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Appendix 

A1.The equations of strait model

The strait is a shallow and narrow channel connect-
ing two deep basins. A definition sketch for the strait 
model is given in Fig. A1. The coordinate x is taken along 
the strait and it is directed from the basin with light water 
to the basin with dense water. For sake of simplicity, the 
strait is rectangular with length L, depth  H=H1+H2 and 
width A=A0+As. The instantaneous thicknesses of upper 
and bottom layers are H1=D1-η+ς, Η2=D2+η-Ηs. The av-
eraged along strait depths of upper layer and bottom layer 
are D1 and D2, respectively, and D=D1+D2. Here ς is the 
free surface elevation, η is the interface deviation and Ηs, 
Αs are the deviations of the bottom level and width from 
the averaged values D and Α0, respectively. Invoking the 
hydrostatic and Boussinesq approximations, the station-
ary governing equations of the two-layer model of the 
strait (Maderich & Konstantinov, 2002) can be written as
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where x is coordinate along the strait, g is the gravity, 
g =́g(ρ2–ρ1)/ρ0, ρ0 is undisturbed density, ρ1 and ρ2 are 
densities in the upper and bottom layers, respectively; ci 
and cb are interface and bottom drag coefficients, respec-
tively. The volumetric flow rates in the upper (Q1) and bot-
tom (Q2) layers relate to the velocity u1 and u2 by Q1=AH1u1 
and Q2=AH2u2. At a small density difference ((ρ2–ρ1)/ 
ρ0<<1) the control condition (Farmer & Armi, 1986) is
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Equations (A1)-(A2) are complemented by the con-
trol conditions (A3) at the critical sections in the strait. 
For sake of simplicity the strait geometry is chosen such 
that the control points are placed at the ends of the strait. 
Following Özsoy et al. (1998) and Maderich & Konstan-
tinov (2002), the volumetric flow rates in the upper and 
bottom layers are related to the level difference along the 

strait using the Bernoulli equations for upper and lower 
layers. We obtained the Bernoulli equation in the upper 
layer between the sea, that is in the rest, and the left end 
of the strait (x=0). In a similar manner, we obtained the 
Bernoulli equation in the lower layer between the right 
end of the strait (x=L) and another sea, that is in the rest. 
The resulting equation that relates Q1, Q2, H1(L), H2(L) to 
the level difference Δς between adjacent seas is
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The details of derivation of (A5) are given by Made-
rich & Konstantinov (2002). An assumption ς<<Η1 al-
lows reducing the system of equations (A1)-(A2) to the 
single equation for Η2
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This differential equation is of the first order and it con-
tains the unknown variable Η2 (x) and unknown values of 
Q1 and Q2. It is completed by equation (A5) and the con-
trol condition (A3) acting at the two control points at x 
=0;L. The nonlinear system of equations (A3)-(A6) is 
solved by method of successive approximations.

A2. The equations of model of the Marmara Sea 

The evolution of the vertical thermohaline structure 
in the Marmara Sea is described by the equations for the 
horizontally averaged temperature and salinity in the lay-
ers including the surface mixed layer (SML), internal and 
bottom layers. The equations for the temperature and sa-
linity in the SML are

dTu

dt
Vu               = σu(Tu– Tu) (we– wu)–qTσu+(T1

B(M)–Tu)Q
B
1(M),   

      
(A7)

dSu

dt
Vu               = σu(Su– Su) (we– wu)–STQ

M
f+(S1

B(M)–Su)Q
B
1(M),	

 
(A8) 

where QB
1 (M), TB

1 (M) and SB
1 (M) are the volumetric flow 

rate, temperature and salinity of water flowing from the 
upper layer of the entrainment box in the Bosphorus 
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Strait into the Marmara Sea, Vu=σu(ςΜ+ hu) is  the volume 
of the SML, hu is  the height of SML from the undis-
turbed sea surface. The equation for the evolution of 
SML height is 

dhu

dt
σu               = σuwe–QD

2 (M), 				    (9)

where we is the entrainment velocity at the lower bound-
ary of SML, QD

2 (M) is the volumetric flow rate in the 
bottom layer of the Dardanelles Strait at the Marmara 
Sea exit. The equations for temperature and salinity in 
the internal layers are

dTi

dt
Vi               = σi+1(Ti+1– Ti) w*–σi(Ti– Ti+1)w*,

                  
(A10)

dSi

dt
Vi               = σi+1(Si+1– Si) w*–σi(Si– Si+1)w*, 

                    (A11)

with i=2,…,n. The equation of evolution of the position 
of the internal layers is

dhi

dt
σi               = QD

2 (M).
				                

(A12)

The equations for the heat and salt in the bottom layer are
 dTi

dt
Vi               = σ2(T2– T1) w*+(T1– T

D
2(M))QD

2(M).
            

(A13)

dSi

dt
Vi               = σ2(S2– S1) w*+(S1– S

D
2(M))QD

2(M). 
             

(A14)

In the above, Ti, Si, Vi, σi, hi  are the temperature, sa-
linity, volume, area and thickness of the i-th layer, re-
spectively (for the bottom layer i =1); n is number of 
internal layers plus bottom layer; T D

2 (M), SD
2 (M) are the 

temperature and salinity of the Aegean waters out-flow-
ing from the lower layer of the Dardanelles Strait into the 
Marmara Sea, respectively; qT is the temperature flux to 
the Marmara Sea, and w* is the rate of internal mixing. 
The density is related to the salinity and temperature by 
the linear equation of state ρ=ρ (Τ, S).

Two different regimes of the evolution of the Marmara 

Sea SML were modelled: the “entrainment regime”, when 
the growth of thickness of the SML is caused by the turbu-
lent entrainment of the lower layer as a result of wind and 
convective mixing, and the “detrainment regime”, when the 
turbulence in the SML decays and a new surface mixed layer 
is formed with smaller thickness, while the previous SML 
joins the “staircase” of the internal layers (Turner & Kraus, 
1967). For entrainment regime the model of Resnyansky 
(1976) is described in detail by Maderich & Konstantinov 
(2002). The temperature flux in the Marmara Sea is calculat-
ed using Haney (1971) formula qT=a(Tu–Ta), where Ta  is the 
surface air temperature and a is an empirical parameter. The 
values of w* and a are: w*=3.10-8

 m s-1, a=6.10-8 m s-1. The 
parameters of the entrainment model are given by Maderich 
& Konstantinov (2002). The SML absorbs internal layers in 
entrainment regime. The bottom layer thickness is limited by 
the depth of penetration of winter convection in SML.
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Fig. A1: Definition sketch showing along-strait section (Maderich & Konstantinov, 2002)
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