

Mediterranean Marine Science

Vol 16, No 3 (2015)

Contribution to the study of deep coastal detritic bottoms: the algal communities of the continental shelf off the Balearic Islands, Western Mediterranean

S. JOHER, E. BALLESTEROS, C. RODRIGUES-PRIETO

doi: 10.12681/mms.1249

To cite this article:

JOHER, S., BALLESTEROS, E., & RODRIGUES-PRIETO, C. (2015). Contribution to the study of deep coastal detritic bottoms: the algal communities of the continental shelf off the Balearic Islands, Western Mediterranean. *Mediterranean Marine Science*, *16*(3), 573–590. https://doi.org/10.12681/mms.1249

Contribution to the study of deep coastal detritic bottoms: the algal communities of the continental shelf off the Balearic Islands, Western Mediterranean

S. JOHER¹, E. BALLESTEROS² and C. RODRÍGUEZ-PRIETO¹

¹Universitat de Girona, Facultat de Ciències, Departament de Ciències Ambientals, Campus de Montilivi, 17071 Girona, Spain ²Centre d'Estudis Avançats de Blanes - CSIC, Accés Cala Sant Francesc 14, Blanes, 17300 Girona, Spain

Corresponding author: sergi.joher@udg.edu

Handling Editor: Konstantinos Tsiamis

Received: 9 February 2015; Accepted: 8 May 2015; Published on line: 14 September 2015

Abstract

Three main algal-dominated coastal detritic communities from the continental shelf off Mallorca and Menorca (Balearic Islands, Western Mediterranean) are described herein: maërl beds dominated by *Spongites fruticulosus* and forests of *Laminaria rodriguezii* located in the Menorca channel, and *Peyssonnelia inamoena* beds found along the Southern coast of Menorca. There seems to be a gradient of disturbance from the highly disturbed *Peyssonnelia* beds to the almost undisturbed *L. rodriguezii* forests. Whether this gradient is the result of current and past anthropogenic pressure (e.g. trawling intensity) or is driven by natural environmental factors needs further assessment. Finally, the location of the target communities by means of ROV dives combined with the use of a Box-Corer dredge and beam trawl proved to be a good methodology in the study of the composition and structure of these deep water detritic communities.

Keywords: detritic bottoms, *Laminaria rodriguezii*, macroalgae, sampling methods, Mediterranean Sea, *Peyssonnelia inamoena*, *Spongites fruticulosus*.

Introduction

Mediterranean algal-dominated coastal detritic bottoms usually develop at depths between 25 and 130 m (Pérès, 1985; Giaccone *et al.*, 1994). They are composed of silt, sand, gravels, and calcareous skeletons of benthic organisms such as molluscs, bryozoans, cnidarians, echinoderms and macroalgae. Free-living members of the orders Corallinales and Peyssonneliales (Pérès, 1985; Klein & Verlaque, 2009) are usually the major components of these bottoms. Both the skeletons and the calcareous algae allow the settlement and growth of organisms usually found on rocky bottoms (Bianchi, 2001), creating a special habitat harbouring animals and plants of both soft and hard bottoms (Laborel, 1987).

Different assemblages have been recognized in Mediterranean algal-dominated coastal detritic bottoms, each one characterized by either one or a reduced number of more or less exclusive species (e.g. see Dieuzede, 1940; Huvé, 1954, 1956; Jacquotte, 1962; Pérès & Picard, 1964; Picard, 1965; Giaccone, 1967; Bourcier, 1968; Augier & Boudouresque, 1978; Ballesteros, 1988, 1994; Giaccone *et al.*, 1994). The Balearic Islands harbour extensive areas of these kinds of bottoms and different seascapes have been described between 52 and 93 m, using bottom trawls (Joher *et al.*, 2012): maërl beds dominated by *Spongites fruticulosus*, deep water forests of *Laminaria rodriguezii*, two types of *Peyssonnelia* beds (one dominated by *P. inamoena* and the other one by *P. rubra*, both species presenting hypobasal calcification, and the last one presenting some cystolists too), and red algae meadows dominated by *Osmundaria volubilis* and *Phyllophora crispa*.

However, although bottom trawling was effective for the characterization of underwater landscapes, descriptions at community level require the use of smaller sampling areas. Several ROV dives were performed in 2009 in the Menorca channel and along the Southern coast of Menorca (Barberá *et al.*, 2009, 2012) in order to locate certain homogeneous areas harbouring the communities that characterized the seascapes found by Joher *et al.* (2012). Three of these areas were located: one with maërl beds of *S. fruticulosus*, another with forests of *L. rodriguezii*, and a last one with *P. inamoena* beds. In contrast, extensive areas covered by the assemblage dominated by *Osmundaria volubilis* and *Phyllophora crispa* were found, with a patchy distribution.

Maërl beds dominated by *S. fruticulosus* have seldom been reported from the Balearic Islands (Barberá *et al.*, 2012), and their composition and structure have only been studied from Tossa de Mar (Northwestern Mediterranean, Spain) (Ballesteros, 1988), where the maërl bed

grows in reduced light levels (around 0.3 % of surface PAR irradiance) and moderate temperature range conditions (12.5 to 21.5°C). Forests of L. rodriguezii develop under low light intensities (usually at depths between 50 and 120 m, being more abundant below 70 m), low temperature (less than 14°C), and unidirectional current conditions (Feldmann, 1934; Huvé, 1955; Molinier, 1960; Pérès & Picard, 1964; Giaccone, 1967, 1971; Lüning, 1990; Giaccone & Di Martino, 1997). Most information available about these rarefied kelp forests focuses on species composition although there are no quantified lists of species (Huvé, 1955; Molinier, 1956; Gautier & Picard, 1957). Finally, several authors have reported Peyssonne*lia* beds developing on circalittoral bottoms, mainly along the coasts of Marseille, the Tyrrhenian Sea and the Balearic Islands (e.g. Huvé, 1954; Carpine, 1958; Parenzan, 1960; Augier & Boudouresque, 1978; Basso, 1990; Ballesteros, 1994; Joher et al., 2012), highlighting the variety of the dominant Peyssonnelia species. These beds also develop under low light conditions but they seem to need pulsing current conditions, which prevent the burial of living Peyssonnelia spp. (Bourcier, 1968; Basso, 1990). Two kinds of Peyssonnelia beds, one dominated by P. rosa-marina and the other by an unidentified Peyssonnelia have been reported previously from the Balearic Islands (Ballesteros, 1994), but there is no published information on the beds dominated by P. inamoena.

The purpose of this paper is to describe the species composition and abundance of three specific communities from the detritic bottoms off the Balearic Islands (*S. fruticulosus, L. rodriguezii* and *P. inamoena*), which characterized three of the landscapes described previously in Joher *et al.* (2012). Another objective was to check whether Box-Corer dredging and beam trawling, combined with ROV images, are suitable methodologies to characterize deep-water coastal detritic communities.

Materials and Methods

The sampling area was located in the Menorca channel and along the Southern coast of Menorca (the Balearic Islands, Western Mediterranean; Fig. 1). The continental shelf bottoms of this area are characterized by sediments of biogenic origin (Canals & Ballesteros, 1997; Fornós & Ahr, 1997) with a high percentage of carbonates (Acosta *et al.*, 2002), and the water column presents a high light transmittance (Ballesteros & Zabala, 1993; Canals & Ballesteros, 1997).

Sampling was performed in May 2009, during the MEDITS_ES05_09 campaign organized by the Centre Oceanogràfic de Balears (Instituto Español de Oceanografía). Target communities had been located previously by ROV during the CANAL0209 research survey (February-March 2009): large areas were occupied by the communities with *Spongites fruticulosus* and *Laminaria rodriguezii* in the Menorca channel at depths be-

tween 50 and 62 m, while the community dominated by *Peyssonnelia inamoena* was found on the Southern coast of Menorca, at depths of around 65 m.

Because of the deep-water distribution of these communities, we did not sample them by SCUBA diving but used other sampling methods: dredges (e.g. see Dieuzede, 1940; Huvé, 1956; Costa, 1960; Bourcier, 1968; Blunden et al., 1977; Bordehore et al., 2003; Peña, 2010) and beam trawls (Barberá et al., 2012; Ellis et al., 2013). Images obtained by ROV, together with previous results (Joher et al., 2012), showed that the community dominated by S. fruticulosus was very homogeneous, and composed mainly of small maërl-forming species (S. fruticulosus and Phymatolithon calcareum). There, samples were collected using a Box-Corer dredge (sampling area: 200 cm²). In contrast, communities with L. rodriguezii and P. inamoena were more heterogenous because of the size of the algae and the aggregation in clusters of the thalli of the characteristic species. There, the use of a Box-Core was disregarded, and samples were collected using a beam trawl (horizontal and vertical openings: 1.30 and 0.88 m, respectively; mesh size: 10 mm), at speeds of 2.5-3.0 knots. Trawling time ranged from 5 to 12 seconds and was controlled by a SCANMAR system (Scanmar Maritime Services Inc., Makati City, Philippines) in order to calculate the trawled area, which ranged from 6 to 16 m^2 .

We collected seven samples of the *S. fruticulosus* community, which were integrally quantified, and two from the *L. rodriguezii* and *P. inamoena* communities. All samples were preserved on board in 4% formalin:seawater. Samples of *L. rodriguezii* and *P. inamoena* were homogeneously extended occupying the corresponding sampled surface, and we took two replicates of $1.2x1.2 \text{ m}^2\text{per}$ sample. Samples and replicates were named *C s-r*, where *C* corresponds to each community, *s* to each sample, and *r* to each replicate. Then, they were sorted and identified to the minimum taxonomic level, and each taxon was quantified measuring its algal surface (Sa_i, in cm²) and biomass (B_i, as dry weight in g) (Ballesteros, 1992). Skeletons of dead Corallinales were rejected because we only wanted to quantify live specimens.

Several synthetic parameters were calculated for each sample/replicate: a) the number of species, total algal surface (Sa_T) and total biomass (B_T); b) the Index of Floral Originality (IFO = $(\sum 1/M_i)/n$), where M_i is the number of samples in which the species i occurred and n the number of species in the sample; c) the total algal surface and biomass of the maërl-forming species (MFS_{Sa}, MFS_B); d) Shannon's diversity index (H' = $-\sum p_i \log_2 p_i$), where p_i corresponds to the proportion of the measured parameter (Sa_i/Sa_T or B_i/B_T) for each species; and e) Pielou's evenness index (J' = H'/log₂S), where H' was based both on algal surface and biomass.

In order to verify the grouping of the samples, cluster analysis accompanied by the SIMPROF test (Clarke *et*

Fig. 1: Sampling locations of the three communities studied in the Menorca Channel and the Southern coast of Menorca. Isobaths of -50, -100 and -200 m are shown. Abbreviations: Spo, *Spongites fruticulosus* beds; Lam, forests of *Laminaria rodriguezii*; Pey, *Peyssonnelia inamoena* beds.

al., 2008) adjusted to 9999 permutations and a 0.1% significance level according to Potter *et al.* (2001), based on Sørensen and Bray-Curtis similarity matrices, were performed for each community. Finally, SIMPER tests were used to calculate species contribution to the similarities within each of the three studied communities and their characteristic species. These analyses were performed with PRIMER version 6 software (Clarke & Warwick, 2001).

Results

We identified up to 143 algal taxa at specific and infraspecific level (below named species for convenience) (Table 1), although some of them could not be identified to species level because either we had only small fragments of the specimens, they were sterile (e.g. *Agla*- othamnion sp., *Peyssonnelia* sp., *Polysiphonia* sp., unidentified Rhodophyta), or they are probably undescribed species (e.g. *Halymenia* sp., *Rhodymenia* sp.).

A total of 57 algal species were identified on the *Spongites fruticulosus* beds (Table 2), with a dominance (84.2%) of Rhodophyta (Fig. 2). The number of species per sample was 16±5; the Sa_T per sample 3965±2838 cm² m⁻²; and the B_T per sample 351 ± 270 g dw m⁻². Maërlforming species represented 76.8±21.5% of total Sa_T per sample, and 94.5±3.7% of B_T (Fig. 3). The characteristic species of these maërl beds were *S. fruticulosus* and *Phymatolithon calcareum* (SIMPER test, Fig. 4), which accounted for 80% of Sa_T and 82.6% of B_T. It should be noted that despite statistical analyses (cluster + SIMPROF), based both on qualitative and algal surface data, indicated that the samples belonged to a single significant group;

Fig. 2: Number of species (n) per community showing Rhodophyta, Phaeophyceae and Chlorophyta, and number of species and Index of Floral Originality (IFO) per sample (mean and standard deviation). Abbreviations: Spo, *Spongites fruticulosus* beds; Lam, *Laminaria rodriguezii* forests; Pey, *Peyssonnelia inamoena* beds.

value, the biomass as dry v fruticulosus beds; Lam, La	veight (B, ir <i>minaria roc</i>	1 g dw m ⁻²) <i>triguezii</i> fc	A. The introv Drests; Pey,	duced spec	ies are mar ilia inamoe	ked with a most shad	value con in asterisk MC, Menol	(*), and th rca Chann	e maërl-for el; SM, Sot	ming spec	ies, with a norca.	hashtag (#)). Abbrevia	tions: Spo,	Spongites
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Rhodophyta															
Acrochaetium sp.					10.0			0.4	0.1	0.1	0.1	0.1	0.1		0.1
					0.100			0.004	0.001	0.001	0.001	0.001	0.001		0.001
<i>Acrosorium ciliolatum</i> (Harvey) Kylin												0.1 0.001			
'Acrosymphytonema breemaniae' (stadium)												0.1 0.001			
Boudouresque, rerret- Boudouresque & Knoepfflet-Peguy <i>nom.</i> <i>inval</i>															
Acrothamnion preissii								2.8	5.2	2.8	3.3	7.2	5.4	1.7	2.0
(Sonder) E.M. Wollaston*								0.028	0.031	0.028	0.022	0.036	0.021	0.007	0.016
Aglaothamnion					5.0			0.2	9.8			0.1	0.1		
tenuissimum (Ronnemaison) Feldmann-					0.050			0.002	0.099			0.001	0.001		
Mazoyer															
Aglaothamnion								29.1		0.1					
<i>tripinnatum</i> (C. Agardh) Feldmann-Mazoyer								0.292		0.001					
Aglaothamnion sp.										0.1		0.1			
Antithamnion sp.					5.0								0.1		
Anoaloeeum micrifolium				5 ()	0.050			с с	80	بر 1	1 0		0.001		10
(Turner) J. Agardh				0.050				0.001	0.028	0.016	0.001		0.001		0.001
Bonnemaisonia asparagoides (Woodward)												0.4 0.073			1.3 0.013
C. Agardh															
Bonnemaisonia sp.				5.0 0.050									$0.1 \\ 0.001$		
Botryocladia botryoides (Wufen) Feldmann									$0.1 \\ 0.001$						
															(continued)

Table 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
<i>Botryocladia chiajeana</i> (Meneohini) Kvlin								0.4	0.0 0.007	0.3		0.3	0.5		
								0.014	0.00/	0.00/		0.001	c00.0	Ċ	
Brongniartella byssoides (Goodenough &												0.1 0.001		0.001	
Woodward) F. Schmitz															
Callophyllis laciniata (Hudson) Kützing												0.2 0.002	0.8 0.004	5.3 0.023	
Ceramium bertholdii Funk					5.0			0.1							0.1
					0.050			0.001							0.001
Ceramium codii (H. Dishordo) Mozonov												0.1	0.1	0.1	0.1
KICHALDS) MAZOYET												0.001	0.001	0.001	0.001
<i>Champia parvula</i> (C. Agardh) Harvey									0.2 0.007						
<i>Chrysymenia ventricosa</i> (J.V. Lamouroux) J. Agardh											$0.1 \\ 0.001$				
Chylocladia verticillata								0.6	0.1				0.1		
(Lightfoot) Bliding								0.014	0.001				0.001		
Contarinia peyssonneliaeformis	207.5 1.038							0.3 0.002	0.3 0.001			4.3 0.021			
Zanarum <i>Cordylecladia erecta</i> (Greville) J. Agardh cf			5.0												
<i>Cryptonemia lomation</i> (Bertoloni) J. Agardh			0000						7.8 0.049	3.0 0.015			0.1 0.001		0.1 0.001
<i>Cryptonemia</i> longiarticulata Funk species inquirendum										0.9 0.005		1.9 0.007			
Cryptonemia tuniformis	9.0		40.0	120.0	48.0	5.0	15.0	8.4	0.5	0.6	1.6	26.1	25.0	2.5	0.5
(A. Bertoloni) Zanardini	0.050		0.245	1.075	0.410	0.050	0.065	0.043	0.007	0.028	0.007	0.127	0.136	0.015	0.003
<i>Cryptopleura ramosa</i> (Hudson) L. Newton			5.0					2.4	0.1			4.7	9.9	6.7	4.1
Dasva corvmhifera I			0.000					0.014	100.0			C70.0	170.0	170.0	070.0
Agardh			0.100												

(continued)

Table 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Dasya penicillata							5.0						0.1	0.1	0.1
Zanardını							0.050						0.001	0.001	0.001
Dermatolithon sp.										0.1 0.001					
Erythroglossum	13.0	5.0	5.0					1.3	0.9		0.5		0.1		0.1
<i>balearıcum</i> J. Agaran <i>ex</i> Kylin	0.100	0.050	0.050					0.001	0.007		0.007		0.001		0.001
<i>Erythroglossum</i> sandrianum (Kützing) Kylin									0.100.001						
<i>Erythrotrichia carnea</i> (Dillwyn) J. Agardh								0.1 0.001	$0.1 \\ 0.001$						
<i>Eupogodon planus</i> (C. Agardh) Kützing				5.0 0.050								1.5 0.006	0.9 0.005	0.4 0.003	0.1 0.001
Felicinia marginata (Roussel) Manahisi Te								6.9	78.1			2.4	1.6		
Gall, Ribera, Gargiulo et M. Morabito								0.069	0./81			0.014	0.008		
Gloiocladia furcata (C.						5.0		0.3			0.1	0.5	0.8	0.7	0.9
Agardh) J. Agardh						0.050		0.001			0.001	0.003	0.005	0.005	0.004
Gionociaata microspora (Bornet ex J.J. Rodríguez y Femenías) Berecibar, M.J.Wynne, Barbara &								0.001	0.340	0.292 0.292	9.90 0.285	0.017		0.002 0.002	0.002
R.Sallus Gloiocladia repens (C.								2.2	52.4	63.7	11.5				
Agardh) Sánchez & Rodríguez-Prieto								0.035	0.594	0.465	0.076				
<i>Gracilaria corallicola</i> Zanardini					12.0 0.105			1.5 0,014	1.8 0,018	10.8 0,039	0.2 0,002	11,1 0,066	23,3 0,085		0,7 0,006
Halymenia sp.										0.6 0.003				0.3 0.001	
<i>Haraldia lenormandii</i> (Derbès & Solier) Feldmann									0.100.001						

(continued)

Table 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
<i>Hydrolithon farinosum</i> (J.V. Lamouroux) D. Penrose & Y.M. Chamberlain								7.4 0.699	0.3 0.003	0.1 0.001	0.1 0.006	0.1 0.001			
Hypoglossum hypoglossoides (Stackhouse) F.S. Collins & Hervey		9.0 0.070	5.0 0.050	56.0 0.125	154.0 0.250		5.0 0.050	1.8 0.015	0.08	0.1 0.001	0.5	0.0		0.2 0.001	0.1 0.001
<i>Irvinea boergesenii</i> (Feldmann) R.J. Wilkes, L.M. McIvor & Guiry		5.0 0.050	5.0 0.050	6.0 0.050	5.0 0.050		5.0 0.050	0.4 0.014	0.6 0.007	0.1 0.001	0.1 0.007	0.2 0.002	0.1 0.002	0.2 0.002	0.3 0.001
<i>Jania virgata</i> (Zanardini) Montagne								0.1 0.007							
Kallymenia feldmannii Codomier								0.7 0.014	5.9 0.015	0.7 0.003		0.1 0.001			
Kallymenia patens (J. Agardh) Codomier ex P.G. Parkinson								588.3 3.266	31.5 0.190	67.4 0.674	46.7 0.203	2.4 0.015	3.3 0.016	0.1 0.001	0.6 0.004
Kallymenia requienii (J. Agardh) J. Agardh	20.0 0.200	130.0 0.710	14.0 0.050	19.5 0.095	14.0 0.050	30.0 0.135	5.0 0.050	18.0 0.067	8.4 0.035	9.9 0.057	27.3 0.090	4.0 0.023	2.2 0.014	4.4 0.018	0.3 0.002
Kallymenia sp.								5.6 0.028	1.2 0.007	8.1 0.042		1.7 0.009			
<i>Lejolisia mediterranea</i> Bornet					5.0 0.050							0.3 0.003	0.1 0.001	0.1 0.001	
<i>Leptofauchea coralligena</i> Rodríguez-Prieto & De Clerk			2.0 0.050		5.0 0.050		18.0 0.125	2.2 0.001	1.0 0.007	0.7 0.005	0.4 0.007	2.0 0.013	3.5 0.014	1.9 0.009	0.4 0.002
<i>Lithophyllum racemus</i> (Lamarck) Foslie [#]								27.8 2.778							
Lithophyllum stictaeforme (Areschoug) Hauck [#] Lithophyllum sp. [#]								11.8 1.181	0.042	16.0 1.604		0.5	0.83	1.4 0.139	3.0 0.257 0.7
Lithothamnion corallioides		100.0								25.1	27.8	29.3	18.6	6.9	0.069 4.5
(P.L. Crouan & H.M. Crouan) P.L. Crouan & H.M. Crouan [#]		10.000								2.449	2.778	2.931	1.861	0.694	0.451 (continued)

Table 1 (continued)				Ì	ļ	ţ		,	•	,	,	-	•		•
	1 ode	11 ode	III ods	VI 0de	v ode	TA ODS	IIV ode	Lam I-1	Lam 1-2	Lam II-1	Lam II-2	rey I-I	rey 1-2	rey II-1	rey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Lithothamnion valens Foslie [#]	375.0 37.500	0.009 000.06		1300.0 130.000	250.0 25.000	250.0 25.000	200.0 20.000	196.4 19.462	190.3 19.028	24.8 2.483	31.3 3.125	2.1 0.208	5.2 0.521	2.8 0.278	
<i>Lomentaria clavellosa</i> (Lightfoot ex Turner) Gaillon											0.8 0.008				
<i>Lomentaria ercegovicii</i> Verlaque, Boudouresque, Meinesz, Giraud & Marcot-Coqueugniot														0.1 0.001	
<i>Lomentaria subdichotoma</i> Ercegovic			20.0 0.120									0.1 0.001	0.1 0.002		0.1 0.001
<i>Lophosiphonia obscura</i> (C. Agardh) Falkenberg												0.1 0.001			
Melobesia membranacea (Esper) J.V. Lamouroux [#]									0.1 0.001			0.2 0.002	0.1 0.001		0.1 0.001
<i>Meredithia microphylla</i> (J. Agardh) J. Agardh									42.1 0.272	17.2 0.118	3.5 0.014				
Mesophyllum alternans (Foslie) Cabioch & M.L. Mendoza [#]	25.0 2.500								2.4 0.243						
<i>Mesophyllum expansum</i> (Philippi) Cabioch & M.L. Mendoza [#]								0.2 0.021				5.9 1.381			
Monosporus pedicellatus (Smith) Solier									0.1 0.001						
<i>Myriogramme carnea</i> (J.J. Rodríguez y Femenías) Kylin								$1.6 \\ 0.001$				0.006		$1.1 \\ 0.008$	0.3 0.002
<i>Myriogramme</i> <i>tristromatica</i> (J.J. Rodríguez y Femenías) Boudouresque								0.3 0.014	0.7 0.014	1.3 0.001	0.3	19.7 0.072	20.8 0.079	9.9 0.042	4.3 0.015
Neogoniolithon mamillosum (Hauck) Setchell & L.R. Mason [#]							300.0 30.000	32.2 3.215				2.8 0.278			
Neurocaulon foliosum (Meneghini) Zanardini												0.3 0.004	3.5 0.031	0.2 0.004	(continued)

Table 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Nitophyllum micropunctatum Funk								0.1							
Nitophyllum punctatum								100.0			0.1				
(Stackhouse) Greville											0.007				
Osmundaria volubilis				720.0				137.8	166.7	40.1	30.6	0.6	0.8		0.7
(Linnaeus) R.E. Norris				5.245				1.107	1.385	0.333	0.194	0.005	0.009		0.004
Osmundea pelagosae (Schiffner) K.W. Nam						5.0 0.050						0.3 0.003			
Peyssonnelia armorica								9.7	24.0	6.3	8.3		2.0		
(P.L. Crouan & H.M. Crouan) Weber-van Bosse								0.049	0.120	0.031	0.042		0.010		
Peyssonnelia bornetii								81.8	111.6		2.6				83.3
Boudouresque & Denizot								0.486	1.166		0.007				0.903
Peyssonnelia coriacea								427.4	477.5	62.0	346.4	1.2	0.1		
Feldmann								2.801	3.108	0.285	2.215	0.044	0.002		
Peyssonnelia dubyi P.L.		5.0	5.0									0.1		6.1	0.1
Crouan & H.M. Crouan		0.050	0.050									0.001		0.007	0.001
Peyssonnelia harveyana			3.0					9.9	8.5	2.8	0.7	177.4	760.4	60.5	6.9
P.L. Crouan & H.M. Crouan ex J. Agardh			0.050					0.165	0.213	0.070	0.018	4.435	19.010	1.513	0.173
Peyssonnelia inamoena	94.0		17.5				0.150	1.444	0.177	1.485	3.535	14.653	8.392	3.366	2.339
Pilger	0.725		0.113				0.105	1.270	0.205	1.454	1.944	27.226	11.222	2.207	3.676
Peyssonnelia rosa-marina								21.9	12.5	15.0	18.4	161.8	116.0	15.3	1.4
Boudouresque & Denizot [#]								1.874	1.486	1.276	1.424	15.142	9.123	0.965	0.198
Peyssonnelia rubra								400.6	542.2	208.3	23.5	760.4	322.9		505.8
(DIEVILLE) J. Againi								3.745	3.518	1.938	0.240	5.826	2.201		4.535
Peyssonnelia squamaria (S.G. Gmelin) Decaisne										458.2 3.431					5.6 0.042
Peyssonnelia stoechas										2.3					
Boudouresque & Denizot										0.012					
Peyssonnelia sp.					5.0				0.4	9.6		0.2			
					0.050				0.001	0.048		0.001			
Phyllophora crispa		337.5						486.1	569.3	758.3	433.9	24.8	42.3	34.7	20.2
(Hudson) P.S. Dixon		2.400						4.321	4.867	6.507	3.354	0.149	0.285	0.232	0.150 (continued)

Table 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
<i>Phyllophora herediae</i> (Clemente) J. Agardh												0.3	0.0	1.1	
Phymatolithon calcareum	2100.0	2475.0	50.0	550.0	155.0	2075.0	700.0	35.9	219.2	55.4	99.3	4.5	0000	010:0	
(Pallas) W.H. Adey & D.L. McKibbin [#]	210.000	247.500	5.000	55.000	15.500	207.500	70.000	3.594	21.877	5.366	9.931	0.451			
Plocamium cartilagineum								1.4	0.3			1.4	0.8	0.9	0.4
(Linnaeus) P.S. Dixon								0.021	0.014			0.009	0.007	0.004	0.002
Polysiphonia ornata J.						5.0		0.1							
Agaran						0.050		0.001							
Polysiphonia perforans Cormaci, G. Furnari,								2.9 0.191							
Pizzuto & Serio								Ċ	Ċ	6			Ċ		Ċ
Polysiphonia subulifera (C. Agardh) Harvey					40.0			0.1	2.4	5.2	0.2	0.70	0.1		0.1
					0.22.0				0.024 7 1	70.0	100.0	0.000	100.0	-	100.0
Polysiphonia sp.					0.0			202.0	1./	0.1	200.0			0.1	
					00.0			2.018	0.0/2	0.001	C80.0			0.010	
<i>Pterothamnion crispum</i> (Ducluzeau) Nägeli					5.0 0.050							$0.1 \\ 0.001$	$0.1 \\ 0.001$		$0.1 \\ 0.001$
Pterothamnion plumula (J.				5.0											
EIIIS) Nageli				0.050											
Ptilocladiopsis horrida Berthold								0.1 0.001	0.1 0.001			0.1 0.001			
Ptilothamnion pluma				5.0	5.0				13.8		8.5	0.1			
(Dillwyn) Thuret				0.050	0.050				0.138		0.085	0.001			
Ptilothamnion sp.													0.1 0.001		
<i>Radicilingua</i> thysanorhizans (Holmes) Papenfuss								$0.1 \\ 0.014$	2.1 0.007	1.7 0.007	0.1 0.007				
Radicilingua sp.											0.7 0.007				
Rhodophyllis divaricata (Stackhouse) Papenfuss										0.5 0.005					
Rhodophyllis strafforelloi					4.5					1.6	1.4	9.9	0.1	0.9	0.7
Ardissone					0.050					0.008	0.011	0.047	0.001	0.007	0.007 (continued)

able 1 (continued)															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Rhodymenia sp.								0.5	0.4 0.004	10.8 0.108	0.2	30.7 0 104	1.2		2.0 0.010
<i>Rodriguezella bornetii</i> (J.J. Rodríguez y Femenías) F. Schmitz ex J.J. Rodríguez v Femenías															2.3 2.3 0.014
Rodriguezella pinnata (Kützing) F. Schmitz ex Falkenberg												0.1 0.001			
<i>Rodriguezella strafforelloi</i> F. Schmitz ex J.J. Rodríguez y Femenías													6.9		
<i>Rytiphlaea tinctoria</i> (Clemente) C. Agardh													0.026	0.2 0.003	
Sahlingia subintegra (Rosenvinge) Kornmann											0.6 0.015	0.4 0.004	0.3 0.003		$0.1 \\ 0.001$
<i>Sebdenia rodrigueziana</i> (Feldmann) Athanasiadis												0.1 0.000	0.1 0.001		
Sphaerococcus coronopifolius Stackhouse								4.7 0.022				14.2 0.064	8.9 0.048	4.0 0.017	2.6 0.014
<i>Sphaerococcus</i> rhizophylloides J.J. Rodríguez y Femenías	21.0 0.095							36.8 0.257	64.9 0.315	109.4 0.528	58.4 0.272	1.5 0.014	0.1 0.001		0.3 0.001
Spongites fruticulosus Kützing [#]	3475.0 347.500	3825.0 382.500	50.0 5.000	1500.0 150.000	585.0 58.500	850.0 85.000	1285.0 128.500	0.998.08 89.896	620.8 62.083	444.8 44.479	271.2 27.118	58.7 5.868	41.7 4.167	11.5 1.146	
<i>Stylonema alsidii</i> (Zanardini) K.M. Drew													0.1 0.001		0.1 0.001
Titanoderma pustulatum (J.V. Lamouroux) Nägeli								0.2 0.017	0.1 0.001						
Titanoderma sp.		5.0 0.050						0.3 0.022				0.2 0.002	0.1 0.001	0.1 0.001	
<i>Womersleyella setacea</i> (Hollenberg) R.E. Norris*					5.0 0.050							0.1 0.001			
															(continued)

(nonimica) - aram															
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
Unidentified Ceramiaceae				0.5					4.7						
				0.050					0.047						
Unidentified Corallinaceae	400.0	250.0		205.0	5.0		150.0	29.1	86.3	64.8	18.4	9.6	10.2	5.3	3.0
	40.000	25.000		20.500	0.050		15.000	0.991	7.010	1.106	1.840	0.924	1.006	0.522	0.299
Unidentified										0.3	0.1				
Delessellarcac										0.002	0.001				
Unidentified Halvmaniaceae								0.2							
								0.001							
Unidentified Rhodomelaceae				5.0 0.050					0.1						
I Inidentified Rhodonbyta 1				0000					100.0			с 8	35	10	
												2.0 0.014	0.017	0.005	
Unidentified Rhodophyta 2								0.2		0.2					
								0.002		0.006					
Phaeophyceae (Ochrophyta)															
Asperococcus bullosus J.V.												0.3			
LAIIDUIDUX												0.015			
Carpomitra costata (Stackhouse) Batters											93.9 0.939				
Cutleria chilosa (Falkenhero) P.C. Silva									1.4	0.3	0.1			0.4	
Dictrontaris lucida M A			10.0						100.0	c00.0	0.007	35	0 1	0.004	0.6
Ducyopterts tactad MLA. Ribera Siguán, A. Gómez Garreta, Pérez Ruzafa, Barceló Martí & Rull Lluch			0.050							0.001		0.011	0.001		0.002
Dictyota dichotoma		3.5	14.0		98.0	12.5	5.0	47.2	15.8	21.5	8.7	0.1	2.7	0.5	0.6
(Hudson) J.V. Lamouroux		0.050	0.120		0.350	0.070	0.050	0.146	0.069	0.076	0.028	0.002	0.010	0.003	0.004
Halopteris filicina		5.0	8.0		4.0		4.0	2.8	3.0	9.3	3.1	11.0	5.6	4.5	3.0
(Grateloup) Kutzing		0.050	0.050		0.050		0.050	0.014	0.014	0.028	0.007	0.033	0.021	0.010	0.019
<i>Laminaria rodriguezii</i> Bornet								121.5 0 826	88.0 0.472	593.2 3 785	359.0 2 368				
															(continued)

Table 1 (continued)

584

Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam L-2	Lam	Lam	Pev I-1	Pey I-2	Pev II-1	Pey II-2
							II-1	II-2	•			•
MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
		5.0 0.050	10.0 0.100									
					7.8 0.097	16.7 0.153	12.2 0.138	20.4 0.215				
									0.0 0.008	0.6 0.004		0.5 0.005
										2.1 0.021		
						0.1						0.1
						100.0						0.001 0.1 0.001
	725.0				264.0	342.7	145.8	95.8	4.1	7.6	7.2	3.5
	3.650				1.473	2.319	1.090	0.646	0.028	0.048	0.036	0.030
					0.6 0.021							
									0.2 0.002	0.5 0.008	0.1 0.001	
					25.7 0.340	31.1 0.396	66.0 0.896	51.0 0.646				
	5.5 0.195					33.0 0.330	0.1 0.001	0.1 0.001		7.6 0.076		1.2 0.012
						0.1 0.001						
									0.1 0.001		0.2 0.001	
		5.0				65.9			0.2	0.1		1.2
		0.050				0.659	l		0.002	0.001		0.012
	4.0 0.065			6.0 0.050	0.222	19.8 0.377	7.8 0.146	0.125	2.4 0.034	0.014		0.006
		5.5 0.195 4.0 0.065	5.5 0.195 0.195 4.0 0.050 0.065	5.5 0.195 0.195 0.050 0.065	5.5 0.195 0.195 0.050 0.050 0.050 0.050 0.050	0.001 5.5 0.195 0.195 0.195 0.050 4.0 0.050 0.050 0.050 0.222	0.021 25.7 31.1 25.5 0.340 0.396 5.5 0.340 0.396 33.0 0.330 0.195 0.330 0.0195 0.330 0.019 0.19 0.001 0.001 0.000 0.050 0.222 0.377 0.050 0.222 0.377	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

sample Spo III grouped separately from the other samples in the analysis based on biomass because it presented an extremely low biomass compared to the rest of the samples.

A total of 104 species were identified in samples collected from Laminaria rodriguezii forests (Table 2), with Rhodophyta accounting for 85.6% of the species (Fig. 2). This community presented a mean of 64±8 species per replicate, a Sa_T of 3653 \pm 817 cm² m⁻² and a B_T of 106 \pm 42 g dw m⁻² (Fig. 3). The species Phyllophora crispa, Spongites fruticulosus, Peyssonnelia coriacea, Laminaria rodriguezii, Flabellia petiolata and Peyssonnelia rubra, in this order, were found to be the main characterizing species in terms of algal surface, according to the SIM-PER test (Fig. 4). Maërl-forming species represented $21.8\pm5.7\%$ of Sa_T but 76.3 $\pm5.0\%$ of B_T and consequently, as regards biomass, the SIMPER test indicated that the main species were the Corallinales Spongites fruticulosus, Phymatolithon calcareum and Lithothamnion valens (Fig. 4). Statistical analyses based on both qualitative and quantitative data showed no significative differences between replicates of both samples.

A total of 106 species were identified in the community with *Peyssonnelia inamoena* (Table 2), with Rhodophyta accounting for 85.8% of the species (Fig. 2). The number of species per replicate was 62 ± 14 ; Sa_T was 1661 ± 1118 cm² m⁻²; and B_T 34 ± 29 g dw m⁻² (Fig. 3). While the SIM-PER test for algal surface indicated that *P. inamoena* and *P. rubra* were the most characteristic species, the analysis performed with the biomass data revealed four *Peyssonnelia* species: *P. inamoena*, *P. rosa-marina*, *P. harveyana* and *P. rubra* (Fig. 4). In this community, maërl-forming species accounted for $6.3\pm3.6\%$ of Sa_T and $30.6\pm15.0\%$ of B_T (Fig. 3). According to the statistical analyses, replicates of both samples did not present significant differences in quantitative and qualitative species composition.

Discussion

Spongites fruticulosus beds presented a very low number of species, H'_B and J'_B , which could also be a sampling artifact due to the small sampling areas. Besides, our results show that they were mostly characterized by the calcareous species of the basal stratum (mainly *Spongites fruticulosus* and *Phymatolithon calcareum*), which accounted for 76.8±21.5% of Sa_T and 94.5±3.3% of B_T, erect algae being irrelevant. This relatively low development of fleshy species was also been observed previously in Tossa de Mar (Spain, Northwestern Mediterranean) and although it might be caused by low irradiance levels (Ballesteros, 1988), we still do not have the clues to explain this situation as the other communities studied here thrive at the same irradiance levels.

A contrasting case is displayed by the kelp forest of *Laminaria rodriguezii*, which showed a well-developed erect stratum, composed of dispersed clusters of thalli of

L. rodriguezii, interspersed with free-living corallines and sand patches. Free-living corallines S. fruticulosus and P. *calcareum* were far less abundant (21.8 \pm 5.7% of Sa_T and $76.3\pm4.9\%$ of B_{τ}) than on Spongites fruticulosus beds. As expected, the forest presented higher values of H' and J' when compared to *Spongites fruticulosus* beds (Table 2), due to higher complexity. Diversity values based on algal surface are amongst the highest in Mediterranean algal communities, and similar to those found on free-living Peyssonnelia beds (Ballesteros, 1994) or other deep-water communities along the Northeastern coast of Spain (Cystoseira zosteroides, Halimeda tuna, Lithophyllum stictaeforme and Phymatolithon calcareum) (Ballesteros, 1988, 1992). The kelp forest of L. rodriguezii studied here was very similar in species composition to that found in Hyères Islands (France, Northwestern Mediterranean) (Gautier & Picard, 1957), and even to that found growing over coralligenous concretions at Ustica (Tyrrhenian Sea, Italy) (Giaccone, 1967), suggesting a high homogeneity of these forests in the Western Mediterranean Sea.

Peyssonnelia inamoena beds were quite diverse because soft erect algae and prostrate species were relatively abundant. These beds were as rich in species as the L. rodriguezii forests but showed lower values of H' and J' (Table 2). They displayed the lowest percentage of free living corallines of the three communities $(6.3\pm3.6\%)$ of Sa_T and 30.6±15.0% of B_T) and, in addition, 45% of MFS_{sa} and 41% of MFS_{B} belonged to the calcified species Peyssonnelia rosa-marina. Similar low abundances of members of the order Corallinales (<2%) have been found on other Peyssonnelia beds dominated by P. rosamarina or Peyssonnelia sp. in the Balearic Islands (Ballesteros, 1994), which has been explained by the burial of corallines in bottoms with a high sedimentation rate, while Peyssonnelia and other fleshy species accumulate in ripple mark depressions (Ballesteros, 1994; Bordehore et al., 2003). Values of H' and J' in relation to algal surface were similar to values found on S. fruticulosus beds, but in relation to biomass, the P. inamoena community presented higher values of H'_{B} and J'_{B} (Fig. 3). Peyssonnelia beds seem to be abundant and diverse on the continental shelf of the Balearic Islands. In this regard, besides the P. inamoena and P. rubra identified here and in a previous work (Joher et al., 2012), some bottoms dominated by different *Peyssonnelia* species have been identified previously in the Balearic Islands (Ballesteros, 1994) as well as in other areas of the Western Mediterranean Sea (Huvé, 1954; Carpine, 1958; Parenzan, 1960; Bourcier, 1968; Augier & Boudouresque, 1978; Basso, 1990). In addition, the P. inamoena beds studied here also show a great abundance of other congeneric species (P. rosa-marina, P. harveyana, P. rubra), suggesting that all Peysonnelia beds could constitute a single habitat, where the different species could become dominant as a response to slightly different environmental conditions. However, further studies are required on this issue.

Fig. 3: Characteristics of the three studied communities (mean and standard deviation). A) Total algal surface (Sa_T) and total biomass (B_T) . The percentage of the maërl-forming species is given for both parameters. B) Shannon's diversity (H') and Pielou's evenness (J') both based on algal surface (Sa) and biomass (B). Abbreviations: Spo, *Spongites fruticulosus* beds; Lam, *Laminaria rodriguezii* forests; Pey, *Peyssonnelia inamoena* beds.

Fig. 4: Results of the SIMPER test based on algal surface (Sa) and biomass (B) for the three communities. The species summarizing 70% of total contribution to the similarity of the samples are given. Abbreviations: Spo, *Spongites fruticulosus* beds; Lam, *Laminaria rodriguezii* forests; Pey, *Peyssonnelia inamoena* beds.

MC, Menorca Channel; SN according to total algal sur	<i>A</i> , Southern face and bio	Menorca; 1 mass; H ² sa	n, number (and H ² _B , 5	of species; Shannon's	IFO, Inde; diversity b	x of Floral ased on al	Originality gal surface	r; Sa _r , total and biom	algal surfa ass; J' _{sa} and	ce; B _T , tota I J' _B , Pielo	ll biomass; u's evenne	MSF _{sa} and ss based o	d MSF _B , m n algal sur	aërl-formit face and bi	ng species omass.
	Spo I	Spo II	Spo III	Spo IV	Spo V	Spo VI	Spo VII	Lam I-1	Lam I-2	Lam II-1	Lam II-2	Pey I-1	Pey I-2	Pey II-1	Pey II-2
Location	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	MC	SM	SM	SM	SM
Depth (m)	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-50-60	-61	-61	-62	-62	-64	-64	-65	-65
Date of collection	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	13/05/09	15/05/09	15/05/09	15/05/09	15/05/09	19/05/09	19/05/09	19/05/09	19/05/09
u	12	14	18	19	26	10	15	70	71	60	54	77	67	45	57
IFO	0.107	0.087	0.139	0.142	0.134	0.142	0.088	0.182	0.178	0.168	0.159	0.230	0.203	0.214	0.194
${\rm Sa}_{ m T}({ m cm}^2{ m m}^{-2})$	6776	8055	269	5242	1451	3248	2718	4426	4065	3577	2545	2886	2311	541	906
$\mathrm{MFS}_{\mathrm{Sa}}~\mathrm{(cm^2~m^{-2})}$	5975	7300	100	3350	066	3175	2485	1225	1046	581	448	266	182	38	10
$\mathrm{H'}_{\mathrm{Sa}}(\mathrm{bits})$	1.880	1.957	3.564	2.641	2.853	1.380	2.121	3.832	3.989	3.755	3.760	2.326	2.534	2.370	2.004
${ m J'}_{ m Sa}$	0.524	0.514	0.855	0.622	0.607	0.416	0.543	0.625	0.649	0.636	0.653	0.371	0.418	0.431	0.344
$B_{ m T}~({ m g~dw~m^{-2}})$	640	758	11	366	101	318	264	148	134	81	09	68	48	8	11
MFS_B (g dw m ⁻²)	598	730	10	335	66	318	249	122	105	58	44	26	16	Э	1
H' _B (bits)	1.564	1.677	1.809	1.909	1.583	1.218	1.916	2.425	2.718	2.766	2.944	2.635	2.594	3.074	2.419
J_B^{*}	0.436	0.441	0.434	0.449	0.337	0.367	0.490	0.396	0.442	0.468	0.512	0.421	0.428	0.560	0.415

Although the spatial structure of the communities studied here was different, differences in species composition were small, as reflected in the low values of IFO calculated for each of the studied communities (Fig. 1). In this sense, previous reports of bottoms dominated by the kelp L. rodriguezii as 'fonds à prâlines et Laminaria rodriguezii' (Molinier, 1956; Gautier & Picard, 1957; Pérès & Picard, 1964), together with the high similarities between S. fruticulosus beds and L. rodriguezii forests highlighted in this study, suggest the existence of a gradient moving from the S. fruticulosus beds to the L. rodriguezii forests. Whether this is driven by natural environmental factors or by anthropogenic pressures would require further work. However, in this sense, recent studies pointed out that the abundances of this endemic kelp on detritic bottoms geographically differ depending on commercial trawling pressure, since well-developed L. rodriguezii kelps are only found in specific areas of the Menorca channel with low trawling pressure (Joher et al., 2012). Finally, the development of Peyssonnelia spp. communities could also be favoured by adverse local environmental conditions for the development of maërl beds. Thus, the natural presence of high sedimentation rates and/or changes induced by trawling, such as turbidity, could enhance the abundance of Peyssonneliaceae over Corallinales, as previously observed in Alicante (Spain) and Malta (Bordehore et al., 2000).

ROV dives have been extremely useful for finding extensive beds of the three targeted communities and, in fact, this is the most advisable method to localize specific communities in deep-water, highly patchy detritic landscapes, rather than using destructive dredges or Scuba-diving. Regarding the sampling method, the number of species reported for each community in this work is significantly higher than the values found in corresponding assemblages sampled by bottom trawling (Fig. 5) (Joher et al., 2012). This was unexpected since the sampled surface was much larger in the collections made by bottom trawling. Bottom trawls have a larger mesh size than beam trawls (20 mm vs 10 mm), which could explain this increase in the L. rodriguezi and P. inamoena communities, even when sampling much smaller surfaces. In the case of the S. fruticulosus community, Box-Corer dredges completely prevented any loss of sample and probably this is the reason explaining the increase. Thus, Box-Corer dredges or beam trawls seem to be good sampling methods for studying the composition and structure of deep-water detritic communities, although bottom trawls are equally effective if the main assemblages have to be identified in large areas.

Acknowledgements

We thank Marc Verlaque, Giovanni Furnari and Julio Afonso Carrillo for taxonomic help, and Emma Cebrian for helping with statistical analyses. We acknowledge the Centre Oceanogràfic de Balears – Instituto Español de Ocea-

Fig. 5: Comparison of the number of species (mean and standard deviation) of the communities studied here and the corresponding assemblages described in Joher *et al.* (2012). Abbreviations: Spo, *Spongites fruticulosus* beds; M_b, maërl beds in Joher *et al.* (2012); Lam, *Laminaria rodriguezii* forests; Lr_b, *Laminaria rodriguezii* beds in Joher *et al.* (2012); Pey, *Peyssonnelia inamoena* beds; Pi b, *P. inamoena* beds in Joher *et al.* (2012).

nografia for the organization and provision of all the facilities needed for the sampling surveys, and thank Enric Massutí and his team, in particular, who coordinated the surveys. We thank the crews of R/V MarViva Med and R/V Cornide de Saavedra, and the sampling survey participants for their help and support during sampling. The CANAL0209 survey was financed by the MarViva Foundation, the Govern de les Illes Balears and the IEO. The MEDITS_ES05_09 survey was supported by the BADEMECO project, financed by the IEO and the European Union.

References

- Acosta, J., Canals, M., López-Martínez, J., Muñoz A., Herranz, P. *et al.*, 2002. The Balearic promontory geomorphology (Western Mediterranean): morphostructure and active processes. *Geomorphology*, 49, 177-204.
- Augier, H., Boudouresque, C.F., 1978. Végétation marine de l'Île de Port-Cros (Parc National) XVI: Contribution à l'étude de l'épiflore du détritique côtier. *Travaux Scientifiques du Parc national de Port-Cros*, 4, 101-125.
- Ballesteros, E., 1988. Composición y estructura de los fondos de maërl de Tossa de Mar (Girona, España). *Collectanea Botanica*, 17, 161-182.
- Ballesteros, E., 1992. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Arxius de la Secció de Ciències 101. Institut d'Estudis Catalans, Barcelona, 616 pp.
- Ballesteros, E., 1994. The deep-water *Peyssonnelia* beds from the Balearic Islands (Western Mediterranean). *Marine Ecology*, 15, 233-253.
- Ballesteros, E., Zabala, M., 1993. El bentos: el marc físic. p. 663-685. In: *Història Natural de l'Arxipèlag de Cabrera. Monografies de la Societat d'Història Natural de les Balears 2*. Alcover, J.A., Ballesteros, E., Fornós, J.J. (Eds). Editorial Moll, Palma.
- Barberá, C., de Mesa, A., Ordines, F., Moranta, J., Ramón, M. et al., 2009. Informe campaña CANAL: 'Caracterización del ecosistema demersal y bentónico del canal de Menorca (Islas

Baleares) y su explotación pesquera'. Centre Oceanogràfic de Balears, Instituto Español de Oceanografia, 220 pp.

- Barberá, C., Moranta, J., Ordines, F., Ramón, M., de Mesa, A. et al., 2012. Biodiversity and habitat mapping of Menorca Channel (western Mediterranean): implications for conservation. *Biodiversity and Conservation*, 21, 701-728.
- Basso, D., 1990. The calcareous alga *Peyssonnelia rosa-marina* Boudouresque and Denizot, 1973 (Rhodophyceae, Peyssonneliaceae) in circalittoral soft bottoms of Tyrrhenian Sea. *Quaderni della Civica Stazione Idrobiologica di Milano*, 17, 89-106.
- Bianchi, C.N., 2001. La biocostruzione negli ecosistemi marini e la biologia marina italiana. *Biologia Marina Mediterranea*, 8, 112-130.
- Blunden, G., Farnham, W.F., Jephson, N., Fenn, R.H., Plunkett, B.A., 1977. The composition of maërl from the Glenan Islands of Southern Brittany. *Botanica Marina*, 20, 121-125.
- Bordehore, C., Borg, J.A., Lanfranco, E., Ramos-Esplá, A., Rizzo, M. et al., 2000. Trawling as a major threat to Mediterranean maërl beds. p. 105-109. In: Proceedings of the First Mediterranean Symposium on Marine Vegetation, Ajaccio (France), 3-4 October 2000. RAC/SPA, Tunis.
- Bordehore, C., Ramos-Esplá, A.A., Riosmena-Rodríguez, R., 2003. Comparative study of two maërl beds with different otter trawling history, southeast Iberian Peninsula. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 13, 43-54.
- Bourcier, M., 1968. Étude du benthos du plateau continental de la Baie de Cassis. *Recueil des Travaux de la Station Marine d'Endoume, France*, 44, 63-108.
- Canals, M., Ballesteros, E., 1997. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. *Deep-Sea Research II*, 44, 611-629.
- Carpine, C., 1958. Recherches sur les fonds à *Peyssonnelia polymorpha* (Zan.) Schmitz de la région de Marseille. *Bulletin de l'Institut Océanographique de Monaco*, 1125, 1-25.
- Clarke, K.R., Warwick, R.M., 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth Marine Laboratory, U.K., 172 pp.
- Clarke, K.R., Somerfield, P.J., Gorley, R.N., 2008. Testing of null hypotheses in exploratory community analyses: simi-

larity profiles and biota-environment linkage. *Journal of Experimental Marine Biology and Ecology*, 366, 56-69.

- Costa, S., 1960. Le peuplement des fonds à *Halarachnion* spathulatum. Vie et Milieu, 11 (1), 8-68.
- Dieuzede, R., 1940. Étude d'un fond de pêche d'Algérie: la "gravelle de Castiglione". *Bulletin des Travaux publiés par la Station D'Aquiculture et de Pèche de Castiglione, Algérie*, 1, 33-57.
- Ellis, J.R., Martinez, I., Burt, G.J., Scott, B.E., 2013. Epibenthic assemblages in the Celtic Sea and associated with the Jones Bank. *Progress in Oceanography*, 117, 76-88.
- Feldmann, J. 1934. Les Laminariacées de la Méditerranée et leur répartition géographique. Bulletin des Travaux publiés par la Station D'Aquiculture et de Pèche de Castiglione, Algérie, 2, 143-184.
- Fornós, J.J., Ahr, W.M., 1997. Temperate carbonates on a modern, low-energy, isolated ramp; the Balearic platform, Spain. *Journal of Sedimentary Research*, 67, 364-373.
- Gautier, Y., Picard, J., 1957. Bionomie du banc de Magaud. Recueil des Travaux de la Station Marine d'Endoume, France, 12, 28-40.
- Giaccone, G., 1967. Popolamenti a *Laminaria rodriguezii* Bornet sul Banco Apollo dell'isola di Ustica (Mar Tirreno). *Nova Thalassia*, 3, 1-9.
- Giaccone, G., 1971. Contributo allo studio dei popolamenti algali del basso Tirreno. Annali dell'Università di Ferrara. Sezione IV – Botanica, 4 (2), 17-43.
- Giaccone, G., Di Martino, V., 1997. Syntaxonomic relationships of the Mediterranean phytobenthos assemblages: paleoclimatic bases and evolutive tendencies. *Lagascalia*, 19 (1-2), 129-144.
- Giaccone, G., Alongi, G., Pizzuto, F., Cossu, A., 1994. La vegetazione marina bentonica sciafila del Mediterraneo: III. Infralitorale e circalitorale. Proposte di aggiornamento. *Bolletino dell'Accademia Gioenia di Scienze Naturali Catania*, 27, 201-227.
- Huvé, H., 1954. Contribution à l'étude des fonds à Peyssonnelia polymorpha (Zan.) Schmitz de la région de Marseille. Recueil des Travaux de la Station Marine d'Endoume, France, 12, 119-136.
- Huvé, H., 1955. Présence de *Laminaria rodriguezii* Bornet sur les côtes françaises de Meditérranée. *Recueil des Travaux de la Station Marine d'Endoume, France*, 15, 73-91.
- Huvé, H., 1956. Contribution à l'étude des fonds à Lithothamnium (?) solutum Foslie (= Lithophyllum solutum (Foslie) Lemoine) de la région de Marseille. Recueil des Travaux

de la Station Marine d'Endoume, France, 18, 105-133.

- Jacquotte, R., 1962. Étude des fonds de maërl de Méditerranée. *Recueil des Travaux de la Station Marine d'Endoume, France*, 26, 141-235.
- Joher, S., Ballesteros, E., Cebrian, E., Sánchez, N., Rodríguez-Prieto, C., 2012. Deep-water macroalgal-dominated coastal detritic assemblages on the continental shelf off Mallorca and Menorca (Balearic Islands, Western Mediterranean). *Botanica Marina*, 55 (5), 485-497.
- Klein, J.C., Verlaque, M., 2009. Macroalgal assemblages of disturbed coastal detritic bottoms subject to invasive species. *Estuarine, Coastal and Shelf Science*, 82, 461-468.
- Laborel, J., 1987. Marine biogenic contructions in the Mediterranean, a review. *Scientific Reports of Port-Cros national Park, France*, 13, 97-127.
- Lüning, K., 1990. Seaweeds: Their Environment, Biogeography, and Ecophysiology. John Wiley & Sons, USA,. 527 pp.
- Molinier, R., 1956. Les fonds à laminaires de "Grand Banc" de Centuri (Cap Corse). *Comptes rendus hebdomadaires des séances de l'Académie des sciences*, 342, 939-941.
- Molinier, R., 1960. Étude des biocénoses marines du Cap Corse. *Vegetatio*, 9, 21-192.
- Parenzan, P., 1960. Aspetti biocenotici dei fondi ad alghe litoproduttrici del Mediterraneo. Rapport et Procés Verbaux des Réunions de la Commission Internationale pour l'exploration Scientifique de la Mer Méditerranée, 15 (2), 87-107.
- Peña, V., 2010. Estudio ficológico de los fondos de maërl y cascajo en el noroeste de la Península Ibérica. Tesis doctoral. Universidade da Coruña, 635 pp.
- Pérès, J.M., 1985. History of the Mediterranean biota and the colonization of the depths. p. 198-232. In: Western Mediterranean. Margalef, R. (Ed). Pergamon, Oxford.
- Pérès, J.M., Picard, J., 1964. Nouveau manuel de bionomie benthique de la Mer Méditerranée. *Recueil des Travaux de la Station Marine d'Endoume, France*, 31 (47), 1-137.
- Picard, J., 1965. Recherche qualitative sur les biocoenoses marines des substrats meubles dragables de la région marseillaise. *Recueil des Travaux de la Station Marine d'Endoume, France*, 52, 1-160.
- Potter, I.C., Bird, D.J., Claridge, P.N., Clarke, K.R., Hyndes, G.A. et al., 2001. Fish fauna of the Seven Estuary and are there long-term changes in the recruitment patterns of the main marine species correlated? *Journal of Experimental Marine Biology and Ecology*, 258, 15-37.