Where have all the youngest gone? The postlarval and young stages of the Mediterranean endangered limpet Patella ferruginea Gmelin, 1791

GUALLART J. Laboratorio de Biología Marina, Departamento de Zoología, Universitat de València, E-46100 Burjassot, Valencia

PEÑA J. Instituto de Acuicultura de Torre de la Sal (C. S. I. C.), C/ Ribera de Cabanes, s/n, 12595 Ribera de Cabanes, Castellón

LUQUE Á. Laboratorio de Biología Marina, Departamento de Biología, Universidad Autónoma, C/ Darwin, 2, 28049 Madrid

TEMPLADO J. Museo Natural de Ciencias Naturales (C.S.I.C.), José Gutiérrez Abascal, 2. 28006 Madrid

http://dx.doi.org/10.12681/mms.2076

To cite this article:

Where have all the youngest gone? The post-larval and young stages of the Mediterranean endangered limpet *Patella ferruginea* Gmelin, 1791

JAVIER GUALLART, **JUAN B. PEÑA**, **ÁNGEL A. LUQUE** and **JOSÉ TEMPLADO**

1 Instituto de Acuicultura de Torre de la Sal (C.S.I.C.). C/ Ribera de Cabanes, s/n. 12595 Ribera de Cabanes, Castellón
2 Laboratorio de Biología Marina, Departamento de Biología, Universidad Autónoma, C/ Darwin, 2, 28049 Madrid
3 Museo Natural de Ciencias Naturales (C.S.I.C.), José Gutiérrez Abascal, 2, 28006 Madrid

Corresponding author: angel.luque@uam.es
Handling Editor: Marco Oliverio

Received: 11 February 2017; Accepted: 27 April 2017; Published on line: 20 October 2017

Abstract

Recruits of *Patella ferruginea* are hardly seen in their habitat; hence, the precise level where they settle and the morphology of the earliest growth stages remain unknown. The earliest post-larval stages of this species are described here for the first time, based on specimens obtained both through controlled reproduction and in its natural environment in Chafarinas Islands (North Africa). Young post-larval specimens of 290 μm in length settled slightly below the water level on floating Petri dishes in the aquaculture tank. Specimens of approximately 4 mm were found in the natural habitat at the level of the common brown seaweed *Cystoseira* spp. fringe, whereas those larger than 8 mm were also found at this level, but also in the upper midlittoral, at the *Chithamalus* spp. fringe.

The characteristic star-like shell and colour pattern of young specimens, with alternating concentric dark and light bands, appeared at approximately 8 mm in length. Smaller specimens have a more or less oval shell and dark radial bands. This information is useful for future non-invasive studies on the recruitment of this endangered species, but further information about the post-larval stages of the other three Mediterranean patellid species is needed to distinguish specimens smaller than 3 mm.

Keywords: *Patella ferruginea*, Mollusca, Gastropoda, Patellidae, post-larval stages, Mediterranean, endangered species, conservation.

Introduction

The ferruginous limpet (*Patella ferruginea* Gmelin, 1791) is an endemic western Mediterranean species that is considered one of the most endangered marine invertebrates (Laborel-Deguen & Laborel, 1991a; Templado, 2001).

At the end of the 19th century, *Patella ferruginea* was distributed throughout most of the western Mediterranean coasts, suffering an important decline during the 20th century (Laborel-Deguen & Laborel, 1991a; Porcheddu & Milella, 1991; Templado et al., 2004; Espinosa et al., 2013). Currently, it is considered extinct on the European North African coast, from Tunisia to Morocco (Rivera-Ingraham et al., 2011; Guallart et al., 2013c; Guallart & Templado, 2016; Zarrouk et al., 2016). The decline of this species is attributed to human impact, such as over-exploitation, habitat degradation, development of coastal infrastructures, and marine pollution (Templado, 2001; Paracuellos et al., 2003; Moreno & Arroyo, 2008).

For all these reasons this limpet has been included in Annex II of the Berna Convention, Annex II of Barcelona Convention and Annex IV of the “Habitats” Directive, and also in the Spanish Catalogue of Endangered Species as “in risk of extinction” since 1999 (BOE, 1999). A Spanish national strategy to protect this species was approved in 2008 (MMAMRM, 2008), being the first strategy to protect a marine invertebrate in this country: *Patella ferruginea* is a large limpet that may reach more than 100 mm of maximum shell diameter (MD) and lives in the upper midlittoral zone (Templado, 2001). Like other limpets, it is a broadcast spawner and is a sequential protandrous hermaphrodite showing alternating sex reversal (Guallart et al., 2013b). It is assumed that this species has a low fecundity, a short planktonic larval phase with limited dispersal ability (Laborel-Deguen & Laborel, 1991b; Guallart et al., 2010), and a slow growth rate (Espinosa et al., 2008; Guallart et al., 2012b). However, nothing is known about the larval phase or on the recruitment processes.

Smaller specimens of *Patella ferruginea* are hardly seen in their habitat (Frenkiel, 1975; Laborel-Deguen & Laborel, 1991b). The latter authors suggested that this may be due to the fact that the first benthic stages probably refuge in the upper infralittoral zone, at the level of the *Cystoseira* belt, where they would be very difficult to find. Shell morphology of young specimens (MD 20-30 mm) is well known and quite characteristic, with a star-like outline due to prolongation of axial ribs and a colour
pattern of concentric dark and light bands. They are common in the mid littoral zone of localities with dense populations of adults (Frenkel, 1975; Espinosa, 2009; Espinosa et al., 2011; Rivera-Ingraham et al., 2011; Guallart et al., 2013b; Guallart & Templado, 2016). Nevertheless, several authors considered unfeasible the identification of young specimens less than 20 mm (Mari et al., 1998; Giudicelli et al., 1999; Meinesz et al., 2001; Pascal, 2002) or 10 mm (Coppa et al., 2012) on the basis of the external shell characters, and thus did not include them in censuses.

As far as we know, the smallest specimen of *Patella ferruginea* illustrated is that of 7 mm by Scaperrotta et al. (2011, p. 20). Laborel-Deguen & Laborel (1991a) briefly described specimens less than 5 mm shell diameter from Corsica as having an elevated conical shell, no visible radial ribs, and ten white radial bands standing out against the dark background of shell. According to these authors, radial ribs appear gradually in specimens larger than 5 mm, which have the characteristic colour pattern of concentric beige bands forming a star-like outline when crossing the ribs.

Casa et al. (2010) used genetic (and presumably lethal) methods to identify two juveniles of *Patella* of approximately 2.5 mm found on the shell of an adult specimen of *Patella ferruginea* since “species’ diagnostic features may not be apparent” in such small specimens.

Therefore, almost nothing is known about the precise habitat and the morphology of the earliest growth stages of *P. ferruginea*. The early post-larval stages still remain undescribed despite that detailed information about recruitment success and young survival rates are essential for conservation purposes. Morphologic and non-invasive identification criteria for the young stages of this endangered species are therefore necessary.

Accordingly, our aim is to describe here for the first time the sequence of evolution of shell morphology and colour pattern of *Patella ferruginea* from early post-settlement stages until 20 mm MD.

Materials and Methods

Data presented here come from two sources: specimens studied in its natural environment (Chafarinas Islands, North Africa) and those obtained through controlled reproduction.

Chafarinas Islands house one of the most important and healthy existing populations of this species, estimated at more than 42,300 adults (Guallart & Templado, 2016). Recruitment, although variable, has been regular in this archipelago during the last years, sometimes exceptionally successful with up to 50 recruits/meter (Guallart et al., 2012a). This facilitated the observations of recruits of different sizes. As a result of thorough censuses carried out in these islands between 1999 and 2013, a total of 7,922 specimens smaller than 20 mm MD were found; among them, 74 specimens had a size of less than 5 mm MD. Nevertheless, we were unable to find specimens smaller than 3.8 mm, due to the difficulty of locating them in a heterogeneous substrate with dense biological coverage.

On the other hand, controlled reproduction under laboratory conditions at the “Instituto de Acuicultura de Torre de la Sal”, Castellón (IATS-CSIC), Spain, allowed obtaining newly settled post-larval specimens in 2012 and 2013. The description of the first stages of growth up to 2.5 mm MD is based upon 42 specimens obtained from *in vitro* fertilisation using eggs and sperm from reproductive individuals coming from the Chafarinas Islands (Guallart et al., 2012c, 2013d). Growth monitoring in the laboratory of these specimens provided data on sizes up to 25 mm MD and larger, consistent with those observed in the natural habitat. Most observations come from specimens kept alive in aquaria but some post-larval shells were obtained dead from the filters at the bottom of the aquaculture tanks. Descriptions of the inner surface of the shell are based on specimens which died during laboratory studies; a representative series of 14 voucher shells in the range 5.6-28.7 mm have been deposited at Museo Nacional de Ciencias Naturales, Madrid (MNCN 15.05/60855).

Scanning Electron Micrographs were taken at MNCN under a low vacuum mode on a FEI QUANTA 200 SEM and at high vacuum mode on a JSM-840 SEM.

Results

The smallest studied post-larval specimens were found on the algal biofilm covering some Petri dishes placed at the air-water interface, floating in the culture tanks, and were observed nine days after *in vitro* fertilisation of eggs. In its natural habitat, specimens longer than 3.8 mm MD were found at the level of the vermetid gastropod *Dendropoma lebeche* Templado, Richter & Calvo, 2016 and the crustose coralline red algae *Neogoniolithon brassica-florida* Harvey (Setchell & Mason, 1943) (Fig. 1A), whereas those larger than 8-10 mm were mainly found in the upper mid littoral, at the *Chthamalus* spp. fringe, together or even on adult specimens (Fig. 1B, C).

The smallest settled specimen measures 267 μm in total length (Fig. 2A), showing a translucent teleoconch (212 μm in maximum diameter). The protoconch (embryonic shell or protoconch I) measured in 12 post-larvae ranged between 210 and 245 μm in length (mean 232.7 ± 12.1 μm). It is smooth, symmetrical, but somewhat left-tilted with regard to the longitudinal teleoconch axis (Fig. 3A, B). The protoconch can remain in specimens up to 3 mm or even more in juveniles hatched and maintained in aquaria, although probably disappear much earlier in natural conditions due to erosion. At this time, the teleoconch shows a dense sculpture of fine radial lines, and remains translucid up to nearly 400 μm in length. Post-larval specimens of 267-290 μm and juveniles around 2 mm long were repeatedly observed scraping the algal film on the surface where they were settled with the radula (Supplementary material, S1, S2).
Young specimens of 1-2 mm MD have an ovate shell and a distinct colour pattern of radial bands alternating light (whitish) with 8-12 dark (brown to blackish), most of them forking near the margin (Fig. 2B, C). Some of these forked bands appear later to be grouped in pairs in larger juveniles (Fig. 2D, E). In 1-2 mm specimens, the initial teleoconch, at approximately 500 μm in diameter, shows an almost uniformly dark brown colour. The inner shell shows the same radial banded pattern by transparency (Fig. 5A). This pattern remains in specimens up to 3-4 mm length, both observed in the natural environment and reared in laboratory (Fig. 2D).

Specimens between 5 and 8 mm show dark spots near the shell edge (Fig. 2E). These spots begin the development of the first dark ring of a series of concentric bands, which are characteristics of specimens larger than 10 mm MD (Fig. 2F, G). The banded radial pattern of the smaller specimens often disappears in larger specimens.
(25-30 mm) due to shell erosion in its natural habitat, but remains in laboratory specimens up to 40 mm MD. Figure 2H-N represents the schematic evolution of shell morphology and colour pattern from new settled juveniles 0.5 mm in length until 17 mm.

The shell inner surface in individuals more than 5 mm up to at least 20 mm is darker, predominantly reddish brown and dark blue (Fig. 4A-J). The pattern is ill-defined, with blue under the radial ribs and the concentric dark bands of the external surface. Sometimes, the growth edge is more evident due to its whitish colour. The inner surface of the shell becomes gradually whitish in specimens from 20-25 mm (Fig. 4K-N).

The colour pattern of the soft parts differs between young and adult specimens. Adults (>30 mm MD) show the foot sole a yellowish cream colour tarnished with grey; dark grey or blackish foot sides, head and cephalic tentacles; and translucent pallial tentacles (Fig. 5C). Smallest specimens are paler, showing a translucent whitish foot sole, head, and cephalic tentacles at a length of 2 mm (Fig. 5A). Cephalic tentacles are the first to become darker, being grey at 10-12 mm MD (Fig. 5B); head, foot sole, and sides have a light cream, almost yellowish colour. Specimens more than 25 mm have dark grey or blackish cephalic tentacles and the head becoming greyish, while the foot sole and sides remain light cream to sizes over 30 mm. Foot sides darken to grey or blackish colour at approximately 40-50 mm.

Fig. 3: *Patella ferruginea*. A SEM micrograph of the shell of a recently settled post-larval specimen 0.99 mm in length. B Detail of the protoconch of the same specimen. Scale bars: A, 400 μm; B, 100 μm.

Fig. 4: *Patella ferruginea*. External and internal views of the shells of some young specimens stored at MNCN as voucher material. A-B 5.6 mm. C-D 7.0 mm. E-F 7.9 mm. G-H 12.5 mm. I-J 15.2 mm. K-L 20.6 mm. M-N 25.0 mm. Scale bar: 10 mm.
Discussion

According to our laboratory observations, the young-est post-larvae settled just at the air-water interface, and the subsequent early stages live slightly above this level, probably to avoid desiccation. The youngest specimens were found in the natural habitat at the *Dendropoma lebeche* belt (which coincides with the mean sea level), and only specimens more than 8-10 mm long climb to the upper *Chthamalus* spp. level (upper midlittoral), sharing this habitat with adults. Our observations on the location of the recruits partially agrees with the suggestion of Laborel-Deguen & Laborel (1991b) that the very first benthic stages live at lower levels than adults, but we consider it unlikely that they settle at the *Cystoseira* spp. belt (infralittoral). Instead, our observations suggest that they could settle at the lower midlittoral, on the irregular surface covered by the *Dendropoma lebeche-Neogoniolithon brassica-florida* belt. Indeed, Guallart & Templado (2016) found a significant association between maximum values of density of *Patella ferruginea* and the presence of a more or less continuous belt of *D. lebeche-N. brassica-florida* crusts with moderate vertical development in Chafarinas Islands, and suggested that a more detailed study of this association is needed.

The protoconch of *P. ferruginea* is illustrated and described here for the first time. Little information is available on the protoconchs of other Mediterranean-Atlantic limpet species. The protoconch of *Patella caerulea* Linné, 1758 is approximately 200 mm in length according to measurements made on Fig. 4 from Wanninger et al. (1999). It shows also a symmetrical but not sculptured embryonic shell (protoconch I); the right part of the juvenile teleoconch apparently grows faster than the left part, also giving a left-tilted protoconch with respect to the longitudinal axis of teleoconch (Wanninger et al., 1999). Nevertheless, the early teleoconch of *P. caerulea* lacks the radial sculpture of *P. ferruginea*. Thompson (1912) described a similar asymmetry with the posterior apex of the protoconch being to the left of the teleoconch axis in *Acmaea* sp. (Acmaeidae). Similarly, the teleoconch of *Lottia digitalis* (Rathke, 1833) and *L. asmi* (Middendorf, 1847) (Lottiidae) was initially symmetrical, but in slightly older post-larvae the protoconch appeared to be displaced slightly clockwise relative to the long axis of the teleoconch (Kay & Emlet, 2002).

Smith (1935) observed that post-larvae of *Patella vulgata* Linné, 1758 loss the protoconch at approximately 0.5 mm length, while in specimens studied here, the protoconch remained in specimens up to 3 mm in length, and even longer in laboratory-cultured juveniles.

Post-larvae and young specimens of *Patella ferruginea* under 5 mm MD are described and illustrated in this work for the first time. They show a remarkably different shell morphology and colour pattern when compared to larger specimens, and can be recognised from a young age. The 7 mm specimen of *Patella ferruginea* illustrated by Scaperrotta et al. (2011, p. 20) from Corsica shows an identical shell shape and colour pattern to those we have studied of similar sizes.

Fig. 5: Patella ferruginea. Ventral views of living animals. A 2.56 mm. B 12 mm. C 30 mm.
Patella ferruginea shares its upper midlittoral habitat with Patella rustica Linné, 1758. This species lives in a slightly higher level, but no studies about its younger stages have been published. We have not studied specimens of *P. rustica* under 5 mm MD, but at this size, *P. rustica* has a more regular profile of the shell margin and a greater number (12) of more or less discontinuous radial dark bands than *P. ferruginea*, which are not grouped in pairs: thus both species can be easily differentiated. Scaperrotta *et al.* (2011, p. 21) illustrated a 5.5 mm specimen of *P. rustica* also showing 12 radial black bands. According to Lima *et al.* (2006), small (ca. 5 mm) specimens of *Patella rustica* show the characteristic black spots decorating the shell of this species.

Casu *et al.* (2010) compared the sequences of the cytochrome c oxidase subunit I (COI) of two young limpets of approximately 2.5 mm in length found attached to an adult shell of *P. ferruginea* from Isole Le Camere (NE Sardinia, Italy), that they considered morphologically unidentifiable (although they were not described). These authors concluded that COI may be useful as DNA barcoding to differentiate Mediterranean species of *Patella*, and identified one of these two specimens as *P. rustica* and the other as *P. ferruginea*. They also stated the unfeasibility of a confident identification of young individuals, “even sacrificing the specimen, a practice not to be encouraged when dealing with a species threatened with extinction”. Although they used a tissue sampling protocol by excising samples of foot muscle and gill (Casu *et al.*, 2006), there is no comment on the survival of the two young specimens after this treatment. According to our own experience (unpublished observations) it is unlikely that such small specimens could have survived that procedure, in contrast to the high survival rates observed in adults by Casu *et al.* (2006) and by our sampling protocol (Guallart *et al.*, 2013a) that did not include such very small specimens. Therefore, this invasive, expensive, and slow genetic method seems to be inapplicable in practice to report the abundance of very young individuals in ecological surveys or in censuses of this species facing risk of extinction, and thus must be discarded.

Although further information is needed about specimens smaller than 5 mm of *P. rustica* and also of the other two Mediterranean patellid limpets, *P. caerulea* and *P. ulysseponensis* Gmelin, 1791, the present paper provides information with which to identify with confidence young specimens of *Patella ferruginea* at least 3 mm MD exclusively on the basis of the external shape and colour pattern, a non-invasive and far preferable method than genetic ones.

Acknowledgements

This work was funded by the project “Action plan for viability proposals of the endangered limpet, *Patella ferruginea*” (Project 0 of the Spanish Research Council–CSIC- Foundation) and former grants awarded by the Organismo Autónomo Parques Nacionales and the Dirección General de Conservación de la Naturaleza of the Spanish Ministry of Agriculture, Alimentación y Medio Ambiente (MAGRAMA). We thank the latter institutions and also Ainhoa Pérez Puyol and the staff of División para la Protección del Mar (Dirección General de Sostenibilidad de la Costa y del Mar, MAGRAMA) for permission to study a species protected by Spanish law. We are also indebted to Javier Zapata and the staff of the Biological Station of the Chafarinas Islands, the Spanish Ministry of Defensa, and the military personnel on the islands for facilities provided during fieldwork. The authors would also like to thank Iván Acevedo, Marta Calvo, Annie Machordom, and Patricia Cabezas (MNCN), Josu Pérez-Larruscaín (Instituto de Investigación y Tecnología Agroalimentarias, IRTA), and Juanjo Villalón (Melilla) for their valuable contribution to logistics, field or laboratory work.

References

BOE, 1999. Orden de 9 de junio de 1999 por la que se incluyen en el Catálogo Nacional de Especies Amenazadas determinadas especies de cetáceos, de invertebrados marinos y de flora y por la que otras especies se excluyen o cambian de categoría. Boletín Oficial del Estado, 148, 23921-23922.

Supplementary Material

Video footages of two young stages of *Patella ferruginea*, scraping the transparent substrate where they settled.

S1. Post-larva of 267 μm in total length, 15 days after fertilisation, seen in dorsal view.

S2. Young specimen 2.1 mm MD, approx. 5 months old, seen in ventral view.