragonese. Bars represent standard deviations.](http://epublishing.ekt.gr)
Fig. 4: Trend of cover (%) of the main macroalgal taxa and abundance of the main sessile invertebrates on the rhizome mimics of *P. oceanica* after the first 3 months of exposure (Sept. - Dec. 2009), at the north and south sides of Castello Aragonese. Bars represent standard deviations.
absent at the acidified stations (N3, S3) (Fig. 4C). The multivariate analysis (nMDS model, graph not shown) showed a clear separation between mimics at the acidified S3 and N3, and all other stations, with mimics of the control station SC forming a relatively compact subgroup. The ANOSIM test highlighted a global $R = 0.71$, $P < 0.1\%$ for the station factor (pH), while the side factor (north vs south) was not significant.

Settlement pattern through time on mimics

The study of the settlement pattern over time was conducted only on the south side (replacement of 3 mimics and 6 artificial leaves every three months). The analysis of succession on artificial leaves (Fig. 5) showed that coralline algae were absent in S3 in all periods of exposure, and always low in S2. Settlement at control station occurred mainly in June-Sept 2010 with mean cover significantly higher than in the other periods (ANOVA, Table 2A). The filamentous macroalgae (Chloro/Phaeo) were present in all stations, but with a greater abundance at the acidified station S3 with a peak in Sept-Dec 2009, and in S2 in Jun-Sept 2010 (ANOVA, Table 3). The sessile fauna showed a scarce occurrence (not shown) of a few taxa represented by both calcifying (Spirorbinae, Bryozoa) and non-calcifying organisms (Hydrozoa, Ascidiacea), without any trend according to the pH or time.

Rhzome mimics (Fig. 6) showed absence of coralline algae in S3 in all periods and a strong reduction in S2, consistently with pattern observed on the artificial leaves (ANOVA, Table 2B). At the control station coralline settlement peaked in Sept-Dec 2009, although they are present throughout the year. On the contrary, the green and brown filamentous macroalgae (Chloro/Phaeo) prevailed in S3 and S2, although scarcer in Dec-Mar 2010, and increased in Mar-June 2010 especially at the acidified station S3 (ANOVA, Table 2B). Also the sessile fauna showed different settlement pattern along the pH gradient and in time (Fig. 7). The Cirripedia (represented by two Balanus species), always scarce at the acidified station and absent in June-Sept 2010, settled on the other

Table 1B. One-way ANOVA of epibiont on the rhizome mimics after the first 3 months of exposure (Sept - Dec 09), among stations (SC - N3) and between sides (North vs. South) of Castello Aragonese.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Side S - N</th>
<th>F values</th>
<th>df</th>
<th>p</th>
<th>F values</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC - N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corallinaceae</td>
<td>***</td>
<td>22.09</td>
<td>5</td>
<td>***</td>
<td>0.47</td>
<td>1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Rhodophyceae</td>
<td>n.s.</td>
<td>1.46</td>
<td>5</td>
<td></td>
<td>3.23</td>
<td>1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Chloro/Phaeophyceae</td>
<td>***</td>
<td>9.04</td>
<td>5</td>
<td>***</td>
<td>4.45</td>
<td>1</td>
<td>**</td>
</tr>
<tr>
<td>Cirripedia</td>
<td>**</td>
<td>4.29</td>
<td>5</td>
<td>**</td>
<td>1.08</td>
<td>1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>***</td>
<td>17.46</td>
<td>5</td>
<td>***</td>
<td>0.72</td>
<td>1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Serpulinae</td>
<td>***</td>
<td>6.85</td>
<td>5</td>
<td>***</td>
<td>0.66</td>
<td>1</td>
<td>n.s.</td>
</tr>
<tr>
<td>Spirorbinae</td>
<td>***</td>
<td>8.03</td>
<td>5</td>
<td>***</td>
<td>3.17</td>
<td>1</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Fig. 5: Trend of settlement (algal cover) of the main macroalgal taxa in the artificial leaves of *P. oceanica* in the period Sept. 2009 - Sept. 2010 along the gradient, in the south side of Castello Aragonese. Bars represent standard deviations.
Fig. 6: Trend of cover (%) of the main macroalgal forms in the rhizome mimics of *P. oceanica* in the period from Sept. 2009 - Sept. 2010 along the gradient, in the south side of Castello Aragonese. Bars represent standard deviations.

Table 2A. One-way ANOVA of the main macroalgal forms in the artificial leaves, among stations (SC - S3), every three months (December 2009, March, June and September 2010), and in the period (Sept 09 - Sept 10).

<table>
<thead>
<tr>
<th>Factors</th>
<th>Hydro/Pneo</th>
<th>Titanoderma</th>
<th>Chloro/Phaeo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC - S3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept - Dec 09</td>
<td>74.11</td>
<td>0.85</td>
<td>523.16</td>
</tr>
<tr>
<td>Dec 09 - Mar 10</td>
<td>35.03</td>
<td>0.57</td>
<td>104.63</td>
</tr>
<tr>
<td>Mar - June 10</td>
<td>131.27</td>
<td>0.03</td>
<td>20.23</td>
</tr>
<tr>
<td>June - Sept 10</td>
<td>149.90</td>
<td>6.47</td>
<td>36.30</td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 09 - Sept 10</td>
<td>10.59</td>
<td>4.08</td>
<td>4.63</td>
</tr>
<tr>
<td>Post Hoc Test</td>
<td>June - Sept 10</td>
<td>June - Sept 10</td>
<td>Dec 09 - Mar 10</td>
</tr>
</tbody>
</table>

Fig. 7: Trend of the abundance of the main sessile invertebrates in the rhizome mimics of *P. oceanica* in the period from Sept. 2009 - Sept. 2010 along the gradient, in the south side of Castello Aragonese. Bars represent standard deviations.
stations mainly in Dec-Mar 2010 (ANOVA, Table 2B); the Bryozoa were scarce in S3 in all periods, and showed a clear peak in Mar-June 2010 in intermediate and control stations. The bryozoans represent the most diverse group of epibionts found on the mimics, with at least eleven species some of which have been found also in low pH; Serpulinae, always absent in S3 in all periods, showed in the other stations the greater settlement in June-Sept 2010. Finally, Spirorbinae (graph not shown) almost absent in S3 in all periods, showed in the other stations a long settlement period, although with strong time fluctuations, with minima in Dec-Mar (mean number of individuals: 79 per mimic in S3 and 35 in S2) and maxima in Jun-Sept (mean number of individuals: 669 per mimic in SC and 637 in S2) (ANOVA, Table 2B).

Discussion

In the present study *Posidonia* mimics were exposed to a natural acidification gradient due to volcanic CO$_2$ emissions. The results show that mimics highlight well the differences between leaves and rhizomes in epibiont colonization which occur in the natural shoots, although we have not yet compared the mimic epibiont composition of both rhizome and artificial leaves with the natural epiphytic communities. In natural *Posidonia* shoots, leaves always show reduced epiphyte diversity represented by more specialized taxa, respect to rhizomes assemblages (Chimenz et al., 1989; Balata et al., 2008; Gambi & Morri, 2008). The single study related to natural leaf epiphytes along the pH gradient at the Castello south side (Martin et al., 2008) highlighted the dominance of calcareous algae and some bryozoans at the control stations, and a strong reduction of all the calcareous organisms at the acidified sites. So our results related to artificial leaves are very consistent with those occurring in natural shoots.

The artificial leaves show a clear reduction of all encrusting calcareous Corallinaceae and animal taxa at the acidified stations both on the north and south sides (N3, S3) and, on the contrary, an increase of the filamentous algae (Chloro/Phaeo). These results are consistent with data reported in previous studies which highlight the sensitivity of calcareous algae to the low pH level (Jokiel et al., 2008; Martin et al., 2008; Porzio et al., 2011). Filamentous algae and thick biofilm occurring at acidified stations can explain the grazing traces visible on some artificial leaves due to radular scraping by gastropods (e.g. *Gibbula* spp.) (Mazzella & Russo, 1989), given the fact that artificial leaves lack the phenolic compound that has been shown to prevent or limit grazing (Agostini et al., 1998; Dumay et al., 2004).

The rhizome mimics’ analysis shows a community with a higher diversity of organisms, compared to the artificial leaves. Indeed, different serpulid and spirorbids species, two barnacle species, and eleven bryozoan species, in addition to the algal species, are present on the mimics. The distribution of both plant and sessile animals on the rhizome mimics along the pH gradient is consistent with a significant reduction of the calcareous organisms on the leaf mimics at the stations with very low pH, and an increase of the filamentous algae. This trend is detectable at both north and south side stations, and the pH is the factor that influences the similarity of the community at the stations as a whole, as summarized by the multivariate analysis model nMDS and ANOSIM test.

The colonization and settlement on rhizome mimics in time shows temporal trends diversified among the different sessile organisms. According to Cocito et al. (2012) who studied bryozoan settlement on mimics in a deep *Posidonia* meadow off Ischia, bryozoan settlement mainly occurred in spring time, thus confirming observations on bryozoans’ recruitment peak on mimics. It is worth to note that the obliged epiphytic species of *Posidonia, Electra posidoniae*, is present only on natural leaves and never on the artificial leaves, a pattern observed also in a different study using artificial leaves (Michel, 2011). This fact supports once more that natural leaves are not a simple substrate for epiphytes but exert an attractive or repulsive action due to specific compounds. For both serpulids and spirorbids recruitment peaks in summer are consistent with the actual knowledge on the reproductive biology, at least for the Mediterranean species (Bianchi,
Overall, every analyses of leaves’ and rhizomes’ mimics show a similar trend represented by a reduction or total disappearance of calcifying forms in the low pH stations. This is consistent with what observed in studies on benthic plant components (Porzio et al., 2011) and animals of hard substrata studied in the same vent area (Hall-Spencer et al., 2008; Kroeker et al., 2011). These findings confirm that most calcifying organisms are particularly sensitive to increased seawater acidification, and may be less competitive for space than non-calcifying organisms in areas with very low pH levels. However, some of them may still persist in low pH due to their mineralogy and calcification features. In fact, cellular wall in coralline algae is impregnated with deposits of calcium carbonate in the form of calcite, but with a variable amount of magnesium in the crystal lattice (with variable concentrations 3.5-6% Mg; Milliman, 1974). Similarly, the ability of some bryozoans to persist at least for short period in low pH could be explained by the diverse skeletal mineralogies. Most bryozoan species are calcitic, but some have aragonitic or bimineralic skeletons, and the complex mineralogies can vary among species, within a single colonies and sometimes transition from one mineralogy to another can be observed within the same modular unit (Smith et al., 2006; Taylor et al., 2008, 2009). Recent experiments conducted on bryozoans transplanted in the same volcanic vent area off Ischia where this study was conducted, revealed different responses depending on organic components and mineralogy of the species, with possible reallocation of energy resources within the colonies when exposed to unfavourable conditions such as low pHs (Lombardi et al., 2011a, b). The presence of calcifying bryozoans species along a pH gradient, as those observed on the rhizome mimics, could be explained by the possibility of the larvae to settle and tolerate low pH at least for few weeks or species could be potentially able to ‘adapt’ to the changing chemistry (pH) conditions. The Cyclostome Patinella radiata, for example, has been found on natural Posidonia leaves in Ischia growing along a pH gradient revealing its potential to settle, live and reproduce in below normal pH environments (Lombardi C., personal observation).

Overall community simplification and altered succession dynamics have been highlighted on hard bottoms off the Castello area, using artificial substrates (volcanic tiles) by Kroeker et al. (2013a), and on natural rocky substrates (Kroeker et al., 2013b). As for the Posidonia system, considering that mimics resulted a good proxy of the natural epiphytic community, this profound difference in epibiotic communities in areas with low and very low pH levels, showed also by the natural leaf community (Martin et al., 2008), has certainly cascading effects on the food web of the meadow, and must influence the functioning of the system. Studies on both epiphytes and motile fauna of these acidified Posidonia stands are in progress to highlight the effects of acidification on the whole community associated to this important ecosystem of the Mediterranean Sea.

Acknowledgements

We wish to thank the staff of the Stazione Zoologica Anton Dohrn at Villa Dohrn, in particular Capt. V. Rando, for assistance during samplings; B. Iacono and V. Zupo, for assistance in the acquisition of mimic’s photos. We also wish to thank Prof. G. Relini for identification of barnacles, and L. Porzio for identification of Titanodermat; K.J. Kroeker for help in the use of the image analysis program Vidana 1.1; and the ceramist C. Mattera (Ischia) for the construction of Posidonia mimics. Rosanna Messina kindly checked the English. This work has been finalized in the framework of the Flagship RITMARE - The Italian Research for the Sea - coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research within the National Research Program 2011-2013.

References

Buia, M.C., Gambi, M.C., Lorenti, M., Dappiano, M., Zupo, V., 2001. Bryozoans transplanted in the same volcanic vent area off Ischia where this study was conducted, revealed different responses depending on organic components and mineralogy of the species, with possible reallocation of energy resources within the colonies when exposed to unfavourable conditions such as low pHs (Lombardi et al., 2011a, b).

Kroeker, K.J., Micheli, F., Gambi, M.C., 2013a. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change, 3, 156-159. DOI: 10.1038/NClimate1680

Pesca, Ancona, 3 (1), 481-492.

