Magnetically modified Posidonia oceanica biomass as an adsorbent for organic dyes removal

SAFARIK I.
ASHOURA N.
Department of Chemistry, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901

MADEROVA Z.
Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice

POSOIKOVA K.
Regional Centre of Advanced Technologies and Materials, Palacky University, Slezská 37, 783 71 Olomouc

BALDIKOVA E.
Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice

SAFARIKOVA M.
Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice

https://doi.org/10.12681/mms.1549

Copyright © 2016

To cite this article:

Mediterranean Marine Science
Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS
The journal is available on line at http://www.medit-mar-sc.net
DOI: http://dx.doi.org/10.12681/mms.1549

Mediterranean Marine Science

Research Article

351

Abstract

Magnetically modified Posidonia oceanica sea grass dead biomass was employed as an adsorbent of organic dyes. The adsorption of seven water-soluble organic dyes was characterized using Langmuir adsorption model. The highest calculated maximum adsorption capacity was found for Bismarck brown Y (233.5 mg g\(^{-1}\)), while the lowest capacity value was obtained for safranin O (88.1 mg g\(^{-1}\)). The adsorption processes followed the pseudo-second-order kinetic model and the thermodynamic studies indicated spontaneous and endothermic adsorption.

Keywords: Posidonia oceanica, Neptune balls, magnetic biomass, organic dyes, adsorbent.

Introduction

Posidonia oceanica (L.) Delile is a widely distributed, fast-growing sea grass playing important ecological roles in the Mediterranean ecosystem. The P. oceanica dead leaves in the form of so called “Neptune balls” (Fig. 1) are accumulated in a large scale on the beaches. This material is usually collected from the beaches as a waste because of their bad view and also distinctive odour. The collected dead leaves are usually burned to get beaches clean. However, this material contains ca 30% of cellulose and 29% of lignin with many functional groups, such as hydroxyl, sulphonyl, carbonyl and phenolic, that can be effectively used for adsorption purposes (Aydin et al., 2012; Cengiz & Cavas, 2010; Chadlia et al., 2009).

Waste Posidonia biomass has recently been tested as a sorbent for the removal of various organic dyes from water solutions. This absorbent exhibited high maximum adsorption capacity (119.05 mg g\(^{-1}\)) towards methyl violet at 45 °C. Pseudo-second-order kinetic model fitted well the experimental data. Negative values of Gibbs free energy implied that the process was spontaneous (Cengiz & Cavas, 2010). Some other dyes were also adsorbed well on the Posidonia biomass, as shown by relatively high maximum adsorption capacities; Astrazon red (68.97 mg g\(^{-1}\); Cengiz et al., 2012), Acid yellow 59 (76.9 mg g\(^{-1}\); Guezguez et al., 2009), Alpacide yellow (15.11 mg g\(^{-1}\); Neibi et al., 2009) and Reactive red 228 (5.74 mg g\(^{-1}\); Neibi et al., 2007) can serve as examples.

Magnetically modified adsorbents can be prepared by the attachment of magnetic iron oxides nano- or microparticles on the surface or within the pores of the treated materials. Magnetic materials can be easily separated from complex systems and difficult-to-handle media by means of magnetic separators (Safarikova & Safarik, 2001).

In order to improve manipulation with Posidonia biomass, magnetically responsive derivatives were prepared using three simple and low-cost procedures and tested as magnetic biosorbents for organic dyes removal. The best magnetic Posidonia adsorbent was characterized in detail.

Materials and Methods

Materials

Posidonia oceanica fibres balls, collected at the Poetto beach in Cagliari (Sardinia, Italy; the coordinates of the area are 39°11’43.50” N – 9°09’33.52” E) at the end of March 2013, were manually converted into fibres, washed thoroughly with water to remove sand and salt and then dried in an oven at 40 - 60 °C for 48 h to a constant weight. After drying, the fibres were cut into small fragments and milled to obtain fine particles (length ca 0.1 – 0.6 mm, width ca 0.03 – 0.1 mm), see Fig. 2. Methylen blue (C.I. 52015), Bismarck brown Y (C.I. 21000) and safranin O (C.I. 50240) were purchased from Sigma, USA. Crystal
violet (C.I. 42555) and brilliant green (C.I. 42040) were supplied by Lachema, Czech Republic. Acridine orange (C.I. 46005) was obtained from Loba Feinchemie, Austria, while Nile blue A sulphate (C.I. 51180) was from Chemische Fabrik GmbH, Germany. Common chemicals were from Sigma-Aldrich, Czech Republic. Water-based ionic magnetic fluid stabilized with perchloric acid (concentration 30.5 mg of maghemite per 1 mL) was prepared using a standard procedure (Massart, 1981).

Magnetic modification of Posidonia powdered biomass

a/ Microwave assisted modification procedure

Posidonia biomass was magnetically modified using microwave-synthesized magnetic iron oxides particles (Safarik & Safarikova, 2014). In a typical procedure, 1 g FeSO₄ · 7 H₂O was dissolved in 100 mL of water in a 600 – 800 mL beaker and solution of sodium or potassium hydroxide (1 mol L⁻¹) was added slowly under mixing until the pH reached the value ca 12; during this process, a precipitate of iron hydroxides was formed. The suspension was then diluted up to 200 mL with water and inserted into a standard kitchen microwave oven (700 W, 2450 MHz). The suspension was usually treated for 10 min at the maximum power. Then the beaker was removed from the oven and the formed magnetic iron oxides nano- and microparticles were repeatedly washed with water until neutral pH of the magnetic suspension was reached.

To prepare magnetically responsive *Posidonia* biomass, one gram of biomass was thoroughly mixed in a short test-tube or a small beaker with 2 mL of microwave iron oxides nano- and microparticles suspension (1 part of completely sedimented iron oxides particles and 4 parts of water). Vigorous mixing with a spatula or laboratory spoon enabled homogeneous distribution of magnetic nano- and microparticles within the treated material. This mixture was allowed to dry completely at temperatures not exceeding 60 °C for 48 hours. In order to increase magnetic response of the *Posidonia* composite, the amount of iron oxide particles can be increased (Safarik & Safarikova, 2014).

b/ Mechnochemical modification procedure

In the standard procedure, a mixture of 1.35 g of FeCl₃ · 6H₂O (0.005 mol), 0.50 g of FeCl₂ · 4 H₂O (0.0025 mol) and 4 g of sodium chloride (inert material used to avoid particles agglomeration) was ground in a mortar at room temperature for 10 min. One g of *Posidonia* biomass was then added and after thorough mixing, the process continued for another 10 min. As the last step, powdered potassium hydroxide (1.22 g) was added and after mixing, the grinding continued for 10 min. After KOH addition, the mixture became brown. During the grinding process, the material was scraped from the mortar wall occasionally. After finishing the mechanochemical process, the magnetically modified material was thoroughly washed with water (to remove soluble impurities and free iron oxides particles) and air dried (Safarik et al., 2014).

c/ Modification with magnetic fluid

In a typical procedure, 1 g of *Posidonia* biomass was thoroughly mixed in a short test-tube or a small beaker with 1 mL of water based ferrofluid stabilized with perchloric acid. The mixing with a spatula or laboratory spoon enabled homogeneous distribution of magnetic fluid within the treated biomass. This mixture was allowed to dry completely at temperatures not exceeding 50 °C and then washed with water and/or methanol. The magnetically responsive biomass was air dried (Safarik et al., 2012a).

Adsorption of dyes on magnetic Posidonia biomass

The following procedure was employed to study the adsorption properties (Safarik et al., 2012b). 30 mg of magnetically modified *Posidonia* biomass were mixed with 4.0 mL of water in a test tube. Then 1-6 mL portion of stock water solution (1 mg mL⁻¹) of a tested dye was added and the total volume of the solution was made up to 10.0 mL with water. The suspension was mixed for 2
h at room temperature. Then the magnetic adsorbent was separated from the suspension by means of a magnetic separator (MPC-1 or MPC-6, Dynal, Norway) and the clear supernatant was used for the spectrophotometric measurement. The concentration of free (unbound) dye in the supernatant \((C_e)\) was determined from the calibration curve. The amount of dye bound to the unit mass of the adsorbent \((q_e)\) was calculated using the following formula:

\[
q_e = V (C_0 - C_e) / m
\]

(1)

where \(V\) is the total volume (L), \(C_0\) is the initial concentration (mg L\(^{-1}\)) of dye used in the experiment and \(m\) is the mass of adsorbent (g). The value \(q_e\) was expressed in mg of adsorbed dye per 1 g of adsorbent. Equilibrium adsorption data were fitted to Langmuir adsorption isotherms using SigmaPlot software.

Adsorption kinetics

Adsorption kinetics was studied using Bismarck brown Y (initial dye concentration 150 mg L\(^{-1}\), 25°C, pH 7, not adjusted), in different time intervals (0-300 min). The amount of adsorbed dye per unit mass of adsorbent \(q_t\) (mg g\(^{-1}\)) in time \(t\) was calculated from this formula:

\[
q_t = V (C_0 - C) / m
\]

(2)

where \(C\) is the concentration of dye in solution (mg L\(^{-1}\)) in time \(t\) (min). The obtained kinetic data were analyzed using the linear forms of pseudo-first (Lagergren, 1898) and pseudo-second (Kumar, 2006) order kinetic equations given as follows, respectively:

\[
\ln (q_e - q_t) = \ln(q_e) - k_t t
\]

(3)

where the rate constant \(k_t\) (min\(^{-1}\)) can be obtained from the linear plot of \(\ln (q_e - q_t)\) against time \(t\).

\[
t/q_t = 1/k_2q_e^2 + t/q_e
\]

(4)

where the equilibrium adsorption capacity \(q_{eq}\) and the second-order rate constant \(k_2\) (g mg\(^{-1}\) min\(^{-1}\)) can be determined from the slope and intercept of plot \(t/q_t\) versus \(t\).

Thermodynamic studies

The studies of temperature effect of Bismarck brown Y adsorption on magnetically modified Posidonia biomass were carried out at 282.15, 298.15 and 313.15 K.

The thermodynamic equilibrium constant \(K\) was determined from intercept of the plot of \(\ln (q_{eq}/C_0)\) against \(q_{eq}\) (Khan & Singh, 1987). The other thermodynamic parameters, namely Gibbs free energy change \(\Delta G^o\) (J mol\(^{-1}\)), standard enthalpy change \(\Delta H^o\) (J mol\(^{-1}\)) and standard entropy change \(\Delta S^o\) (J mol\(^{-1}\) K\(^{-1}\)) of studied process were calculated by using these equations:

\[
\Delta G^o = -RT \ln(K)
\]

(5)

\[
\ln(K) = \Delta S^o/R - \Delta H^o/RT
\]

(6)

where \(R\) is the universal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)) and \(T\) is the absolute temperature (K). \(\Delta H^o\) and \(\Delta S^o\) were determined from the slope and intercept of the linear plot of \(\ln(K)\) versus 1/\(T\).

Results and Discussion

Magnetic modification of Posidonia biomass

Three procedures for magnetic modification of Posidonia biomass, namely modification with microwave synthesized magnetic iron oxides nano- and microparticles (Safarik & Safarikova, 2014), mechanochemical synthesis (Safarik et al., 2014) and modification with water based magnetic fluid (Safarik et al., 2012a) were tested in order to select an optimal magnetized adsorbent. Both the adsorbent maximum adsorption capacity and the simplicity and price of its preparation were taken into account. Preliminary adsorption experiments with methylene blue showed that magnetization with microwave synthesized magnetic iron oxides nano- and microparticles enabled to prepare magnetic adsorbent with the highest maximum adsorption capacity (calculated using Langmuir adsorption isotherm), see Table 1. This magnetization procedure is extremely simple, and very cheap chemicals (ferrous sulphate and sodium or potassium hydroxide) are used as precursors. During the microwave-assisted synthesis, magnetic iron oxide nanoparticles (ca 25 to 100 nm) formed micrometer-sized stable aggregates (maximum aggregate size ca 20 μm; Baldikova et al., in press). Magnetic modification led to the deposition of iron oxide nanoparticle aggregates on the surface of the Posidonia biomass providing sufficient surface area for efficient dye adsorption (see Fig. 3). Energy-dispersive X-ray spectroscopy confirmed the presence of iron on the magnetized biomass (Fig. 4). The presence of Fe\(^{3+}\) ions on the surface of magnetically modified Posidonia biomass was confirmed by Perls’ Prussian Blue Stain that caused intensive blue coloration of the whole material (Fig. 5). The stability of magnetically modified biomass was very high (stable at least two months in water suspension). The formed magnetically responsive Posidonia

Table 1. Maximum adsorption capacity \(q_{eq}\) of magnetic Posidonia adsorbents for methylene blue.

<table>
<thead>
<tr>
<th>Magnetic modification of Posidonia adsorbents</th>
<th>(q_{eq}) (mg g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave synthesized magnetic iron oxides nano- and microparticles</td>
<td>143.7</td>
</tr>
<tr>
<td>Mechanochemical synthesis</td>
<td>102.5</td>
</tr>
<tr>
<td>Modification with magnetic fluid</td>
<td>133.3</td>
</tr>
</tbody>
</table>

adsorbent can be easily separated using permanent magnet or commercial magnetic separator (Fig. 6).

Adsorption studies and isotherms

Posidonia biomass modified with microwave synthesized magnetic iron oxides nano- and microparticles was used as an adsorbent to study binding of 7 organic water-soluble dyes belonging to different dye classes. These dyes were selected according to the results of the preliminary screening experiment using 18 different dyes.

![Fig. 3: SEM images of native (top) and magnetically modified (bottom) *Posidonia* biomass.](image1)

![Fig. 4: EDS of native (top) and magnetically modified (bottom) *Posidonia* biomass.](image2)

![Fig. 5: Optical microscopy of native (A) and magnetically modified (C) *Posidonia* biomass. After Perls’ stain, almost no coloration is visible on native biomass (B), while deep blue coloration is observed on magnetically modified biomass (D). Bar is 200 µm.](image3)
Therefore, Bismarck brown Y (azodyes group), crystal violet and brilliant green (triphenylmethane group), methylene blue (quinone-imine group), acridine orange (acridine group), Nile blue (oxazin group) and safranin O (safranin group) were chosen for further experiments. The chemical structures are shown in Table 2.

The contact time is one of the most important adsorption parameters required for determination of time necessary to reach the equilibrium. As can be seen from the Fig. 7, the adsorption process was very fast; more than 96% of Bismarck brown Y was adsorbed within 5 min. However, to reach the equilibrium approximately 1 h is needed. Two hours incubation was used for the adsorption experiments. The equilibrium adsorption isotherms

Table 2. Dye structures and maximum adsorption capacities (q_{max}) and dissociation constants (b) describing the dyes adsorption on magnetically modified Posidonia biomass, calculated from the Langmuir equation; q_{max} is expressed in mg g$^{-1}$.

<table>
<thead>
<tr>
<th>Dye</th>
<th>Dye structure</th>
<th>Adsorption coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acridine orange</td>
<td>$q_{\text{max}} = 119.8$</td>
<td>$b = 0.424$</td>
</tr>
<tr>
<td>Bismarck brown Y</td>
<td>$q_{\text{max}} = 233.5$</td>
<td>$b = 0.084$</td>
</tr>
<tr>
<td>Brilliant green</td>
<td>$q_{\text{max}} = 151.8$</td>
<td>$b = 0.388$</td>
</tr>
<tr>
<td>Crystal violet</td>
<td>$q_{\text{max}} = 99.9$</td>
<td>$b = 0.299$</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>$q_{\text{max}} = 143.7$</td>
<td>$b = 0.060$</td>
</tr>
<tr>
<td>Nile blue A sulphate</td>
<td>$q_{\text{max}} = 193.7$</td>
<td>$b = 0.041$</td>
</tr>
<tr>
<td>Safranin O</td>
<td>$q_{\text{max}} = 88.1$</td>
<td>$b = 0.307$</td>
</tr>
</tbody>
</table>
for the tested dyes using magnetically modified Posidonia biomass are shown in Fig. 8.

In order to study the adsorption process, Langmuir and Freundlich isotherm equations are usually used for experimental data analysis. The Langmuir model is valid for monolayer adsorption onto a surface with a finite number of identical sites. The well-known expression for the Langmuir model is given by

\[
q_{eq} = \frac{q_{max} b C_{eq}}{1 + b C_{eq}} \tag{7}
\]

where \(q_{eq} \) (expressed in mg g\(^{-1}\) or mg mL\(^{-1}\)) is the amount of the adsorbed dye per unit mass or sedimented volume of magnetic Posidonia biomass and \(C_{eq} \) (expressed in mg L\(^{-1}\)) is the unadsorbed dye concentration in solution at equilibrium. The parameter \(q_{max} \) is the maximum amount of the dye per unit mass (mg g\(^{-1}\)) or sedimented volume (mg mL\(^{-1}\)) of magnetic Posidonia biomass to form a complete monolayer on the surface bound at high dye concentration and \(b \) is a constant related to the affinity of the binding sites (expressed in L mg\(^{-1}\)) (Safarik et al., 2012b).

Non-linear regression calculation using SigmaPlot software was used to fit the experimental data to Langmuir adsorption model and to obtain both constants \(q_{max} \) and \(b \). The results are presented in Table 2. The value of the maximum adsorption capacity is a very important parameter describing the adsorption process.

In the case of seven tested dyes, the highest calculated \(q_{max} \) was found for Bismarck brown Y (233.5 mg g\(^{-1}\)), while the lowest \(q_{max} \) value was obtained for safranin O (88.1 mg g\(^{-1}\)).

Adsorption kinetics

As already shown in the Fig. 7, the adsorption process was very fast with more than 96% of Bismarck brown Y adsorbed within 5 min. The obtained data were subsequently analyzed to investigate kinetics of adsorption process using pseudo-first and pseudo-second order kinetic models. It is apparent from results summarized in Table 3 that the pseudo-first order kinetic model did not fit well; the correlation coefficient was low and the calculated \(q_{eq} \) absolutely disagreed with the experimental \(q_{eq \exp} \) value, while in case of pseudo-second order kinetic model (see Table 3 and Fig. 9) the correlation coefficient reached the value close to 1.0 and the theoretical \(q_{eq} \) value calculated from this equation approached the experimental \(q_{eq \exp} \).

Thermodynamic studies

Thermodynamic studies were performed at three different temperatures, namely 282.15, 298.15 and 313.15 K. All obtained thermodynamic parameters are presented in Table 4. Negative values of Gibbs free energy change (\(\Delta G^o \)) indicate the spontaneous process, positive \(\Delta H^o \) the endothermic nature of adsorption and positive \(\Delta S^o \) suggests an increase of the randomness at the solid/solution interface.

Table 2. The pseudo-first and pseudo-second order kinetic model parameters for Bismarck brown Y (25°C, pH not adjusted).

<table>
<thead>
<tr>
<th>(C_0) (mg L(^{-1}))</th>
<th>(q_{eq \exp}) (mg g(^{-1}))</th>
<th>(k_1) (min(^{-1}))</th>
<th>(q_{eq}) (mg g(^{-1}))</th>
<th>(R^2)</th>
<th>(k_2) (g mg(^{-1}) min(^{-1}))</th>
<th>(q_{eq}) (mg g(^{-1}))</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>45.2</td>
<td>0.0137</td>
<td>2.0</td>
<td>0.7593</td>
<td>0.0632</td>
<td>45.0</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Table 4. The thermodynamic parameters for Bismarck brown Y adsorption on magnetically modified Posidonia oceanica.

<table>
<thead>
<tr>
<th>ΔH (kJ mol$^{-1}$)</th>
<th>ΔS (kJ mol$^{-1}$ K$^{-1}$)</th>
<th>ΔG^0 (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.977</td>
<td>0.073</td>
<td>282.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>298.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>313.15</td>
</tr>
<tr>
<td></td>
<td>-5.514</td>
<td>-7.235</td>
</tr>
<tr>
<td></td>
<td>-7.731</td>
<td>-7.731</td>
</tr>
</tbody>
</table>

Fig. 9: The pseudo-second order kinetic model plot (Bismarck brown Y, initial concentration 150 mg L$^{-1}$, pH not adjusted, 25°C).

interface during sorption process. Similar results have been published recently (Cengiz & Cavas, 2010).

Conclusions

Posidonia oceanica dead biomass, known also as Neptune balls, was chosen to study the biosorption of selected organic water-soluble dyes. This material can be obtained at very low cost; in fact in many localities it is a waste. To simplify the manipulation with the adsorbent, Posidonia biomass was magnetically modified using three different techniques. Although all tested magnetization procedures led to the preparation of magnetically responsive adsorbents, the method using microwave synthesized magnetic iron oxides nano- and microparticles enabled to prepare material with the highest dye removal efficiency.

Langmuir adsorption model, enabling very simple calculation of maximum adsorption capacities, could be applied with reasonable accuracy for fitting all the experimental adsorption data. The obtained values of maximum adsorption capacity ranged between 88.1 mg g$^{-1}$ for safranin O and 233.5 mg g$^{-1}$ for Bismarck brown Y, respectively.

The adsorption processes could be described by the pseudo-second-order kinetic model and the thermodynamic studies indicated that the adsorption is spontaneous and endothermic. Due to the low price, high adsorption efficiency and simplicity of magnetic modification process, the magnetic Posidonia biomass represents a perspective low-cost adsorbent for organic pollutants removal.

Acknowledgements

This research was supported by the Grant Agency of the Czech Republic (Project No. 13-13709S) and by the projects LO1305 and LD14066 of the Ministry of Education, Youth and Sports of the Czech Republic. The research was also part of COST TD1203 activities.

References

