Mediterranean Marine Science Vol 19, No 2 (2018) Relationship between marine epilithic diatoms and environmental variables in oligotrophic bay, NE Mediterranean DUBRAVKA HAFNER, ANA CAR, NENAD JASPRICA, TATJANA KAPETANOVIĆ, IRIS DUPČIĆ RADIĆ doi: 10.12681/mms.14151 ## To cite this article: HAFNER, D., CAR, A., JASPRICA, N., KAPETANOVIĆ, T., & DUPČIĆ RADIĆ, I. (2018). Relationship between marine epilithic diatoms and environmental variables in oligotrophic bay, NE Mediterranean. *Mediterranean Marine Science*, 19(2), 223–239. https://doi.org/10.12681/mms.14151 Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available online at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14151 # Relationship between marine epilithic diatoms and environmental variables in oligotrophic bay, NE Mediterranean ## DUBRAVKA HAFNER¹, ANA CAR², NENAD JASPRICA², TATJANA KAPETANOVIó and IRIS DUPČIĆ RADIò ¹Bartulovići 4, HR-20357 Blace, Croatia ²Laboratory of Plankton Ecology and Population Genetics, Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, PO Box 83, HR-20000 Dubrovnik, Croatia ³Environmental Fund of the Federation of Bosnia and Herzegovina, Hamdije Čemerlića 39A, BiH-71000 Sarajevo, Bosnia and Herzegovina > Corresponding author: ana.car@unidu.hr Handling Editor: Antonia Giannakourou Received: 4 July 2017; Accepted: 1 December 2017; Published on line: 8 June 2018 #### **Abstract** The taxonomic composition and structure of a marine epilithic diatom community were sampled from the bottom of the two sites at monthly intervals from January to December 2011 in the small semi-enclosed oligotrophic Neum Bay in Bosnia and Herzegovina (Middle Adriatic). Altogether, 264 diatom taxa (species and infraspecific taxa) within 69 genera were identified. Among them, 149 and 203 taxa occurred in samples from the shallow (0.5 m depth) and deep (8 m depth) sites, respectively. The monthly distribution of most of the diatoms was irregular and high numbers of sporadic taxa were found. SIMPER analysis indicated that the difference between shallow and deep sites could be largely attributed to the frequently recorded diatom taxa and those with high percentage abundances. They were *Halamphora coffeiformis*, *Caloneis excentrica*, *Cocconeis scutellum* var. *scutellum*, *Licmophora flabellata*, *Licmophora gracilis*, *Licmophora* sp., *Navicula abunda*, *Rhabdonema adriaticum*, and *Striatella unipunctata*. Canonical Correspondence Analysis (CCA) showed that temperature, oxygen saturation (O₂/O₂'), silicate concentration (SiO₄), and salinity were the most important factors influencing diatom community structure in the bay. Keywords: Bacillariophyta; Bosnia and Herzegovina; diversity; eastern Adriatic; environmental factors; shallow-water habitat. #### Introduction Diatoms are the most important photosynthetic unicellular eukaryotes and aquatic primary producers on Earth, accounting for approximately 40% (Falkowski *et al.*, 2004). The benthic diatoms are of particular value in the understanding of present ecosystems in shallow coastal areas and very important tools for the monitoring and interpretation of environmental conditions of both the past and the present (Stevenson & Pan, 1999). They have become increasingly studied in European countries and many other parts of the world (Delgado *et al.*, 2010; Lavoie *et al.*, 2014; Tan *et al.*, 2015). Generally, there is only limited literature available dealing with the composition of epilithic assemblages grown on either natural or artificial substrates in marine coastal waters (Brandini *et al.*, 2001; Hillebrand & Sommer, 2000; MacLulich, 1987). This may be explained chiefly by the existence of methodological difficulties in the processing of samples and of a lack of taxonomic knowledge regarding marine populations (Agatz et al., 1999). In the Mediterranean, several studies, in both heavily urbanized and undisturbed areas, have dealt with the composition of diatom populations grown on artificial (Munda, 2005; Totti et al., 2007) or natural substrates (Facca et al., 2002; Facca & Sfriso, 2007; Colak Sabanci & Koray, 2010; Çolak Sabanci, 2011, 2012; Cibic & Facca, 2010 and references therein). Many more studies have been reported on diatom epibenthic communities on macroalgae and seagrasses (epiphyton) (Car et al., 2012; De Stefano et al., 2000) or animals (epizoon) (Romagnoli et al., 2007, 2014 and references therein). Most recently, Alvarez-Blanco & Blanco (2014) contributed to knowledge on benthic diatom taxa in Mediterranean, including some Adriatic sites. On the other hand, there are only a few studies on benthic diatoms in the eastern Adriatic, mostly focused on the ecology and taxonomy of brackish periphytic diatoms in the Croatian estuaries (Burić et al., 2004; Caput Mihalić et al., 2008; Levkov et al., 2010; Munda, 2005) or Albanian coastal wetlands (Miho & Witkowski, 2005). In addition, Mejdandžić *et al.* (2015) and Nenadović *et al.* (2015) reported on the development of periphytic diatoms on different artificial substrates, based mostly at the generic level. There is no consensus on the main factors that determine diatom species composition and distribution with regard to environmental conditions, particularly in the shallow marine or lagoon systems. Therefore, the results from different studies may prove contradictory (Çolak Sabanci, 2011; Jasprica et al., 2012; Sullivan & Currin, 2000, etc.). This paper considers the taxonomic composition and seasonality of marine epilithic diatoms in relation to some key environmental variables such as temperature, salinity, nitrate (NO₂), nitrite (NO₂), ammonium (NH₄), phosphate (PO₄), silicate (SiO₄), total inorganic nitrogen (TIN), oxygen saturation (O₂/O₂'), and chlorophyll a concentrations in a shallow marine bay in Bosnia and Herzegovina, an area not yet investigated. The present study addresses this deficiency and contributes to a better knowledge of benthic algal communities and their ecology in the Mediterranean in general and the Adriatic in particular. #### **Materials and Methods** #### The study area Bosnia and Herzegovina (NW Balkan Peninsula) has only 21.2 km of coastline and represents only 0.26% of the total Adriatic coastline length (Pikelj & Juračić, 2013). The maritime area consists of the Neum Bay with total sea surface area of ca. 8 km². The coast is low and rocky, built up of karstified carbonates. The average and maximum sea depth in the bay are 17 and 27 m, respectively. The bottom is mostly covered by rocky sediments. The bay is located between the mainland and the 7 km long Klek Peninsula, and it is treated as a 'closed sea' (mare clausum). This semi-enclosed bay is part of the larger Mali Ston Bay, which is enclosed on the seaward side by the 62 km long Pelješac peninsula, Croatia. Mali Ston Bay expands to the northwest and connects with the Neretva River channel which is linked with the open sea. Due to its ecological and economical importance, this area with a centuries long mariculture tradition was proclaimed as the Special Marine Reserve of Mali Ston Bay and Malo More, including the Neum Bay, in 1983. The town of Neum (estimated population 3,236 in 2013) is the only coastal settlement in Bosnia and Herzegovina and an important national tourism destination. The region experiences a typical Mediterranean climate: summers are warm and dry, winters are mild and rainy (Jasprica *et al.*, 2005, 2015). Detailed data on the hydrology, climate, geology, and vegetation of the area have been presented by Jasprica *et al.* (2012, 2015) and Čalić *et al.* (2013). ### Diatom sampling design and analyses Samples for epilithic diatom analysis were collected in the southern part of Neum Bay from the substrate of the two sites (Sites 1 and 2; Fig. 1). Site 1 was situated at 1 m from the coastline with the maximum depth of 0.5 m and was marked as 'shallow site'. Site 2 was situated at 25 m from the coastline with the maximum depth of 8 m and was marked as 'deep site'. Samples were collected at monthly intervals from January to December 2011. In January, February, and March 2011 only samples from the shallow site were taken, and a total of 21 samples were analyzed. However, due to site conditions, technical problems and complexities (scuba-diving gear), samples from the deep site could not be collected during period January to March 2011. For defining the species composition of epilithic diatoms, stones of 15-20 cm in diameter were collected. Stones from deeper site were collected by scuba diving. Stones were collected randomly as possible amongst those that are not smothered with filamentous algae and in which the diatom film was evident. Stones were taken into a plastic bag of 1-L in which 200 mL *Fig. 1:* Sampling sites (●) in Neum Bay, Bosnia and Herzegovina. Site 1 – Shallow site (0.5 m depth); Site 2 – Deep site (8 m depth). of filtered seawater was added. The upper parts of the stones were rubbed with a toothbrush and the mixture was decanted into the 250 mL polythene bottles (Winter & Duthie, 2000). The samples were then preserved with 4% formaldehyde. Collected material was cleaned of organic material for light microscopy (LM) and scanning electron microscopy (SEM) observations utilizing sulphuric acid, potassium permanganate, and oxalic acid (cf. Hasle & Fryxell, 1970). They were then rinsed with distilled water, pipetted onto ethanol-cleaned cover-slips and left to air dry before mounting in Canada balsam. Samples entirely cleaned from organic material were made ready as permanent preparations. Whenever possible, diatoms were identified and counted to species level at x1000 magnification by phase-contrast optics with Microstar binocular microscope (AO Scientific Instruments) and a x100 PlanApo oil immersion objective. Some taxa reported here could not be clearly assigned to species level (assigned as "sp.") and they
will be subject of further taxonomic investigations. The abundances of the species were expressed as percentages of the total number of frustules counted (relative abundances, in %). In total, 400 valves per sample were counted. Slides have been deposited in the diatom collection of the Institute for Marine and Coastal Research, University of Dubrovnik, Dubrovnik, Croatia [no. DH-NB-1-21]. Identifications were made following Peragallo & Peragallo (1897–1908), Hendey (1964), Ricard (1974, 1975, 1977), Poulin *et al.* (1984, 1990), Bérard-Therriault *et al.* (1986, 1987), Snoeijs (1993), Snoeijs & Potapova (1995), Snoeijs and Kasperoviciené (1996), Snoeijs & Balashlova (1998), Hartley (1986), Hartley *et al.* (1996), and Witkowski *et al.* (2000). Nomenclature follows AlgaeBase (Guiry & Guiry, 2017) and Álvarez-Blanco & Blanco (2014). ## Physical-chemical parameters In order to determine the relationships between diatom communities and environmental variables, water samples were taken near the substrate for chemical analysis, i.e., at the same place as where diatom sampling was carried out. Water samples were collected in 5-L Niskin bottles, and sub-samples were taken for the nutrients (Strickland & Parsons, 1972; Ivančić & Degobbis, 1984) and chlorophyll-a concentrations (Chl a; Holm-Hansen et al., 1965). Measurements were performed in single time (no replicates were made). Samples were collected from February to December 2011 for most physical-chemical parameters except in November. Due to technical problems and sample handling on the boat, temperature, salinity, and oxygen saturation were not measured in October on both sites, and Chl a was not measured at the deeper site in December. Chemical variables (nutrients) included total inorganic nitrogen (TIN) [TIN = nitrate (NO₃) + nitrite (NO₂) + ammonium (NH₄)], phosphate (PO₄) and silicate (SiO₄). Temperature was measured with an inverted thermometer. Salinity was determined by argentometric titration (Grasshoff *et al.*, 1983). Dissolved oxygen was determined by the Winkler method and oxygen saturation (O₂/O₂') was calculated from solubility of oxygen in seawater as a function of temperature and salinity (Weiss, 1970; UNESCO, 1973). Chl *a* was determined from 500 mL sub-samples filtered through Whatman GF/F glass-fibre filters and stored at -20°C for a period less than a month. Filtered samples were homogenized and extracted in 90% acetone for 24 hours at room temperature (Holm-Hansen *et al.*, 1965). Chl *a* was determined fluorometrically using a Turner TD-700 Laboratory Fluorometer (Sunnyvale, CA) calibrated with pure Chl *a* (Sigma). Trophic status was characterized by the TRIX index, commonly used to classify coastal marine areas in the Mediterranean (Vollenweider *et al.*, 1998; Karydis, 2009). #### Statistical analysis Non-metric multidimensional scaling ordination (NMDS) was applied to define the benthic diatom abundance with respect to sampling dates and depth distribution. Ordination was based on the Bray-Curtis similarity matrix (Legendre & Legendre, 1983; Clarke & Warwick, 2001). For this purpose, a matrix of 264 taxa over 21 samples was constructed. Cell abundance data were square-root transformed. ANOSIM randomization (Clarke & Warwick, 1994) was used to test for significant differences in benthic community structure between shallow and deeper site across seasons. The dissimilarity percentage program (SIMPER, Clarke & Warwick, 1994) was used to identify the taxa making the greatest contribution to differences between clusters observed in the NMDS plot. As diversity indices provide more information than simply the number of taxa present (i.e., they account for some taxa being rare and others being common) and serve as valuable tools to quantify diversity in a community, in order to examine the taxa richness of epilithic diatom assemblages at different depths, Shannon-Wiener Biodiversity Index values were computed (Krebs, 1999): $$H = -\sum_{i=1}^{S} \rho_i \log_2 \rho_i$$ where H is the Shannon-Wiener diversity, s is the total number of species and p_i is the proportional abundance of i-th species. This index is commonly used in ecology of benthic diatom communities (cf. Kwandrans, 2007). These statistical analyses were performed using PRIMER v5 software (Clarke & Gorley, 2001; Wilkinson, 1986). As diversity index is not completely effective in de- scribing community structure species evenness of epilithic diatom assemblages at different depths was computed. According to Beisel *et al.* (2003) any evenness index should not be used alone so Pielou's evenness values and Smith and Wilson's evenness values were computed (Pielou, 1966; Smith & Wilson, 1996). While Pielou's evenness has a weak sensitivity to variations on rare taxa, Smith and Wilson's evenness has the weak sensitivity to variations on dominant taxa. Canonical Correspondence Analysis (CCA) was used to relate the abundance of diatom taxa to environmental variables. CCA extracts synthetic gradients from the biotic and environmental matrices, which are quantitatively represented by arrows in graphical biplots (ter Braak & Verdonschot, 1995). CCA ordination biplot was used to show relation of taxa and environmental variables. A dataset included eight samples from shallow site and eight samples from deeper site from April to December 2011. Missing data from November were excluded in the analysis. Neither transformation (e.g., square root or log) of species data nor down-weighting of rare species was performed. The data were centered and standardized before analyses as they were measured on different scales. A Monte Carlo permutation test (reduced model - 499 permutations) was used to test the significance of each variable. Eigenvalues calculated measure the importance of each of the ordination axes (0-1). Species-environment correlation measures the strength of the relationship between taxa and the environment for particular axes. The analysis was carried out using CANOCO for Windows 4.52 software (ter Braak & Šmilauer, 2002). #### **Results** ## Physical-chemical parameters Variations in the physical and chemical parameters in shallow and deeper site are presented in Fig. 2. There were statistically significant differences (Student's t-test, P<0.05) in all environmental parameters, except Chl a, between samples from shallow and deeper site. Temperature and concentrations of TIN, PO₄, and SiO₄ showed higher values on shallow site. On the contrary, salinity and at least some Chl a had higher values at the deep site. Water temperature (Fig. 2) ranged from 10.2° C (March) to 27.1° C (September) in shallow depth and from 11.1° C (March) to 24.5° C (September) at the deep site. On both sites it rose steadily from March to September, and began to decrease in October. Salinity (Fig. 2) varied from 32.0 (April) to 38.4 (December) in samples from the shallow site. It was higher in samples from the deep site, varying from 36.7 (April) to 38.4 (December). Warm summer months were characterized by lower salinity, while in the cooler months of winter and spring salinity was mostly dependent on the precipitation regime and the extremely dynamic water flow from the karstic springs that feed the bay. Oxygen saturation (O_2/O_2') of both depths indicated good aeration (range 0.95-1.36, average 1.12). The nutrient concentrations in samples from shallow site - especially TIN and SiO₄ - oscillated much more than those in samples from deeper site. TIN ranged from 0.98 (February) to 2.79 (April) µM and from 0.35 (February) to 1.72 (October) μM, respectively, in samples from shallow and deeper site. In this study, TIN generally follows the distribution of NO, with exception in August on shallow site and in October on deeper site when NH₄ significantly contributed (1.42 and 0.63 μM, respectively). Phosphate (PO₄) ranged from 0.03 (March) to 0.22 (July) μM in shallow samples and from 0.03 (February, April) to 0.13 (December) µM in deeper samples. Silicate (SiO₄) ranged from 1.49 (July) to 9.59 (August) µM in shallow samples and from 0.51 (February) to 5.02 (December) μM in samples from deeper site. Chl a ranged from 0.1 (May) to 0.34 µg L⁻¹ (September) on the shallow site and from 0.11 (June and July) to 0.54µg L⁻¹ (October) on the deep site (Fig. 2). Secchi disc transparency extended to the bottom of the Site 2 (8 m depth) throughout all the year. According to the TRIX index (annual average 3.23±0.48 TRIX units), Neum Bay can be characterized as oligotrophic. ## Species richness and the Shannon-Weiner diatom diversity index Altogether, 264 taxa (species and infraspecific taxa) within 69 genera were identified in Neum Bay in 21 samples originating from the bottom of the shallow (0.5 m) and deep (8 m) site. Genera with the greatest number of taxa were: *Mastogloia* (35 taxa), *Diploneis* (26), *Nitzschia* (19), *Amphora* (19), *Navicula* (16), and *Cocconeis* (16) (see Appendix 1). Over the entire study, 149 and 203 taxa were found on the shallow and deep site, respectively. Among them, 42 taxa were found exclusively on the shallow and 96 occurred only on the deep site (Appendix 1). However, during the study, 119 taxa were common to both sampling depths. In total, 100 taxa were found only once (sporadic) in all samples (Appendix 1). Among them, 47 and 53 taxa have been found on the shallow and deep sites, respectively. All of these taxa had relative abundances lower than 1%. The number of taxa per sample in the shallow samples ranged from 16 (April) to 62 (August), with an average of 39.2. At the deep site, the range of taxa per sample varied from 27 (September) to 78 (April), the average being 65.2. The species diversity index varied from 1.40 to 3.62 in samples from shallow site, and 3.06 to 3.93 in samples from deeper site (Fig. 3). Generally, these vary either with depth or with season. An increase in species diversity index in the warm summer months was noted in the
shallow samples. On the deep site the lowest index was found in September, while the highest was in October Pielou's species evenness ranged from 0.47 to 0.88 (the average 0.71) on shallow site and from 0.86 to 0.93 (the average 0.89) on deeper site (Fig. 3). Smith and Wil- *Fig. 2:* Monthly distribution of the physical and chemical parameters in the shallow (0.5 m) and deep (8 m) site in Neum Bay in 2011. A) temperature; B) salinity; C) oxygen saturation (O_2/O_2') ; D) total inorganic nitrogen (TIN); E) phosphate (PO_4) ; F) silicate (SiO_4) ; G) chlorophyll-a concentrations. son species evenness ranged from 0.14 to 0.60 (the average 0.36) in the samples from shallow site and from 0.06 to 0.62 (the average 0.49) in the samples from deeper site. ## Relative abundances and distribution of diatom assemblages According to NMDS, epilithic diatom assemblages were significantly different (ANOSIM, P<0.05) between the shallow and deeper site (Fig. 4, Table 1). SIMPER analysis showed that *Striatella unipunctata*, *Cocconeis scutellum* var. scutellum, *Licmophora gracilis*, *Halamphora coffeiformis*, *Rhabdonema adriaticum*, *Tryblionella compressa*, *Dimeregramma minus*, *Grammatophora oceanica*, *Caloneis liber* var. *linearis*, *Actinocyclus subtilis*, *Achnanthes brevipes*, *Rhopalodia pacifica*, *Licmophora* sp., *Mastogloia binotata*, and *Trachyneis aspera* contributed the most (cumulatively 25%) to the variance between assemblages from the shallow and deeper site. *Fig. 3:* Number of diatom taxa (A), the Shannon-Wiener diatom diversity index (B), Pielou's evenness index (C), and Smith and Wilson's evenness index (D) in the shallow (0.5 m) and deep site (8 m) in Neum Bay in 2011. *Fig. 4:* NMDS ordination based on the epilithic diatom relative abundance (%) data in the shallow (\blacktriangle - 0.5 m) and deep (\blacktriangledown - 8 m) sites in Neum Bay in 2011. **Table 1.** List of diatom taxa and their percentage contributions to total diatom community composition (taxa with relative abundances \geq 4%, RA, only are shown) for the shallow (0.5 m) and deep (8 m) site in Neum Bay in 2011. | Season: | Month / Site (Depth): | Shallow Site
(0.5 m) | | Deep Site
(8 m) | | |---------|-----------------------|--|-----------|---|-----------| | Jeason. | (p). | , , | RA
(%) | , | RA
(%) | | Winter | January | <i>Striatella unipunctata</i> (Lyngbye) C.
Agardh | 25.50 | | | | | | Cocconeis scutellum Ehrenberg var. scutellum | 18.25 | | | | | | Achnanthes brevipes C. Agardh | 11.50 | | | | | | Rhabdonema adriaticum Kützing | 9.50 | | | | | | Achnanthes longipes C. Agardh | 9.00 | | | | | | <i>Licmophora flabellata</i> (Grev.) C.
Agardh | 4.50 | | | | | February | <i>Striatella unipunctata</i> (Lyngbye) C.
Agardh | 30.50 | | | | | | Cocconeis scutellum Ehrenberg var. scutellum | 17.50 | | | | | | <i>Licmophora flabellata</i> (Grev.) C.
Agardh | 13.50 | | | | | | Rhabdonema adriaticum Kützing | 7.50 | | | | | | Licmophora pfannkuckae Giffen | 5.00 | | | | Spring | March | Cocconeis scutellum Ehrenberg var. scutellum | 24.50 | | | | | | Halamphora coffeiformis (C.Agardh)
Levkov | 16.25 | | | | | | Rhabdonema adriaticum Kützing | 6.50 | | | | | | <i>Striatella unipunctata</i> (Lyngbye) C.
Agardh | 5.50 | | | | | | Achnanthes longipes C. Agardh | 4.75 | | | | | April | Licmophora gracilis (Ehrenberg)
Grunow | 55.00 | Cocconeis scutellum Ehrenberg var.
scutellum | 10.0 | | | | Striatella unipunctata (Lyngbye) C.
Agardh | 16.25 | Paralia sulcata (Ehrenberg) Cleve | 8.75 | | | | Cocconeis scutellum Ehrenberg var. scutellum | 15.25 | Halamphora coffeiformis (C. Agardh) Levkov | 7.00 | | | | | | Navicula flagellifera Hustedt | 4.50 | | | May | Licmophora sp. | 59.50 | Grammatophora oceanica Ehrenberg | 7.00 | | | | Cocconeis scutellum Ehrenberg var. scutellum | 21.75 | Caloneis liber var. linearis Cleve | 5.25 | | | | | | Petrodictyon gemma (Ehrenberg) D. G.
Mann | 4.50 | | | June | Licmophora gracilis (Ehrenberg)
Grunow | 32.50 | Halamphora coffeiformis (C. Agardh) Levkov | 13.2 | | | | Cocconeis scutellum Ehrenberg var. scutellum | 19.25 | Nitzschia coarctata Grunow | 7.00 | | | | <i>Striatella unipunctata</i> (Lyngbye) C.
Agardh | 14.00 | Caloneis liber var. linearisCleve | 6.75 | | | | Licmophora paradoxa (Lyngbye) C.
Agardh | 8.75 | Grammatophora oceanica Ehrenberg | 6.00 | (continued) Table 1 Continued | Season: | Month
/ Site
(Depth): | Shallow Site
(0.5 m) | | Deep Site (8 m) | | |----------|-----------------------------|--|-----------|---|-----------| | | | | RA
(%) | | RA
(%) | | | July | Cocconeis scutellum Ehrenberg var. scutellum | 26.00 | Rhopalodia musculus (Kützing) Otto Müller | 10.0 | | | | Navicula abunda Hustedt | 10.00 | Caloneis liber var. linearis Cleve | 7.50 | | | | Halamphora coffeiformis (C.
Agardh) Levkov | 6.25 | Cocconeis scutellum Ehrenberg var. scutellum | 7.25 | | | | Rhabdonema adriaticum Kützing | 6.00 | Halamphora coffeiformis (C. Agardh) Levkov | 7.00 | | | | Achnanthes
pseudogroenlandica Hendey | 5.25 | Amphora pseudohyalina Simonsen | 4.50 | | | | pocuacy communation nemacy | | Dimeregramma minus (Gregory) Ralfs | 4.25 | | <u>ū</u> | August | Mastogloia similis Hustedt | 11.00 | Halamphora coffeiformis (C. Agardh) Levkov | 9.75 | | | | <i>Plagiotropis tayrecta</i> T. B. B.
Paddock | 5.75 | Caloneis liber var. linearis Cleve | 9.25 | | ז | | Trachyneis aspera (Ehrenberg) Cleve | 5.00 | Rhopalodia pacifica Krammer | 8.25 | | | | Actinocyclus subtilis (W. Gregory) Ralfs | 5.00 | | | | | | Striatella unipunctata (Lyngbye) C.
Agardh | 4.75 | | | | | | Caloneis liber var. linearis Cleve | 4.75 | | | | | | Mastogloia ignorata Hustedt | 4.75 | | | | | | Licmophora gracilis (Ehrenberg)
Grunow | 4.50 | | | | | September | Actinocyclus subtilis (W. Gregory)
Ralfs | 13.00 | Caloneis excentrica (Grunow) Boyer | 11.5 | | | | Rhopalodia pacifica Krammer | 12.00 | Nitzschia pararostrata (Lange-Bertalot)
Lange-Bertalot | 11.2 | | | | Licmophora sp. | 6.50 | Trachyneis aspera (Ehrenberg) Cleve | 7.25 | | | | Trachyneis aspera (Ehrenberg) Cleve | 6.25 | Grammatophora oceanica Ehrenberg | 6.00 | | | | Halamphora coffeiformis (C.
Agardh) Levkov | 4.25 | Lyrella lyra (Ehrenberg) Karajeva | 5.00 | | | | | | Dimeregramma minus (Gregory) Ralfs | 5.00 | | uu
uu | | | | Diploneis crabro (Ehrenberg) Ehrenberg | 5.00 | | | | | | Actinocyclus ochotensis A. P. Jousé | 4.50 | | | October | Actinocyclus subtilis (W. Gregory) Ralfs | 23.75 | Halamphora coffeiformis (C. Agardh) Levkov | 8.50 | | | | Licmophora pfannkuckae Giffen | 14.25 | Rhopalodia pacifica Krammer | 5.25 | | Autumn | | Striatella unipunctata (Lyngbye) C.
Agardh | 12.75 | Dimeregramma minus (Gregory) Ralfs | 5.00 | | | | Rhabdonema adriaticum Kützing | 10.00 | Caloneis liber (W. Smith) Cleve | 4.50 | | | | Rhopalodia pacifica Krammer | 7.00 | | | | | November | <i>Striatella unipunctata</i> (Lyngbye) C.
Agardh | 25.00 | Tryblionella compressa(J.W.Bailey) Poulin | 10.5 | | | | Halamphora coffeiformis (C.
Agardh) Levkov | 7.50 | Mastogloia binotata (Grunow) Cleve | 8.25 | | | | Cocconeis scutellum Ehrenberg var. scutellum | 5.25 | Mastogloia splendida (Gregory) H. Pergallo | 7.75 | | | | Nitzschia ventricosa Kitton | 5.00 | Actinoptychus splendens (Shadbolt) Ralfs | 6.75 | | | | | | Psammodictyon panduriforme (W. Gregory) D.G.Mann | 6.50 | | | | | | Trachyneis aspera (Ehrenberg) Cleve | 6.00 | | Winter | December | Striatella unipunctata (Lyngbye) C.
Agardh | 42.50 | Halamphora coffeiformis (C. Agardh) Levkov | 13.0 | | | | Cocconeis scutellum Ehrenberg var. scutellum | 22.50 | Dimeregramma minus (Gregory) Ralfs | 5.75 | | | | Achnanthes brevipes C. Agardh | 9.00 | Rhabdonema adriaticum Kützing | 5.00 | | | | <i>Licmophora flabellata</i> (Grev.) C.
Agardh | 7.50 | Striatella unipunctata (Lyngbye) C. Agardh | 4.50 | | | | Ardissonea crystallina (C. Agardh)
Grunow | 4.50 | Achnanthes brevipes var. intermedia
(Kützing) Cleve | 4.50 | Altogether, only five taxa were presented in all samples: Cocconeis scutellum var. scutellum, Grammatophora oceanica, Halamphora coffeiformis, Licmophora remulus, and Trachyneis aspera. The taxa with the highest relative abundances were: Halamphora coffeiformis, Caloneis excentrica, Cocconeis scutellum var. scutellum, Licmophora flabellata, Licmophora gracilis, Licmophora sp., Navicula abunda, Rhabdonema adriaticum, and Striatella unipunctata (Table 1). In general, these taxa were dominated in the diatom community in the shallow site. On the contrary, Halamphora coffeiformis showed opposite relative abundance patterns. For some taxa with lower relative abundance (<1%; e.g., Achnanthes septa var. incurvata, Diploneis papula, Diploneis vacillans, Mastogloia inaequalis, Navicula directa, etc.), no particular difference in abundances between the shallow and deeper site was observed. Regarding the seasonality, diatom community was dominated by Striatella unipunctata, Cocconeis scutellum var. scutellum, and Achnanthes brevipes (in total 55.25%) in shallow site in January (Table 1). In February, Striatella unipunctata, Cocconeis scutellum var. scutellum, and Licmophora flabellata had highest relative abundance (in total 61.5%), while Cocconeis scutellum var. scutellum (24.5%) and Halamphora coffeiformis (16.25%) contributed the most to total diatom relative abundance in March. *Licmophora gracilis* (55%) and *Lic*mophora sp. (59.5%) dominated in relative abundances in April and May, respectively. Like in February, Licmophora flabellata, Cocconeis scutellum var. scutellum and Striatella unipunctata dominated (in total 65.75%) in the shallow site in June. In July, the taxa with highest relative abundance in diatom
community were Cocconeis scutellum var. scutellum (26%) and Navicula abunda (10%). In August, Mastogloia similis (10%) prevailed in diatom community, and other seven taxa had relative abundances between 4.5 and 5.75% each (Table 1). Actinocyclus subtilis dominated in September and October with relative abundances of 13% and 23.75%, respectively. Diatom community was dominated by Striatella unipunctata in November (25%) and December (42.5%), respectively. On deeper site, Cocconeis scutellum var. scutellum (10%), Grammatophora oceanica (7%), and Halamphora coffeiformis (13.25%) had the highest relative abundances in April, May, and June, respectively. Rhopalodia musculus (10%) and Halamphora coffeiformis (9.75%) were dominant in the diatom community in July and August, respectively. Caloneis excentrica (11.5%) and Nitzschia pararostrata (11.25%) had the highest relative abundances in September. Halamphora coffeiformis was dominated in diatom community in October (8.5%) and December (13%), while Tryblionella compressa (10.5%) prevailed in November. In addition, some taxa appeared only in particular seasons: in winter 10, spring 20, summer 57, and autumn 33 (Appendix 1). Among them, taxa with the highest relative abundances were: in winter *Halamphora exigua* (1.5%), spring *Amphora glacialis* (2%), summer *Navicula abun-* da (10%), and autumn Caloneis excentrica (11.5%). All of the taxa in this study were recorded for the first time in Bosnia and Herzegovina. ## Relationships between epilithic diatoms and environmental parameters In total, 33 taxa with relative abundance (in %) $\geq 2.5\%$ and frequency of occurrence ≥ 8.33% from 16 samples collected from shallow and deep sites between April and December 2011 (excluded November) were selected for this analysis. Eigenvalues from the CCA analysis for the first four axes were 0.472, 0.350, 0.335, and 0.276 (Fig. 5). The first two axes explain 37.9% of variance of species-environment relationship. Temperature, oxygen saturation (O₂/O₂'), silicate concentration (SiO₄), and salinity were the most important factors influencing diatom community structure in the bay and they accounted for approximately 55% of the total variability. NO₂, PO₄ and NH₄ showed the lowest significance. For illustration purposes, all environmental variables have been included in the graph (Fig. 5). Halamphora coffeiformis was associated with higher temperature values. The salinity and oxygen saturation vectors are found within the same quadrant as the most included taxa (e.g., Licmophora paradoxa, Grammatophora oceanica, Psammodictyon panduriforme, etc.). In the case of nutrients (TIN, NO, and SiO₄), Licmophora gracilis and Paralia sulcata s.l. were associated with higher concentrations, at the higher left quadrant. The most abundant taxa *Licmophora* sp. appeared in May, when salinity was high and nutrient concentrations were low. The most frequently occurring taxa Striatella unipunctata, among others (e.g., Psammodictyon panduriforme, Tryblionella compressa, Caloneis liber var. linearis, Trachyneis aspera, etc.), are principally situated in the center of the plot, which means that they were not strongly influenced by any of considered variables. ### **Discussion** The results presented herein deal with a shallow semi-enclosed bay. TRIX analysis has revealed oligotrophic characters of the bay (Vollenweider *et al.*, 1998; Karydis, 2009). The bay is characterized by low chlorophyll *a* concentrations, while concentrations of SiO₄ and TIN were higher than the half-saturation constants for the most of the year (Dupčić Radić *et al.*, 2013). The ecological status of the bay is determined by inflow from Neretva River, submarine springs ("vruljas"), and precipitation. These factors, among others (e.g. shallowness), significantly caused frequent and rapid changes of environmental conditions in the bay. This was also found for the inner-part of the Mali Ston Bay (Čalić *et al.*, 2013) and the neighboring coastal lagoon (Jasprica *et al.*, 2012). The genera *Mastogloia*, *Diploneis*, *Amphora*, *Nitzschia*, *Navicula*, and *Cocconeis* were the richest taxa. A similar diatom community has been reported for different Fig. 5: CCA biplot showing diatom taxa (triangle) and vectors of the ten environmental variables (arrows) based on 16 samples. A dataset of 33 diatom taxa (with relative abundance $\geq 2.5\%$ and frequency of appearance $\geq 8.33\%$) was selected. Abbreviations: Si - SiO₄, TIN - total inorganic nitrogen, NO₃ - nitrate, NO₂ - nitrite, NH₄ - ammonium, PO₄ - phosphate, SAT - oxygen saturation (O₂/O₂'), SAL - salinity, CHL - chlorophyll a concentrations, TEMP - temperature. Codes for diatom taxa are: Acbr = Achnanthes brevipes, Acsp = Actinoptychus splendens, Acsu = Actinocyclus subtilis, $Amco = Halamphora \ coffeiformis,$ Amp2 = Amphora sp.2, Caex = Caloneis excentrica, Cali = Caloneis liber var. linearis, Cosc = Cocconeis scutellum var. scutellum, Dimi = Dimeregramma minus, Dipl = Diploneis sp.1, ${\tt Groc} = {\it Grammatophora\ oceanica},$ Lifl = Licmophora flabellata, Ligr = *Licmophora gracilis*, Lipa = Licmophora paradoxa, Lipf = Licmophora pfannkuckae, Lisp = Licmophora sp., Maer = Mastogloia erythraea var. grunowii, Masi = *Mastogloia similis*, Masp = Mastogloia splendida, Naab = Navicula abunda, Nicm = Tryblionella compressa, Nico = Nitzschia coarctata, Nipa = Nitzschia pararostrata, Nive = Nitzschia ventricosa, Pasu = Paralia sulcata s.l., ${\sf Psco} = {\it Psammodictyon panduri forme var. continuum},$ ${\bf Pspa} = Psammodicty on\ panduri forme,$ $Rhad = Rhabdonema \ adriaticum,$ $Rhmu = Rhopalodia\ musculus,$ $Rhpa = Rhopalodia\ pacifica,$ Stun = Striatella unipunctata, Tras = Trachyneis aspera, $Trco = Tryblionella\ coarctata.$ hard substrates from the Adriatic Basin (Munda, 2005; Totti et al., 2007) and for coastal rocks of the Mediterranean (cf. Álvarez-Blanco & Blanco, 2014). Taxa of Mastogloia, one of the largest diatom genera (Pennesi et al., 2011 and references therein), can be found within different biotopes (Çolak Sabanci, 2013), but in general high abundances of Mastogloia species have been reported in epipelic and epiphytic flora (Martinez-Goss & Evangelista, 2011). In our study, the most abundant Mastogloia was the epilithic *M. similis*, found in the shallow sample during the summer. On the contrary, this taxon was found by Colak Sabanci (2013) in shallow brackish habitats during winter. Navicula includes species with a very wide ecological range (Krammer & Lange-Bertalot, 1991), while Amphora and Achnanthes are typically recorded in the more nutrient-poor regions (Agatz et al., 1999). In our study, the monthly distribution of most diatom taxa was irregular, and a high number of sporadic taxa were recorded and statistically significant differences between the shallow and deep sites were found. Four environmental variables were mostly correlated to the distribution of diatom taxa. Of these, temperature, oxygen saturation, silicate concentration, and salinity were the most important factors influencing community structure. However, although no strong seasonal variation of diatom taxa was observed during the study, Cocconeis scutellum var. scutellum, Rhabdonema adriaticum, Striatella unipunctata, and Licmophora gracilis showed high percentage contributions in the winter-spring diatom communities. Many diatoms are superior competitors for nutrients at lower temperatures and their temperature dependence is one of the important mechanisms influencing taxa composition (Tilman et al., 1986). However, in our case, determination of the dominance of these major taxa to the supply-ratios falls outside of the scope of the present paper. Nevertheless, studies on the seasonal variations of microepilithic communities in the north-western Adriatic showed a marked seasonal variability with lower diatom abundances recorded during the winter (Totti et al., 2007). Conversely, diatoms were less abundant in warm summer months with the exception of Cocconeis scutellum var. scutellum. This, at least partially, contrasted with the findings of McIntyre & Moore (1977), who reported that C. scutellum, along with Striatella unipunctata and Grammatophora oceanica, are mostly restricted to the lower littoral regions protected from high light intensities, a factor which was not addressed in the present work. In our study, *C. scutellum* var. *scutellum* is grouped in the direction of higher salinity. Although *C. scutellum* was analyzed on the artificial hard substrates and in plankton samples in the eastern Adriatic karstic Zrmanja Estuary (Burić *et al.*, 2004), we could not compare temporal changes due to the exclusively summer sampling in that study. Generally *C. scutellum*, mostly accompanied by *Halamphora coffeiformis*, were the most frequently recorded diatom taxa, not only on the natural hard substrata (Çolak Sabanci, 2012), but on all different substrata (epiphytic, epilithic, epizoic) (Car *et al.*, 2012; Chen et al., 2010; De Stefano et al., 2000, 2008; Korte & Blinn, 1983; Round et al., 1961; Siqueiros-Beltrones et al., 1985; Sullivan, 1978, 1984; Totti et al., 2007, 2009; Wuchter et al., 2003). Romagnoli et al. (2014) also suggest that these taxa do not seem to have a preference either for geographic region or for the type of substrate. Cocconeis scutellum was defined as typical epiphytic taxon (Ulanova & Snoeijs, 2006). The most abundant diatoms were represented chiefly by Licmophora taxa, and had their high relative abundances between winter and early summer, with a marked decrease in summer. Generally, erect diatoms have better access to light, although they are more exposed to grazing pressures (Hillebrand et al., 2000; Müller, 1999), and their capability of regulating stalk lengths makes them good competitors for light when dense benthic populations develop. In our case, their decrease in summer may be related either to the effect of the extremely high temperatures recorded
in June and August of 2011 (Pandžić & Likso, 2013) or to the effect of increased grazing pressure. We consider that only prolonged series of observations, based on a more frequent sampling interval, can be expected to disclose a potential seasonality in temporal species-composition changes. The impact of salinity in controlling diatom taxa needs to be stressed. Variations in salinity, usually a significant structuring factor (Weckström & Juggins, 2005), had no effect on the composition of the diatom communities of the Homa lagoon, in Turkey (Çolak Sabanci, 2011). In our study, CCA showed that Licmophora gracilis had the highest relative abundance during the lowest annual salinity values in April, when TIN and SiO, were high. Although L. gracilis was considered a marine taxon (Witkowski et al., 2000), it has been reported as an indicator of brackish waters and variable surface layers in the eastern Adriatic karstic Zrmanja Estuary and, in general, may be used as an indicator of environments with fluctuating salinities (Caput Mihalić et al., 2008). This highlights its ability to adapt to salinity changes (Snoeijs, 1999). In May, the pauci-specific community was mostly composed of Licmophora sp. (59.5%) and C. scutellum var. scutellum (21.75%), and, on the contrary, this may be related to high salinity and low nutrient concentrations. The increase in salinity is caused by the interaction of several factors, such as higher air temperature and evaporation, low precipitation, and lack of submarine activity in the area, while lower nutrient concentrations may be temporally related to the low inflow of fresh water (Calić et al., 2013). From a purely scientific standpoint, it will be intriguing to identify Licmophora sp. in sufficient detail to permit the provision of a precise reference in terms of taxa and elaborate on its ecology. The results of the present study clearly show the appearance of some taxa that are not truly benthic. In shallow waters, benthic and planktonic communities are not clearly differentiated, mainly due to the continuous mixture of the shallow water column (Çolak Sabanci, 2011; Jasprica & Hafner, 2005). For example, *Psammodictyon* panduriforme, the taxon with a higher relative abundance (6.5%) in November in the deep site, previously was reported as planktonic (Sagan et al., 2000) but has also been found within epipelic and epilithic communities (Çolak Sabanci, 2012; Çolak Sabanci et al., 2011). Diatom cells sink and living pelagic cells can also be found on the surface sediments (e.g., Nitzschia longissima), particularly when vertical mixing is low (Admiraal, 1984). Additionally, the centric diatom Paralia sulcata, which generally appears both in the benthos and plankton, has a competitive advantage under low light conditions (Margalef, 1969; McQuoid & Nordberg, 2003; Zong, 1997). However, our data on the distribution of P. sulcata s.l. are comparable with studies from the north-eastern Adriatic (Munda, 2005). In conclusion, we believe that the most significant result of this paper lies in the information and quantitative data it provides about marine epilithic diatoms in this part of the Adriatic Sea. Although a monthly sampling strategy does not offer fine-grain resolution of the annual marine epilithic taxa cycles, a few taxa made significant contributions to the assemblage structure. Striatella unipunctata, Cocconeis scutellum var. scutellum and Halamphora coffeiformis were the most frequent occurring taxa, while some taxa (*Licmophora gracilis*, *Licmophora* sp.) sometimes strongly predominated over the others in the composition of the epilithic communities. A main feature of diatom assemblages is higher species diversity index at the deep site. High biodiversity in the bay is the result of balanced ecological conditions, but due to the increasing coastal development, it may become endangered. Due to the continual changing of ecological factors and interactions among them, it is difficult to understand which particular factor or factors affect the community structure in shallow systems. Clearly, further studies on benthic diatom communities in the area are required to increase the accuracy of predictions. ### Acknowledgements This research was supported by Croatian Ministry of Science, Education and Sports (project 275-0000000-3186) and by Croatian science foundation (HRZZ, IP-2014-09-2945). The authors thank Dr. Rade Garić for drawing Fig. 1, Steve Latham (UK) for improving the English, and two anonymous reviewers and editor whose observations improved the quality of the final version of the manuscript. ### **Author Contributions** N.J. designed the study and supervised the work. N.J and A.C. led the writing of this manuscript. D.H. conducted the field sampling, prepared the samples for counting, and analyzed the samples using the light microscope. T.K. and A.C. performed the statistical analyses. I.D.R. analyzed the physical and chemical parameters. #### References - Admiraal, W., 1984. The ecology of estuarine sediment-inhabiting diatoms. p. 269-322. In: *Progress in phycological research 3*. Round, F.E., Chapman, G. (Eds). Biopress Ltd., Bristol. - Agatz, M., Asmus, R.M, Deventer, B., 1999. Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. *Helgoland Marine Research*, 53, 92-101. - Álvarez-Blanco, I., Blanco, S., 2014. Benthic diatoms from Mediterranean coasts. *Bibliotheca Diatomologica*, 60, 1-409. - Beisel, J.N., Usseglio-Polatera, P., Bachmann, V., Moreteau J.C., 2003. A comparative analysis of evenness index sensitivity. *International Review of Hydrobiology*, 88, 3-15. - Bérard-Therriault, L., Cardinal, A., Poulin, M., 1986. Les diatomées (Bacillariophyceae) benthiques de substrats durs des eaux marines et saumâtres du Québec. 6. Naviculales: Cymbellaceae et Gomphonemaceae. Le Naturaliste Canadien, 113, 405-429. - Bérard-Therriault, L., Cardinal, A., Poulin, M., 1987. Les diatomées (Bacillariophyceae) benthiques de substrats durs des eaux marines et saumâtres du Québec. 8. Centrales. Le Naturaliste Canadien, 114, 81-113. - Brandini, F.P., da Silva, E.T., Pellizzari, F.M., Fonseca, A.L.O., Fernandes, L.F., 2001. Production and biomass accumulation of periphytic diatoms growing on glass slides during a 1-year cycle in a subtropical estuarine environment (Bay of Paranaguá, southern Brazil). *Marine Biology*, 138, 163-171. - Burić, Z., Caput, K., Viličić D., 2004. Distribution of the diatom *Cocconeis scutellum* in the karstic estuary (Zrmanja, eastern Adriatic Sea). *Biologia*, 59, 1-7. - Čalić, M., Carić, M., Kršinić, F., Jasprica, N., Pećarević, M., 2013. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environmental Monitoring and Assessment, 185, 7543-7563. - Caput Mihalić, K., Viličić, D., Ahel, M., Burić, Z., Carić, M., 2008. Periphytic algae development in the upper reach of the Zrmanja Estuary (eastern Adriatic coast). Vie Milieu, 58, 203-213. - Car, A., Witkowski, A., Dobosz, S., Burfeind, D.D., Meinesz, A. et al., 2012. Description of a new marine diatom Cocconeis caulerpacola sp. nov. (Bacillariophyceae), epiphytic on invasive Caulerpa species. European Journal of Phycology, 47, 433-448. - Chen, C.P., Gao, Y.H., Lin, P., 2010. Geographical and seasonal patterns of epiphytic diatoms on a subtropical mangrove (*Kandelia candel*) in southern China. *Ecological Indicators*, 10, 143-147. - Cibic, T., Facca, C., 2010. Microphytobenthos. In: Relini, G. (Ed.), Checklist della flora e della fauna dei mari italiani. Parte II. Biologia Marina Mediterranea, 17 (suppl. 1), 754-800. - Clarke, K.R., Gorley, R.N., 2001. *PRIMER v5: User Manual/Tutorial*. PRIMER-E, Plymouth, 91 pp. - Clarke, K.R., Warwick, R.M., 1994. Change in marine communities: an approach to statistical analysis and interpretation. Natural Environmental Research Council, Plymouth Marine Laboratory, Plymouth, 144 pp. - Clarke K.R., Warwick, R.M., 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed., PRIMER-E, Ltd., Plymouth Marine Laboratory, Plymouth. - Çolak Sabanci, F., 2011. Relationship of epilithic diatom com- - munities to environmental variables in Homa lagoon (Izmir, Turkey). *Aquatic Biology*, 13, 233-241. - Çolak Sabanci, F., 2012. Taxonomic survey of benthic diatoms on natural substrata from coastal lagoon (Aegean Sea, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 12, 841-849. - Çolak Sabanci, F., 2013. Species of Mastogloia (Bacillariophyceae) new for the Aegean coast of Turkey. Mediterranean Marine Science, 14, 129-140. - Çolak Sabanci F., Koray, T., 2010. Four new records for the benthic diatoms (genera *Cocconeis, Seminavis, Synedra* and *Trachysphenia*) from the Aegean Sea. *Turkish Journal* of *Botany*, 34, 531-540. - Çolak Sabanci, F., Sapanci, M., Koray, T., Buyukisik, B., 2011. A qualitative study of the microphytobenthic communities of Homa Lagoon (Izmir-Turkey). *Fresenius Environmental Bulletin*, 20, 346-353. - De Stefano, M., Marino, D., Mazzella, L., 2000. Marine taxa of *Cocconeis* on leaves of *Posidonia oceanica*, including a new species and two new varieties. *European Journal of Phycology*, 35, 225-242. - De Stefano, M., Romero, O.E., Totti, C., 2008. A comparative study of *Cocconeis scutellum* Ehrenberg and its varieties (Bacillariophyta). *Botanica Marina*, 51, 506-536. - Delgado, C., Pardo, I., García, L., 2010. A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain). *Hydrobiologia*, 644, 371-384. - Dupčić Radić, I., Hrustić, E., Jasprica, N., 2013. Koncentracija hranjivih soli i klorofila a u Neumskom zaljevu (Bosna i Hercegovina). p. 55. In: *Abstracts of the 4th Croatian Botanical Symposium with international participation, Split 2013*. Alegro, A., Boršić, I. (Eds). Croatian Botanical Society, Split. - Facca, C., Sfriso, A., Socal, G., 2002. Temporal and spatial
distribution of diatoms in the surface sediments of the Venice Lagoon. *Botanica Marina*, 45, 170-183. - Facca, C., Sfriso, A., 2007. Epipelic diatom spatial and temporal distribution and relationship with the main environmental parameters in coastal waters. *Estuarine, Coastal and Shelf Science*, 75, 35-49. - Falkowski, P.G., Schofield, O., Katz, M.E., Van de Schootbrugge, B., Knoll, A.H., 2004. Why is the land green and the ocean red? In: *Coccolithophores. From molecular processes to global impacy.* Thierstein, H.R., Young, J.R. (Eds). Springer, Berlin, 429-453. - Guiry, M.D., Guiry, G.M., 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org; (Accessed 9 November 2017) - Hartley, B., 1986. A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters. *Journal of the Marine Biological Association of the United Kingdom*, 66, 531-610. - Hartley, B., Barber, H.G., Carter, J.R., Sims, P.A., 1996. *An Atlas of British Diatoms*. Biopress Ltd., Bristol, 601 pp. - Hasle, G.R., Fryxell, G.A., 1970. Diatoms: cleaning and mounting for light and electron microscopy. *Transactions of the American Microscopical Society*, 84, 469-474. - Hendey, N.I., 1964. An introductory account of the smaller algae of British coastal waters. Part V. Bacillariophyceae (Diatoms). Ministry of Agriculture, Fisheries and Food, Fisheries Investigations, Seies IV, London, 317 pp. - Hillebrand, H., Sommer, U., 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. *Aquatic Botany*, 67, 221-236. - Hillebrand, H., Worm, B., Lotze, H.K., 2000. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. *Marine Ecology Progress Se*ries, 204, 27-38. - Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H., 1965. Fluorometric determination of chlorophyll. *Journal Du Conseil*, 301, 3-15. - Ivančić, I., Degobbis, D., 1984. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research, 18, 1143-1147. - Jasprica, N., Carić, M., Kršinić, F., Kapetanović, T., Batistić, M., Njire, J., 2012. Planktonic diatoms and their environment in the lower Neretva River estuary (Eastern Adriatic Sea, NE Mediterranean). Nova Hedwigia, 141, 405-430. - Jasprica, N., Dolina, K., Milović, M., 2015. Plant taxa and communities on three islets in south Croatia, NE Mediterranean. Natura Croatica, 24, 191-213. - Jasprica, N., Hafner, D., 2005. Taxonomic composition and seasonality of diatoms in three Dinaric karstic lakes in Croatia. *Limnologica*, 35, 304-319. - Jasprica, N., Hafner, D., Batistić, M., Kapetanović, T., 2005. Phytoplankton in three freshwater lakes in the Neretva River delta (Eastern Adriatic, NE Mediterranean). Nova Hedwigia, 81, 37-54. - Karydis, M., 2009. Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST Journal, 11, 373-390. - Korte, V.L., Blinn, D.W., 1983. Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. *Journal of Phycology*, 19, 332-341. - Krammer, K., Lange-Bertalot, H., 1991. Bacillariophyceae: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis. p. 1-437. In: Süβwasserflora von Mitteleuropa. Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds). Vol. 2/4. Stuttgart: Gustav Fischer Verlag. - Krebs, C.J., 1999. Ecological methodology. 2nd ed., Addison Wesley Longman, Menlo Park, 620 pp. - Kwandrans, J., 2007. Diversity and ecology of benthic diatom communities in relation to acidity, acidification and recovery of lakes and rivers. *Diatom Monographs* (v.9). Koeltz Scientific Books, Königstein, 168 pp. - Lavoie, I., Campeau, S., Zugic-Drakulic, N., Winterand, J.G., Fortin, C., 2014. Using diatoms to monitor stream biological integrity in Eastern Canada: an overview of 10 years of index development and ongoing challenges. Science of the Total Environment, 475, 187-200. - Legendre, L., Legendre, P., 1983. *Numerical ecology. Developments in environmental modelling*. 3. Elsevier, Amsterdam, 419 pp. - Levkov, Z., Caput Mihalić, K., Ector, L., 2010. A taxonomical study of *Rhoicosphenia* Grunow (Bacillariophyceae) with a key for identification of selected taxa. *Fottea*, 10, 145-200. - MacLulich, J. H., 1987. Variations in the density and variety of intertidal epilithic microflora. *Marine Ecology Progress Series*, 40, 285-293. - Margalef, R., 1969. Size of centric diatoms as an ecological indicator. *Mitteilung Internationale Vereinigung fuer Theoretische unde Amgewandte Limnologie*, 17, 202-210. - Martinez-Goss, M.R., Evangelista, L.T., 2011. A contribution to the taxonomy of *Mastogloia* (Class Bacillariophyceae) in the Philippines. *Philippine Journal of Science*, 140, 7-12. - McQuoid, M.R., Nordberg, K., 2003. The diatom *Paralia sulcata* as an environmental indicator species in coastal sediments. *Estuarine, Coastal and Shelf Science*, 56, 339-354. - McIntyre, C.D., Moore, W.M., 1977. Marine littoral diatoms: Ecological consideration. In: The biology of diatoms. Werner, D. (Ed). Blackwell Scientific Publications, Oxford, 333-371. - Mejdandžić, M., Ivanković, T., Pfannkuchen, M., Godrijan, J., Marić Pfannkuchen, D., Hrenović, J., Ljubešić, Z., 2015. Colonization of diatoms and bacteria on artificial substrates in the northeastern coastal Adriatic Sea. *Acta Botanica Cro*atica, 74, 407-422. - Miho, A., Witkowski, A., 2005. Diatom (Bacillariophyta) flora of Albanian coastal wetlands taxonomy and ecology: A review. *Proceedings of the California Academy of Sciences*, 56, 129-145. - Müller, U., 1999. The vertical zonation of adpressed diatoms and other epiphytic algae on *Phragmites australis*. *European Journal of Phycology*, 34, 487-496. - Munda, I. M., 2005. Seasonal fouling by diatoms on artificial substrata at different depths near Piran (Gulf of Trieste, Northern Adriatic). *Acta Adriatica*, 46, 137-157. - Nenadović, T., Šarčević, T., Čižmek, H., Godrijan, J., Marić Pfannkuchen, D. *et al.*, 2015. Development of periphytic diatoms on different artificial substrates in the Eastern Adriatic Sea. *Acta Botanica Croatica*, 74, 377-392. - Pandžić, K., Likso, T., 2013. *Climate monitoring and assessment for 2011*. Reviews no. 23. Croatian Meteorological and Hydrological Service, Zagreb, 33 pp. - Pennesi, C., Poulin, M., De Stefano, M., Romagnoli, T., Totti, C., 2011. New insights to the ultrastructure of some marine *Mastogloia* species section Sulcatae (Bacillariophyceae), including *Mastogloia neoborneensis* sp. nov. *Phycologia*, 50, 548-562. - Peragallo, H., Peragallo, M., 1897–1908. *Diatomées marines de France et des districts maritimes voisin*. Micrographe-Editeur, Grez-sur-Loing (S.-et-M.), 491 pp. - Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. *Journal of Theoretical Biology*, 13, 131-144. - Pikelj, K., Juračić, M., 2013. Eastern Adriatic coast (EAC): Geomorphology and coastal vulnerability of a karstic coast. *Journal of Coastal Research*, 29, 944-957. - Poulin, M., Bérard-Therriault, L., Cardinal, A., 1984. Les diatomées benthiques de substrats durs des eaux marines et saumâtres du Québec. 3. Fragilarioideae (Fragilariales, Fragilariaceae). Le Naturaliste Canadien, 111, 349-367. - Poulin, M., Bérard-Therriault, L., Cardinal, A., Hamilton, P.B., 1990. Les diatomées (Bacillariophyta) benthiques de substrats durs des eaux marines et saumâtres du Québec. 9. Bacillariaceae. Le Naturaliste Canadien, 117, 73-101. - Ricard, M., 1974. Etude taxonomique des diatomées marines du lagon de Vairao (Tahiti) 1. Le genre Mastogloia. Revue Algologique, nouvelle série, 11, 161-177. - Ricard, M., 1975. Quelques diatomées nouvelles de Tahiti décrites en microscopie photonique et électronique à balayage. *Bulletin du Musée National d'Histoire Naturelle*, *3e serie*, 326, 201-229. - Ricard, M., 1977. Les peuplements de diatomeés des lagons de l'Archipel de la Société (Polynésie Française). Revue Algologique, nouvelle série, 12, 137-336. - Romagnoli, T., Bavestrello, G., Cucchiari, E.M., De Stefano, M., Di Camillo, C. *et al.*, 2007. Microalgal communities epibiontic on the marine hydroid *Eudendrium racemosum* in the Ligurian Sea during an annual cycle. *Marine Biology*, 151, 537-552. - Romagnoli, T., Totti, C., Accoroni, S., De Stefano, M., Pennesi, C., 2014. SEM analysis of the epibenthic diatoms on *Euden*- - *drium racemosum* (Hydrozoa) from the Mediterranean Sea. *Turkish Journal of Botany*, 38, 566-594. - Round, F.E., Sloane, J.F., Ebling, F.J., Kitching, J.A., 1961. The ecology of Lough Ine: X. The hydroid *Sertularia operculata* (L.) and its associated flora and fauna: ejects of transference to sheltered waters. *Journal of Ecology*, 49, 617-629. - Sagan, G., Radureau, A., Le Rouzic, B., Feunteun, E., 2000. Spatio-temporal variations of microphytobenthos community structure and biomass in macrotidal salt marshes of the Mont Saint-Michel Bay. Task 5. In: *European salt marsh modelling*. Feunteun, E., Thorin, S., Lefeuvre, J.-C. (Eds). *EU programme Environment and Climate*. ENV4-CT97-0436. University of Rennes 1, 172-207. - Siqueiros-Beltrones, D.A., Ibarra-Obando, S.E., Loya-Salinas, D.H., 1985. An approximation to the floristic structure of the epiphytic diatoms of *Zostera marina* and its temporal variations in Bahía Falsa, San Quintín, B.C. *Ciencias Ma*rinas, 11, 69-88. - Smith, B., Wilson, J.B., 1996. A consumer's guide to evenness indices. Oikos, 76, 70-82. - Snoeijs, P., 1993. *Intercalibration and distribution of diatoms in the Baltic Sea, 1: 1–129*. Baltic Marine Biologists Publication 16a, Opulus Press, Uppsala. - Snoeijs, P., 1999. Marine and brackish waters. In: *Swedish Plant Geography*. Snoeijs, P., Diekmann, M., (Eds). *Acta Phytogeographica Suecica*, 94, 187-212. Opulus
Press, Uppsala. - Snoeijs, P., Balashlova, N., 1998. *Intercalibration and distribution of diatoms in the Baltic Sea, 5, 1-144*. Baltic Marine Biologists Publication 16e, Opulus Press, Uppsala. - Snoeijs, P., Kasperoviciené, J., 1996. Intercalibration and distribution of diatoms in the Baltic Sea, 4, 1-125. Baltic Marine Biologists Publication 16d, Opulus Press, Uppsala. - Snoeijs, P., Potapova, M., 1995. *Intercalibration and distribution of diatoms in the Baltic Sea, 3, 1-125*. Baltic Marine Biologists Publication 16c, Opulus Press, Uppsala. - Stevenson, R. J., Pan, Y., 1999. Assessing environmental conditions in rivers and streams with diatoms. In: *The Diatoms. Application for the environmental and earth sciences*. Stoermer, E.F., Smol, J.P. (Eds). Cambridge University Press, Cambridge, 469 pp. - Strickland, J.D.H., Parsons, T.R., 1972. A practical handbook of seawater analysis. *Journal of the Fisheries Research Board of Canada*, 167, 1-310. - Sullivan, M.J., 1978. Diatom community structure: taxonomic and statistical analyses of a Mississippi salt marsh. *Journal of Phycology*, 14, 468-475. - Sullivan, M.J., 1984. Community structure of epiphytic diatoms from the Gulf Coast of Florida, U.S.A. In: *Proceedings of 7th Diatom Symposium, Philadelphia, 1982*. Mann, D.G. (Ed). O. Koeltz, Koenigstein, 373-384. - Sullivan, M.J., Currin, C.A., 2000. Community structure and functional dynamics of benthic microalgae in salt marshes. In: Concepts and controversies in tidal marsh ecology. Weinstein, M.P., Kreeger, D.A. (Eds). Kluwer Academic Publishers, Dordrecht, 81-106. - Tan, X., Ma, P., Bunn, S.E., Zhang, Q., 2015. Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers, China. *Journal of Environmental Management*, 151, 286-294. - ter Braak, C.J.F., Verdonschot, P.F.M., 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. *Aquatic Sciences*, 57, 255-289. - ter Braak, C.J.F., Šmilauer, P., 2002. CANOCO reference Manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York. - Tilman, D., Kiesling, K., Sterner, R., Kilham, S.S., Johnson, F.A., 1986. Green, bluegreen and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. *Archiv für Hydrobiologie*, 106, 473-485. - Totti, C., Cucchiari, E., De Stefano, M., Pennesi, C., Romagnoli, T. et al., 2007. Seasonal variations of epilithic diatoms on different hard substrates, in the northern Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom, 87, 649-658. - Totti, C., Poulin, M., Romagnoli, T., Perrone, C., Pennesi, C. *et al.*, 2009. Epiphytic diatom communities on intertidal seaweeds from Iceland. *Polar Biology*, 32, 1681-1691. - Ulanova, A., Snoeijs, P., 2006. Gradient responses of epilithic diatom communities in the Baltic Sea proper. *Estuarine*, Coastal and Shelf Science, 68, 661-674. - UNESCO, 1973. International oceanographic tables, Volume 2. National Institute of Oceanography of Great Britain and UNESCO, Paris. - Vollenweider, R.A., Giovanardi, F., Montanari, G., Rinaldi, A., 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. *Environmetrics*, 9, 329-357. - Weckström, K., Juggins, S., 2005. Coastal diatom-environment relationships from the Gulf of Finland, Baltic Sea. *Journal* of *Phycology*, 42, 21-35. - Weiss, R.F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. *Deep Sea Research*, 17, 721-735. - Wilkinson, L., 1986. Systat: The system for statistics. Systat, Inc., Evanston. - Winter, J.G., Duthie, H.C., 2000. Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. *Aquatic Ecology*, 34, 345-353. - Witkowski, A., Lange-Bertalot, H., Metzelin, D., 2000. *Diatom flora of marine coasts I.* In: *Iconographia diatomologica, vol. 7.* Lange-Bertalot, H. (Ed). A. R. G. Gantner, Ruggell, Liechtenstein. 1-925. - Wuchter, C., Marquardt, J., Krumbein, W.E., 2003. The epizoic diatom community on four bryozoan species from Helgoland (German Bight, North Sea). *Helgoland Marine Research*, 57, 13-19. - Zong, Y., 1997. Implications of *Paralia sulcata* abundance in Scottish isolation basins. *Diatom Research*, 12, 125-150. ## **Appendix** **Appendix 1.** List of marine benthic diatom taxa found in Neum Bay in 2011. Abbreviations: Taxa found only in the shallow (S) and deep site (B). Taxa found only in a particular season are also indicated (Sp – spring. Su – summer. A – autumn. W – winter). Taxa found only once in all samples with relative abundances lower than 1% are indicated with asterisk (*). | Achanathes brevipes var. intermedia (Kützing) Cleve Achanathes previpes var. intermedia (Kützing) Cleve Achanathes previpes var. intermedia (Kützing) (S. Su. *) Achanathes parvala (R. Sunathe) S | Achnanthes brevipes C. Agardh | Cocconeis dirupta W.Gregory [S] | |--|--|---| | Achmanthes growlandica (Cleve) Grunow [B. W. *] Achmanthes parvala (Kitzing) [S. Su. *] Achmanthes parvala (Kitzing) [S. Su. *] Achmanthes parvala (Kitzing) [S. Su. *] Achmanthes speutay var. incurvata (Ostrup) Cleve-Euler [A] (Grunow) [S. Su. *] Actinopychus spendens J. Rattury [B. W. *] Actinopychus spendens J. Rattury [B. W. *] Actinopychus spendens (Shadboth) Ralls [*] Amphora achieves (Shadboth) Ralls [*] Amphora achieves (Shadboth) Ralls [*] Amphora achieves (Shadboth) Ralls [*] Amphora delicatissima Krasske [B. Su. *] Amphora graefjeana Hendey [B. A. *] Amphora graefjeana Hendey [B. A. *] Amphora luevis Gregory Amphora var. incurvata (Grunow) Cleve [B. Sp) Diplones section (Ehrenberg) Ehrenberg [B. Sp. *] Dip | | | | Achmanthes porrula (Kützing) [S. Su. *] Achmanthes pseudograenlandica Hendey Achmanthes speudograenlandica Actinocychus ochotensis A. P. Jousé Actinocychus ochotensis A. P. Jousé Actinocychus ochotensis A. P. Jousé Actinocychus spleudeus (B. Surper) Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus senarius (Ehrenberg) Kützing [B. Sp. Actinopychus senarius (Ehrenberg) Kützing [B. Sp. Actinopychus senarius (Ehrenberg) Kützing [B. Sp. Actinopychus socionarius (Ehrenberg) Kützing [B. Sp. Amphora bludiens R. Simonsen [S] Amphora bludiens R. Simonsen [S] Amphora bludiens R. Simonsen [S] Amphora bludiens Krasske [B. Su. *] Amphora bludian Kützing Amphora theolata Ehrenberg Amphora theolata Ehrenberg Amphora obitus (Kützing) Kützing [B] [| | | | Achnanthes pervalua (Kützing) [S. Su. *] Achnanthes septata var. incurvata (Ostrup) Cleve-Euler [A] Achnanthes spleades S. A. Bousé Actinocyclus sochorensis A. P. Jousé Actinocyclus sochorensis A. P. Jousé Actinocyclus sopleades J. Rattray [B. W. *] Actinocyclus sopleades J. Rattray [B. W. *] Actinocyclus somarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus somarius (Ehrenberg) Ehrenberg [S. Su. *] Actinopychus somarius (Ehrenberg) Ehrenberg [B. Sp. Amphora constricta (Ehrenberg) Ehrenberg [B. Sp. *] Amphora graefjeana Hendey [B. A. *] Amphora graefjeana Hendey [B. A. *] Amphora graefjeana Hendey [B. A. *] Amphora proteis W. Gregory (B. A. *] Amphora proteis W. Gregory (B. A. *] Amphora busta W. Gregory (B. Su. *] Difuncies sextran Hustedt [B. Sp. *] Diploneis sextran Hustedt [B. Sp. *] Diploneis somativis (Ehrenberg) Ehrenberg Ehren | | · · · · · · · · · · · · · · · · · · · | | Achnanthes speudogreenlandica Hendey Achnanthes spetata var. incurvata (Ostrup) Cleve-Euler [A] Achnanthes sp. [S] Actinocyclus spliticus F. Meister [B] Actinocyclus subtilis (W. Gregory) Ralfs Actinopychus senarius
(Ehrenberg) Ehrenberg [S. A. *] Actinopychus activaticus (Euromow [S. Su. *] Actinopychus activaticus (Ehrenberg) Kützing [B. Sp] Actinopychus senarius (Ehrenberg) Kützing [B. Sp] Actinopychus soctonarius (Ehrenberg) Kützing [B. Sp] Actinopychus soctonarius (Ehrenberg) Kützing [B. Sp] Actinopychus soctonarius (Ehrenberg) Kützing [B. Sp] Anphora abludens R. Simonsen [S] Amphora abludens R. Simonsen [S] Amphora bigliba var. interrupta (Grunow) Cleve Amphora bigliba var. interrupta (Grunow) Cleve Amphora constrictu (Ehrenberg) W. Carruthers [S. Sp. *] Amphora gacialis W. Smith [S. Sp] Amphora gacialis W. Smith [S. Sp] Amphora proteius W. Gregory Amphora lunata E. V. Ostrup Amphora lunata E. V. Ostrup Amphora ovalis (Kützing) Kützing [B. A. *] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora spacholyadina Simonsen B. Sp. *] Amphora spacholyadina Simonsen B. Sp. *] Amphora spacholyadina Simonsen B. A. *] Amphora spacholyadina Gutzing Arissonea formosa (Hantzsch) Grunow Ardissonea | | | | Achnanthes septata var. incurvata (Ostrup) Cleve-Euler [A] Achnanthes sp. [S] Actinocyclus galicus F. Meister [B] Actinocyclus galicus F. Meister [B] Actinocyclus sochotensis A. P. Jousé Actinocyclus sochotensis A. P. Jousé Actinocyclus sochotensis A. P. Jousé Actinocyclus sochotensis K. B. Ruttray [B. W. *] Actinocyclus sochotensis (W. Gregory) Ralfs Actinocyclus sochotensis (Euroberg) Ebrenberg [S. A. *] Actinopychus socionarius (Ettenberg) Ebrenberg [S. A. *] Actinopychus socionarius (Ettenberg) Evizing [B. Sp] Actinopychus socionarius (Ettenberg) Evizing [B. Sp] Actinopychus splendens (Shadbol) Ralfs [*] Amphora boctonarius (Ettenberg) W. Carruthers [S. Sp. *] Amphora budduhens R. Simonson [S] Amphora budduhans R. Simonson [S] Amphora arenaria Donkin Amphora gaeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora lunata E. V. Ostrup Amphora lunata E. V. Ostrup Amphora volusis (Kützing) Kützing [B] Amphora volusis (Kützing) Kützing [B] Amphora volusis (Kützing) Kützing [B] Amphora pseudohyalina Simonsen Ardissonea formosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea crystallina (C. Agardh) Grunow Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Bacillaria socialis (Gregory) Ralfs Alaleaseira pacillifera (O. F. Müller) T. Marsson Bacillaria pacillifera (O. F. Müller) T. Marsson Bacillaria pacillifera (O. F. Müller) T. Marsson Bacillaria macilla (Grunow) Boyer [B. A] Bridonies excentrica (Grunow) Boyer [B. A] Bridonies excentrica (Grunow) Boyer [B. A] Bridonies excentrica (Grunow) Boyer [B. A] Caloneis bicuneata (Grunow) Boyer [B. A] Erroglaria sp. [A. *] Diploneis sociala Gregory (S. W. *) Diploneis sociala | | | | Achinocyclus gollicus F. Meister [B] Actinocyclus gollicus F. Meister [B] Actinocyclus sobtotensis A. P. Jousé Actinocyclus subtilis (W. Gregory) Ralfs Actinocyclus subtilis (W. Gregory) Ralfs Actinopychus adriaticus Grunow) [S. Su. *] Amphora abludens R. Simonsen [S] Amphora abludens R. Simonsen [S] Amphora abludens R. Simonsen [S] Amphora bigliba var. interrupta (Grunow) Cleve Amphora delicatissima K-asske [B. Su. *] Amphora gacitalis W. Smith [S. Sp] Amphora guardifema H-ndey [B. A. *] Amphora paredfema H-ndey [B. A. *] Amphora lautis E. V. Ostrup Amphora lautis W. Gregory [B. A. *] Amphora abusta W. Gregory [B. A. *] Amphora protes W. Gregory [B. A. *] Amphora protest subacutius-cida Schoeman [B. A. *] Amphora sobucutius-cida | | | | Actinocyclus gallicus F. Meister [B] Actinocyclus splendens J. Rattray [B. W. *] Actinocyclus splendens J. Rattray [B. W. *] Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus sadriaticus Grunow [S. Su. *] Actinopychus actinaticus Grunow [S. Su. *] Actinopychus cotonarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus senarius (Ehrenberg) Ehrenberg [B. Su. *] Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Amphora arenaria Donkin Amphora bigibba vat. interrupta (Grunow) Cleve Amphora delicatissima Krasske [B. Su. *] Amphora postalitis W. Smith [S. Sp] Amphora delicatissima Krasske [B. Su. *] Amphora graeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora postalis W. Smith [S. Sp] Amphora lineata E. V. Ostrup Amphora bunata E. V. Ostrup Amphora obusas W. Gregory [B. A. *] Amphora obusas W. Gregory [B. A. *] Amphora postalis (Kitzing) Kützing [B] Amphora postus (Rafies Caperty [B. A. *] Amphora postalis (Kitzing) Kützing [B] Amphora postus (Rafies Caperty [B. A. *] Amphora postalis (Kitzing) Kützing [B] Amphora postus (Rafies Caperty [B. A. *] Capert | | | | Actinocyclus splendens J. Rattray [B. W. *] Actinocyclus subtilis (W. Gregory) Ralfs Actinopychus senarius (Ehrenberg) Ehrenberg [S. A. *] Actinopychus adriaticus Grunow [S. Su. *] Actinopychus adriaticus Grunow [S. Su. *] Actinopychus adriaticus Grunow [S. Su. *] Actinopychus pelendens (Shadbolt) Ralfs [*] Amphora abtudens R. Simonsen [B] [*] Amphora abtudens R. Simonsen [B] [*] Amphora bigibba var. interrupta (Grunow) Cleve Amphora constricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora agrefiean Hendey [B. A. *] Amphora gacidis W. Smith [S. Sp] Amphora agrefiean Hendey [B. A. *] Amphora linevis Gregory Amphora linevis Gregory Amphora linevis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora proteus W. Gregory [B. A.] Amphora proteus W. Gregory [B. A.] Amphora proteus W. Gregory [B. A. *] Diploneis incurvata (Gregory) Cleve [B. Diploneis incurvata (Oregory) Cleve [B. Diploneis metacons (W. Gregory) Cleve [B. Diploneis smithii var. hetagona [B. Diploneis sonithii var. hetagona [B. Diploneis sonithii var. hetagona [B. Diploneis sonithii var. hetagona [B. Diploneis smithii var. hetagona [B. Diploneis sonithii var. hetagona [B. Diplon | | | | Actinocyclus splendens J. Rattray [B. W. *] Actinoptychus subtilis (W. Gregory) Balfs Actinoptychus subtilis (W. Gregory) Balfs Actinoptychus adriaticus Grunow [S. Su. *] Actinoptychus adriaticus Grunow [S. Su. *] Actinoptychus adriaticus Grunow [S. Su. *] Actinoptychus subtematicus Grunow [S. Su. *] Amphora ducinost probable var. interrupta (Grunow) Cleve Amphora arenaria Donkin Amphora arenaria Donkin Amphora arenaria Donkin Amphora delicatissima Krasske [B. Su. *] Amphora delicatissima Krasske [B. Su. *] Amphora graeffeana Hendey [B. A. *] Amphora praeffeana Hendey [B. A. *] Amphora hyalina Kützing Amphora laevis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora subacutuscula Schoeman [B. A. *] Amphora subacutuscula Schoeman [B. A. *] Amphora subacutuluscula Schoeman [B. A. *] Amphora spaculohyalina Simonsen Amphora subacutuluscula Schoeman [B. A. *] Amphora proteis W. Gregory [B. A] Ardissonea orbusta (Ralfs ex Pritchard) De Notaris [*] Autacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Appetita nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims Berketeya scoulorum (Brebisson ex Kützing) E. J. Cox [B. Sp] Biddulphia bidulphihana (J. E. Smith) Boyer Biddulphia unomey (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. | | | | Actinoptychus searaius (Ehrenberg) Ehrenberg [S. A. *] Actinoptychus searaius (Ehrenberg) Kützing [B. Sp] Actinoptychus searaius (Ehrenberg) Kützing [B. Sp] Actinoptychus octonarius (Ehrenberg) Kützing [B. Sp] Amphora abuludens R. Simonsen [S] Amphora abuludens R. Simonsen [S] Amphora abuludens R. Simonsen [S] Amphora abiudens R. Simonsen [S] Amphora abiudens R. Simonsen [S] Amphora abiudens R. Simonsen [S] Amphora delicatissima Krasske [B. Su. *] Amphora gacialis W. Smith [S. Sp] Amphora aperlegnan Henderg [B. A. *] Amphora aperlegnan Hendey [B. A. *] Amphora abiusis Gregory Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora obussa W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora spid (Kützing) Kützing [B] Kützing) Kützing (Kützing) Kützing (Kützing) Kützing (Kützing) Kützing) Kützing (Kützing) Kützi | | | | Actinoptychus senarius (Ehrenberg) Ehrenberg (S. A. *) Actinoptychus actinatious Grimow (S. Su. *) Actinoptychus octomarius (Ehrenberg) Kützing [B. Sp] Actinoptychus splendens (Shadoloi) Ralls (*) Amphora arenaria Donkin Amphora abuduens R. Simonsen [S] Amphora arenaria Donkin Amphora bildulens R. Simonsen [S] Amphora dicicatissima Krasske [B. Su. *] Amphora dicicatissima Krasske [B. Su. *] Amphora graedfeana Hendey [B. A. *] Amphora yacelfeana Hendey [B. A. *] Amphora davis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora valis (Kätzing) Kätzing [B] Amphora valis (Kätzing) Kätzing [B] Amphora proteus W. Gregory [B. A. *] pro | | | | Actinoptychus scienarius (Ehrenberg) Kützing [B. Sp] Actinoptychus splendens (Shadbolt) Ralfs [*] Amphora abludens R. Simonsen [S] Amphora arenaria Donkin Amphora bigibba var. interrupta (Grunow) Cleve Amphora constricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora agacialis W. Smith [S. Sp] Diplonets sometial (Ehrenberg)
Ehrenberg [S. Sp] Diplonets agaciant Hustedt [B. Sp] Diplonets incurvata (Gregory) Cleve [B. Sp] Diplonets incurvata (Gregory) Cleve [S. W. *] Diplonets incurvata (Gregory) Cleve [S. W. *] Diplonets incurvata (Gregory) Cleve [S. W. *] Diplonets incurvata (Gregory) Cleve [S. Su. *] Diplonets smithit var. hexagona [B. Sp. *] Diplonets smithit var. hexagona | | Cocconeis woodii Reyes [S. Su] | | Amphora abludens R. Simonsen [S] Amphora arenaria Donkin Amphora arenaria Donkin Amphora arenaria Donkin Amphora bigibba var. interrupta (Grunow) Cleve Amphora agacilais W. Smith [S. Sp. *] Amphora agacilais W. Smith [S. Sp.] Amphora agacilais W. Smith [S. Sp] Amphora agacilais W. Smith [S. Sp] Amphora apacialis W. Smith [S. Sp] Amphora pacialis Diploneis control (Ehrenberg) Ehrenberg [B] Diploneis coffactiornow (Cleve [B]) Diploneis sincersis (Grunow) Cleve [B] Diploneis sincersis (Grunow) Boyer [B. A. *] Ardissonea crystallina (C. Agardh) Grunow Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brebisson ex Kützing) E. J. Cox (B. Sp) Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia biddulphiana (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicumeata (Grunow) Boyer [B. A] Caloneis biber var. linearis Cleve Campylodiscos simonimiants R. Ross & Abdin | Actinoptychus adriaticus Grunow [S. Su. *] | Cocconeis sp. [S. Su. *] | | Amphora abhadens R. Simonsen [S] Amphora abhadens R. Simonsen [S] Amphora arenaria Donkin Amphora aconstricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora dictatissima Krasske [B. Su. *] Amphora gacialis W. Smith [S. Sp] Amphora aphalaen Keitzing Amphora alevis Gregory Amphora laevis voltas W. Gregory [B. A] Amphora voltas W. Gregory [B. A] Amphora voltas W. Gregory [B. A] Amphora voltas W. Gregory [B. A. *] Diploneis sincurvata (Gregory) Cleve [B. Diploneis incurvata var. dubat Hustedt [S. Su. *] Diploneis incurvata var. dubat Hustedt [S. Su. *] Diploneis incurvata var. dubat Hustedt [S. Su. *] Diploneis sintoralis var. clathrata (Ostropi) Cleve [B] Diploneis sintoralis (| Actinoptychus octonarius (Ehrenberg) Kützing [B. Sp] | Coronia decora (Brébisson) Ruck & Guiry | | Amphora arenaria Donkin Amphora bigibba var. interrupta (Grunow) Cleve Amphora constricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora agacidis W. Smith [S. Sp] Amphora graeffeama Hendey [B. A. *] Amphora favilina Kützing Amphora laevis Gregory Amphora laevissima W. Gregory Amphora laevissima W. Gregory Amphora laevis Gregory Amphora laevissima W. Gregory Amphora obiusa W. Gregory [B. A] Amphora ovalis (Kützing) Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Ardissonea crystallina (C. Agardh) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Arzeptia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brebisson ex Kützing) E. J. Cox [B. Sp] Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bikurneata (Grunow) Boyer [B. A] Caloneis bikureata Frajilaria sopotansis Witkowski (B. A) Frajilaria sopotansis | Actinoptychus splendens (Shadbolt) Ralfs [*] | Coscinodiscus sp. [B] | | Amphora bigibba var. interrupta (Grunow) Cleve Amphora constricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora delicatissima Krasske [B. Su. *] Amphora gacialis W. Smith [S. Sp] Amphora praeffeana Hendey [B. A. *] Amphora laucistisma W. Gregory Amphora laucistisma W. Gregory Amphora laucistisma W. Gregory Amphora laucistisma W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A. *] Amphora optusa W. Gregory [B. A. *] Amphora optusa W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Amphora speadohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora speadohyalina G. C. Agardh) Grunow Ardissonea ofromosa (Hantzsch) Grunow Ardissonea ofromosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya socpulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis intervati (Grunow) Boyer [B. A] Caloneis iber var. linearis Cleve Campyoldiscus innominatus R. Ross & Abdin [B] Gistula lorenziana (Grunow) Cleve [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeiopsis orthoneoides (Hustedt) Witkowskis (Hust | Amphora abludens R. Simonsen [S] | | | Amphora constricta (Ehrenberg) W. Carruthers [S. Sp. *] Amphora delicatissima Krasske [B. Su. *] Amphora gacialis W. Smith [S. Sp] Amphora gacialis W. Smith [S. Sp] Amphora fina Kützing Amphora hyalina Kützing Amphora laevis Gregory Amphora laevissima W. Gregory Amphora botusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora optius W. Gregory [B. A] Amphora proteus W. Gregory [B. A. *] Amphora speudohyalina Simonsen Amphora speudohyalina Simonsen Amphora speudohyalina (C. Agardh) Grunow Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Antaleoseira granulata (Ehrenbergy) Simonsen [B. Sp. *] Atpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brebisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Smith | | | | Amphora delicatissima Krasske [B. Su. *] Amphora graeffeana Hendey [B. A. *] Amphora graeffeana Hendey [B. A. *] Amphora lyalina Kützing Amphora laevisis Gregory Amphora laevissima W. Gregory Amphora lineolata Ehrenberg Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora optusa W. Gregory [B. A. *] Amphora speedohyalina Simonsen Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea robusta (Raffs ex Pritchard) De Notaris [*] Alaleoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria poxillation (J. E. Smith) Boyer Biddulphia biddulphian (J. E. Smith) Boyer Biddulphia tumeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W. Smith) Cleve Campylodiscus imnominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Diploneis scatuari Hustedt [B. A. *] Diploneis chersonensis (Grientocy) (Schmidt) Cleve [B. Diploneis chersonensis (Grientocy (B. Sp. *] Diploneis carbor (Ehrenberg) Ehrenberg (B. Sp. *] Diploneis ididyma (Ehrenberg) Ehrenberg (B. Sp. *] Diploneis ididyma (Ehrenberg) Ehrenberg (B. Sp. *] Diploneis ididyma (Ehrenberg) Ehrenberg (B. Sp. *] Diploneis incurvata (a (Frenberg) Ehrenberg (B. Sp. *] Diploneis incurvata (Gregory) Cleve [B. Su. *] Diploneis incurvata (Gregory) Cleve [B. Su. *] Diploneis intervata (Brenberg) Ehrenberg (Brenberg (Brenberg (Brenberg (Brenberg) Diploneis intervation (Gregory) Cleve [B. Su. *] Diploneis intervata (Gregory) Cleve [B. Diploneis intervata (Ostrup) Cleve [B. Diploneis smithii var. clathrata (Ostrup) Cleve [B. Diploneis smithii var. hexagona [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Dip | | | | Amphora gacialis W. Smith [S. Sp] Amphora graeffeana Hendey [B. A. *] Amphora hyalina Kützing Amphora laevis Gregory Amphora laevis Gregory Amphora laevis Gregory Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora olitisa W. Gregory [B. A] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora speadohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Ardisonea robusta (Ralfs ex Pritchard) De Notaris [*] Ardisonea robusta (Ralfs ex Pritchard) De Notaris [*] Bacillaria paxillifera (A. Schmidt) G. A. Fryxell & P. A. Sims Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia biddulphiana (Grunow) Boyer [B. A] Caloneis liber (W. Smith) Cleve Caloneis liber (W. Smith) Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory) (S. Su. *] Diploneis notabitis (Schmidt) Cleve [B] Diploneis incurvata (Gregory) Cleve [B. W. *] Diploneis litoralis (Donkin) Cleve [*] Diploneis incurvata var. dubia Hustedt [S. Su. *] Diploneis inticurvata mitabiti var. leating v | | | | Amphora graeffeana Hendey [B. A. *] Amphora hyalina Kützing Amphora laevis Gregory Amphora laevis Gregory Amphora laevissima W. Gregory Amphora laevissima W. Gregory Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora ovallis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 2 [B. A] Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*]
Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Aulacoseira granulata (Grunow) Boyer [B. A] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tiomeyi (I. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) Boyer Biddulphia tuomeyi (I. W. Bailey) Roper [B. A] Brebissonia lanceolata (Grunow) Boyer [B. Su. *] Caloneis liber (W.Smith) Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory (S. Su. *] Gorphonema olivaceum (Hornemann) Brébisson [B. Su. *] Gorphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Amphora İnyalina Kützing Amphora laevis Gregory Amphora laevis Gregory Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora lineolata E. V. Ostrup Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora subacutiuscula Schoeman Diploneis intervata (Gregory) Cleve [B] Diploneis intervata (O. Fregory [B. A. *] Diploneis intervata (O. Fregory) Cleve [B] Diploneis intervata (A. W. F. Schmidt) Cleve [B] Diploneis notabilis (Greville) Cleve [B] Diploneis smithit var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithit var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithit var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithit var. dilatata (Sehoeman [B. Sp. *] Diploneis sucultans (A. Schmidt) Cleve [*] Diploneis sucultans (A. Schmidt) Cleve [*] Diploneis sucultans (A. Schmidt) Cleve [*] Diploneis sucultans (A. Schmidt) Cleve [| | | | Amphora laevis Gregory Amphora laevissima W. Gregory Amphora lineolata Ehrenberg Amphora lunata E. V. Ostrup Amphora lunata E. V. Ostrup Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Argeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Diploneis orcabro (Ehrenberg) Ehrenberg [B. Sp. *] Diploneis incurvata (Gregory) Cleve [S. W. *] Diploneis incurvata (Gregory) Cleve [S. W. *] Diploneis nitiescens (W. Gregory) Cleve [S] Diploneis paqula (A. W. F. Schmidt) Cleve [S] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] Diploneis smithii var. hexagona [B] Diploneis spendida Cleve [*] Diploneis vacillans var. rentiens (A. Schmidt) Cleve [*] Diploneis vacillans var. rentiens (A. Schmidt) Cleve [*] Diploneis vacillans (A. W. F. Schmidt) Cleve [*] Diploneis vacillans (A. W. F. Schmidt) Cleve [*] Diploneis spendida Cleve [*] Diploneis spendida Cleve [*] Diploneis spendida Cleve [*] Diploneis spendida C | | | | Amphora laevissima W. Gregory Amphora lineolata Ehrenberg Amphora lineolata Ehrenberg Amphora obtusa W. Gregory [B. A] Amphora obtusa W. Gregory [B. A] Amphora ovalis (Kützing) Kützing [B] Amphora poseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 2 [B. A] Amphora sp. 2 [B. A] Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Alulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brebisson ex Kützing) E. J. Cox [B. Sp] Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis posis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Diploneis didyma (Ehrenberg) Ehrenberg [B. Sp. *] Diploneis incurvata var. dubia Hustedt [S. Su. *] Diploneis litoralis (Otonkin) Cleve [*] Diploneis litoralis (Otonkin) Cleve [*] Diploneis nitierata (Gregory) Cleve [S] Diploneis nitierata (Greville) Cleve [*] Diploneis parac (A. W. F.Schmidt) Cleve [Su] Diploneis parac (A. W. F.Schmidt) Boyer [B. Sp. *] Diploneis smithii (Brebisson) Cleve Diploneis smithii var. recta Peragallo Diploneis smithii var. recta Peragallo Diploneis swithii var. recta Peragallo Diploneis sveinthii var. hexagona [B] Diploneis sveinthii var. recta Peragallo Diploneis sveinthii var. creta Peragallo Diploneis sveinthii var. creta Peragallo Diploneis sveinthii var. Cleve [*] | | | | Amphora lineolata Ehrenberg Amphora lunata E. V. Ostrup Diploneis incurvata (Gregory) Cleve [S. W. *] Diploneis incurvata (Gregory) Cleve [*] incurvation Cleve [*] Diploneis incurvata (Gregory) Cl | | 1 | | Amphora lunata E. V. Østrup Amphora obtusa W. Gregory [B. A] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora pseudohyalina Simonsen Amphora speudohyalina Simonsen Amphora sp. 1 Amphora sp. 2 [B. A] Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robustal (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis liber (W.Smith) Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis posis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. W. *] Diploneis intervata (actalaria (Gregory) Cleve [S. W. *] Diploneis intervata (Gregory) (Cleve [S] Diploneis intervata (Gregory) Cleve [S] Diploneis nitescens (W. Gregory) (Cleve [B] Diploneis nitescens (W. Gregory) (Cleve [B] Diploneis notabilis (Greville) Cleve [S. W. *] mitatocens (W. Gregory) (Eve [B] Diploneis smithii var. detatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. detatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. detatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. detatata (Peragallo) Terry [B. Sp. *] Diploneis spithii var. | | | | Amphora obtusa W. Gregory [B. A.] Amphora ovalis (Kützing) Kützing [B] Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 2 [B. A.] Amphora sp. 2 [B. A.] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Atpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria poxillifera (O. F. Müller) T. Marsson Bacillaria furmeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W. Gregory) [S. Su. *] Diploneis incurvata var. dubia Hustedt [S. V. *] Diploneis litoralis Var. clathrata (Østrup) Cleve [*] Diploneis notabilis (Gregory) (Leve [B]) Diploneis notabilis (Greville) Cleve [Su] Diploneis spapula (A. W. F. Schmidt) Cleve [Su] Diploneis smithii (Brébisson) Cleve Diploneis smithii var. hexagona [B] Diploneis smithii var. recta Peragallo Diploneis splendida Cleve [*] Diploneis stroemit Hustedt [S. W. *] Diploneis stroemit Hustedt [S. W. *] Diploneis weissflogii (A. W. F. Schmidt) Cleve [B] Diploneis weissflogii (A. W. F. Schmidt) Cleve [B] Diploneis sweissflogii (A. W. F. Schmidt) Cleve [B] Diploneis splendida Cleve [*] Diploneis spendida Diplo | | | | Amphora ovalis (Kützing) Kützing [B] Amphora proteus W. Gregory [B. A. *] Amphora proteus W. Gregory [B. A. *] Amphora pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 1 Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Atquista nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria paxillifera (G. F. Müller) T. Marsson Bacillaria poxillifera (C. A. Agardh) Boyer Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Campylodiscus
innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Conconeis costata Gregory [S. Su. *] Diploneis sitoralis var. catahrata (Østrup) Cleve [B] Diploneis nitescens (W. Gregory) Cleve [B] Diploneis nitescens (W. Gregory) Cleve [B] Diploneis nitescens (W. Gregory) Cleve [B] Diploneis snotabilis (Greville) Cleve Diploneis spapula (A. W. F. Schmidt) Cleve [Su] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] sacillaria var. rentiens (A. Schmidt) Cleve [*] Diploneis vacillans var. rentiens (A. Schmidt) Cleve [*] Diploneis vacillans var. rentiens (A. Schmidt) Cleve [*] Diploneis spaula (A. W. F | | | | Amphora proteus W. Gregory [B. A. *] Amphora pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 1 Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria poxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia biddulphiana (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W. Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Diploneis litoralis var. clathrata (Østrup) Cleve [*] Diploneis nitescens (W. Gregory) Cleve [B] Diploneis notabilis (Greville) Cleve [B] Diploneis parca (A. W. F. Schmidt) Cleve [Su] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] Diploneis smithii var. recta Peragallo vacillans (A. Schmidt) Cleve [*] Diploneis spenare (M. Weller) M. W. S. Schmidt) Cleve [*] Diploneis spenare (M. Weller) M. W. S. Schmidt) Cleve [*] Dipl | | | | Amphora pseudohyalina Simonsen Amphora subacutiuscula Schoeman [B. A. *] Amphora sp. 1 Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Caloneis liber var. linearis Cleve Caloneis rotabilis (Gregory) (R. V. F. Schmidt) Cleve [B] Diploneis snithii (Brébisson) Cleve Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] Diploneis smithii var. recta Peragallo Diploneis splendida Cleve [*] Diploneis stroemii Hustedt [S. W. *] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis sweissflogii (A. W. F. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis sweissflogii (A. W. F. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis sp. Encyonema ventricosum (C. Agardh) Grunow [S. Su. *] Entomoneis paludosa (W. Smith) Reimer Fallacia litoricola (Hustedt) D. G. Mann [S. Su. *] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [*] Fallacia intoricola (Hustedt) D. G. Mann [*] Fallacia intoricola (Hustedt) D. G. Mann [*] Fallacia subforcipata (Hustedt) D. G. Mann [*] Fragilaria spoients switkowski & Lange-Bertalot [B. Su] Fragilaria spoients swithiti var. diatata (Peragallo) Terry [B. Sp. *] Fragilaria spoients smithii var. recta Peragallo Diploneis svacillans (A. Schmidt) Cleve [*] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis vacillan | | | | Amphora sp. 1 Amphora sp. 2 [B. A] Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis notabilis (Greville) Cleve [Su] Diploneis papula (A. W. F. Schmidt) Cleve [Su] Diploneis papula (A. W. F. Schmidt) Boyer [B. Su. *] Diploneis sex S. J. M. Droop [B] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] Diploneis smithii var. recta Peragallo Diploneis sphedida Cleve [*] Diploneis sphedida Cleve [*] Diploneis sphedida Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis sphedida Cleve [*] Diploneis sphedida Cleve [*] Diploneis sphedida Cleve [*] Diploneis sphedida Cleve [*] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis sphedida | | | | Amphora sp. 1 Amphora sp. 2 [B. A] Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] Diploneis smithii var. recta Peragallo Diploneis stroemii Hustedt [S. W. *] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis weissflogii (A. W. F. Schmidt) Cleve [B] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans (M. Meller) Witkowski [B] Fallacia floriniae (M. Meller) Witkowski [B] Fallacia litoricola (Hustedt) D. G. Mann [S. Su. *] Fallacia subforcipata (Hustedt) D. G. Mann [S. Sp. *] Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su] | | | | Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Auperitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. hexagona [B] sacillaria subicuta (Rusedt) [S. W.*] Diploneis sacillaria subicuta (Rusedt) D. G. Mann [S. Su. *] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [A. Schmidt) Cleve [A. W. F. Schmi | | | | Ardissonea crystallina (C. Agardh) Grunow Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *]
Diploneis sucillans va. renitens (A. Schmidt) Cleve [*] Diploneis sucillans va renitens (A. Schmidt) Cleve [*] Diploneis splendida Cleve [*] Diploneis splendida (B. | | | | Ardissonea formosa (Hantzsch) Grunow Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] recta Peragallo Diploneis smithii var. recta Peragallo Diploneis smithii var. recta Peragallo Diploneis sucillans (A. Schmidt) Cleve [*] Diploneis smithii var. recta Peragallo E** Diploneis smithii var. recta Peragallo Diploneis sucillans (A | | | | Ardissonea robusta (Ralfs ex Pritchard) De Notaris [*] Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. dilatata (Peragallo) Terry [B. Sp. *] Diploneis smithii var. hexagona [B] vacillans (A. Schmidt) Cleve [*] Diploneis spleadida (B. W. F. Schmidt) Cleve [*] Diploneis vacillans (A. Schmidt) Cleve [*] Diplo | | | | Aulacoseira granulata (Ehrenberg) Simonsen [B. Sp. *] Azpeitia nodulifera (A. Schmidt) G. A. Fryxell & P. A. Sims [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia biddulphiana (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. A] Caloneis liber (W. Smith) Cleve Caloneis liber var. linearis Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis smithii var. hexagona [B] splendida Cleve [*] | | | | Diploneis smithii var. recta Peragallo | | | | [B. A. *] Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis liber (W. Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Diploneis splendida Cleve [*] Diploneis stroemii Hustedt [S. W. *] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Encyonema ventricosum (C. Agardh) Grunow [S. Su. *] Fallacia floriniae (M. Møller) Witkowski [B. D. G. Mann [S. Su. *] Fallacia floriniae (M. Møller) Witkowski (B. D. G. Mann [S. Su. | | | | Bacillaria paxillifera (O. F. Müller) T. Marsson Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis stroemii Hustedt [S. W. *] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. Schmidt) Cleve [*] Diploneis weissflogii (A. W. F. Schmidt) Cleve [*] Diploneis weissflogii (A. W. F. Schmidt) Cleve [*] Diploneis vacillans var. renitens (A. V. F. Schmidt) Cleve [*] D | | | | Bacillaria socialis (Gregory) Ralfs Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W. Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Cocconeis costata Gregory [S. Su. *] Diploneis vacillans (A. Schmidt) Cleve [*] Diploneis vacillans var. renitens var. renitens (C. Agardh) Grunow [S. Su. *] Fallacia floriniae (M. Møller) Witkowski [B. D. G. Mann [*] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [*] Fallacia subforcipata (Hustedt) D. G. Mann | | | | Berkeleya scopulorum (Brébisson ex Kützing) E. J. Cox [B. Sp] Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Comphonema olivaceum (Hornemann) Brébisson [B. Su. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Biddulphia biddulphiana (J. E. Smith) Boyer Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cacconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Diploneis weissflogii (A. W. F. Schmidt) Cleve [B] Diploneis weissflogii (A. W. F. Schmidt) Cleve [B] Encyonema ventricosum (C. Agardh) Grunow [S. Su. *] Entomoneis paludosa (W. Smith) Reimer Fallacia floriniae (M. Møller) Witkowski [B] Fallacia floriniae (M. Møller) Witkowski [B] Fallacia litoricola (Hustedt) D. G. Mann [S. Su. *] Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *] Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su] Fragilaria sp. [A. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Biddulphia tuomeyi (J. W. Bailey) Roper [B. A] Brebissonia lanceolata (C. A. Agardh) R. K. Mahoney & Reimer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Diploneis sp. Encyonema ventricosum (C. Agardh) Grunow [S. Su. *] Entomoneis paludosa (W. Smith) Reimer Fallacia floriniae (M. Møller) Witkowski [B] Fallacia floriniae (Grunow) Cleve & D. G. Mann [S. Su. *] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [*] Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *] Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su] Fragilaria sp. [A. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | ### Brebissonia lanceolata* (C. A. Agardh) R. K. Mahoney & Reimer [S] ### Caloneis bicuneata* (Grunow) Boyer [B. Su. *] *Caloneis excentrica* (Grunow) Boyer [B. A] *Caloneis liber* (W.Smith) Cleve *Caloneis liber* (W.Smith) Cleve *Caloneis liber* var. linearis* Cleve *Caloneis liber* var. linearis* Cleve *Campylodiscus* innominatus* R. Ross & Abdin [B] *Campylodiscus* innominatus* R. Ross & Abdin [B] *Cistula lorenziana* (Grunow) Cleve [B] *Cocconeiopsis* orthoneoides* (Hustedt) Witkowski [B. A] *Cocconeis* costata* Gregory* [S. Su. *] *Comphonema* ventricosum* (C. Agardh) Grunow* [S. Su. *] *Fallacia floriniae* (M. Møller) Witkowski [B] | | | | mer [S] Caloneis bicuneata (Grunow) Boyer [B. Su. *] Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeis costata Gregory [S. Su. *] Entomoneis paludosa (W. Smith) Reimer Fallacia floriniae (M. Møller) Witkowski [B] | | | | Caloneis excentrica (Grunow) Boyer [B. A] Caloneis liber (W.Smith) Cleve Caloneis liber var. linearis Cleve Campylodiscus innominatus R. Ross & Abdin [B] Cistula lorenziana (Grunow) Cleve [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Fallacia forcipata (Greville) Stickle & D. G. Mann [S. Su. *] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [*] Fallacia pygmaea (Kützing) Stickle & D. G. Mann [*] Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *] Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su] Fragilaria sp. [A. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Caloneis excentrica (Grunow) Boyer [B. A]Fallaciaforcipata
(Greville) Stickle & D. G. MannCaloneis liber (W.Smith) CleveFallacia litoricola (Hustedt) D. G. Mann [S. Su. *]Caloneis liber var. linearis CleveFallacia pygmaea (Kützing) Stickle & D. G. Mann [*]Campylodiscus innominatus R. Ross & Abdin [B]Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *]Cistula lorenziana (Grunow) Cleve [B]Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su]Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A]Fragilaria sp. [A. *]Cocconeis costata Gregory [S. Su. *]Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Caloneis liber var. linearis CleveFallacia pygmaea (Kützing) Stickle & D. G. Mann [*]Campylodiscus innominatus R. Ross & Abdin [B]Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *]Cistula lorenziana (Grunow) Cleve [B]Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su]Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A]Fragilaria sp. [A. *]Cocconeis costata Gregory [S. Su. *]Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | Fallaciaforcipata (Greville) Stickle & D. G. Mann | | Campylodiscus innominatus R. Ross & Abdin [B]Fallacia subforcipata (Hustedt) D. G. Mann [B. Sp. *]Cistula lorenziana (Grunow) Cleve [B]Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su]Cocconeis costata Gregory [S. Su. *]Fragilaria sp. [A. *]Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | Caloneis liber (W.Smith) Cleve | Fallacia litoricola (Hustedt) D. G. Mann [S. Su. *] | | Cistula lorenziana (Grunow) Cleve [B] Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Fragilaria sopotensis Witkowski & Lange-Bertalot [B. Su] Fragilaria sp. [A. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | Caloneis liber var. linearis Cleve | | | Cocconeiopsis orthoneoides (Hustedt) Witkowski [B. A] Cocconeis costata Gregory [S. Su. *] Fragilaria sp. [A. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | Cocconeis costata Gregory [S. Su. *] Gomphonema olivaceum (Hornemann) Brébisson [B. Su. *] | | | | | | | | Cocconeis costata var. hexagona Grunow [S. A. *] Grammatophora gibberula Kützing [S. W. *] | | | | | Cocconeis costata var. hexagona Grunow [S. A. *] | Grammatophora gibberula Kützing [S. W. *] | Grammatophora macilenta W. Smith [B] Grammatophora marina (Lyngbye) Kützing Grammatophora oceanica Ehrenberg Grammatophora oceanica var. subtilissima (J. W. Bailey) De Toni [B. Su. *] Grammatophora pacifica [S. A] Halamphora acutiuscula (Kützing) Levkov [B] Halamphora coffeiformis (C. Agardh) Levkov Halamphora costata (W. Smith) Levkov [B] Halamphora exigua (W. Gregory) Levkov [B. W] Halamphora holsatica (Hustedt) Levkov [B. Sp. *] Halamphora kolbei (Aleem) Álvarez-Blanco & S.Blanco Halamphora subangularis (Hustedt) Levkov [B. Su. *] Halamphora subholsatica (Krammer) Levkov [*] Haslea duerrenbergiana (Hustedt) F. A. S. Sterrenburg [Su. *] Haslea spicula (Hickie) Bukhtiyarova [B. Sp] Hyalosira interrupta (Ehrenberg) J. N. Navarro [*] Hyalosynedra laevigata (Grunow) D. M. Williams & Round Licmophora abbreviata C. Agardh [*] Licmophora debilis (Kützing) Grunow [Su.*] Licmophora ehrenbergii (Kützing) Grunow [*] Licmophora flabellata (Greville) C. Agardh Licmophora gracilis (Ehrenberg) Grunow Licmophora paradoxa (Lyngbye) C. Agardh Licmophora pfannkuckae Giffen Licmophora remulus (Grunow) Grunow Licmophora sp. Lyrella abrupta (Gregory) D. G. Mann [*] Lyrella fogedii Witkowski, Lange-Bertalot & Metzeltin [B] Lyrella hennedyi (W. Smith) Stickle & D. G. Mann [S. Sp. *] Lyrella lyra (Ehrenberg) Karajeva [*] Lyrella lyroides (Hendey) D. G. Mann Lyrella spectabilis (Gregory) D. G. Mann Mastogloia adriatica Voigt [S. A] Mastogloia binotata (Grunow) Cleve Mastogloia borneensis Husted [S. Su. *] Mastogloia crucicula (Grunow) Cleve [B] Mastogloia crucicula var. alternans Zanon [B. Sp] Mastogloia cuneata (Meister) R. Simonsen [B. Su] Mastogloia cyclops Voigt [Su. *] Mastogloia emarginata Hustedt [S. Su. *] Mastogloia erythraea Grunow [B. A] Mastogloia erythraea var. grunowii Foged [B. Su. *] Mastogloia exigua F. W. Lewis [B. A] Mastogloia exilis Hustedt [B] Mastogloia fallax Cleve [S. Su] Mastogloia fimbriata (T.Brightwell) Grunow [B] Mastogloia grunowii A. Schmidt [S. Su] Mastogloia horvathiana Grunow [A] Mastogloia ignorata Hustedt Mastogloia inaequalis Cleve [*] Mastogloia latecostata Hustedt [B. Su. *] Mastogloia linearis Simonsen [S. Su. *] Mastogloia macdonaldii Greville [S. A. *] Mastogloia mauritiana Brun [*] Mastogloia mediterranea Hustedt [B] Mastogloia ovata Grunow [B] Mastogloia ovulum Hustedt [B. Su] Mastogloia paradoxa Grunow [B. A] Mastogloia peragalloi Cleve [B] Mastogloia pseudolatecostata T. A. Yohn & R. A. Gibson Mastogloia smithii Thwaites ex W. Smith [S. A. *] Mastogloia splendida (Gregory) H. Pergallo [*] Mastogloia sp. Navicula abunda Hustedt [S. Su] Navicula agnita Hustedt Navicula arenaria Donkin [Su. *] Navicula borneoensis Hustedt [B. Su. *] Navicula cancellata Donkin Navicula cincta (Ehrenberg) Ralfs [S. Su. *] Navicula digitoradiata (W. Gregory) Ralfs [B. Su] Navicula directa (W. Smith) Ralf Navicula eidrigiana J. R. Carte [S. Su. *] Navicula flagellifera Hustedt [*] Navicula longa (W. Gregory) Ralfs [B. A] Navicula longa var. irregularis Hustedt [B. A] Navicula pennata A. Schmidt [B] Navicula pinnata Pantocsek [B. Su. *] Navicula subrostellata Hustedt [B. Sp. *] Navicula sp. [S] Nitzschia agnita Hustedt [B. Su. *] Nitzschia angularis W. Smith [*] Nitzschia bartholomei Grunow [B. Su. *] Nitzschia distans W. Gregory Nitzschia distans var. tumescens Grunow [B. Su] Nitzschia frustulum (Kützing) Grunow [Su] Nitzschia fusiformis Grunow [B] Nitzschia incurvata var. lorenziana R.Ross Nitzschia insignis W.Gregory [S. Sp. *] Nitzschia liebetruthii Rabenhorst [*] Nitzschia longissima (Brébisson) Ralfs [*] Nitzschia macilenta W. Gregory Nitzschia marginulata var. didyma Grunow [B. A. *] Nitzschia normannii Grunow [B. Su. *] Nitzschia pararostrata (Lange-Bertalot) Lange-Bertalot Nitzschia scalpelliformis Grunow [A. *] Nitzschia sigma (Kützing) W. Smith [*] Nitzschia ventricosa Kitton [*] Nitzschia sp. [*] Opephora marina (W. Gregory) Petit [S. A. *] Opephora mutabilis (Grunow) Sabbe & Wyverman [S. Su] Opephora pacifica (Grunow) Petit [Su] Pantocsekiella ocellata (Pantocsek) K. T. Kiss & E. Ács [*] **Paralia** sulcata (Ehrenberg) Cleve (defined as P. s. s.l.) Petrodictyon gemma (Ehrenberg) D.G.Mann Pinnularia claviculus Schulz [B] Plagiodiscus martensianus Grunow & Eulenstein [B] Plagiodiscus nervatus Grunow [B. A. *] Plagiogramma staurophorum (W. Gregory) Heiberg [B. W. *] Plagiotropis lepidoptera (W. Gregory) Kuntze *Plagiotropis tayrecta* T. B. B.Paddock Planothidium delicatulum (Kützing) Round & Bukhtiyarova [B. Su. *] Planothidium quarnerensis (Grunow) Witkowski. Lange-Bertalot & Metzelin [B] Platessa salinarum (Grunow) Lange-Bertalot [B. Su. *] Pleurosigma formosum W. Smith Pleurosigma itium Ricard [S. Su. *] Pleurosigma sp. [Su] Podocystis adriatica (Kützing) Ralfs [S] Psammodictyon panduriforme (W. Gregory) D.G.Mann Psammodictyon panduriforme var. continuum (Grunow) Snoeijis [B. Su] Psammodictyon rudum (Cholnoky) D. G. Mann Psammodiscus nitidus (W.Gregory) Round & D. G. Mann [Su] Rhabdonema adriaticum Kützing Mastogloia pumila(Grunow)Cleve [B. *] Mastogloia similis Hustedt Mastogloia quinquecostata Grunow [B. W. *] Mastogloia regula Hustedt [B. Su. *] Rhizosolenia styliformis T. Brightwell [B. Su. *] Rhoicosphenia marina (Kützing) M. Schmidt Rhopalodia acuminata Kramme Rhopalodia musculus (Kützing) Otto Müller [B] Rhopalodia pacifica Krammer Seminavis barbara Witkowski [S. Su] Staurosira punctiformis Witkowski, Metzeltin & Lange-Bertalot [B, A] Striatella unipunctata (Lyngbye) C. Agardh Surirella fastuosa (Ehrenberg) Ehrenberg Surirella scalaris M. H. Giffen [B] Synedra fulgens (Greville) W. Smith Tabularia investiens (W. Smith) D. M. Williams & Round [*] Talaroneis furcigera (Grunow) Sterrenburg Terpsinoë americana (Bailey) Grunow [B] *Tetramphora decussata* (Grunow) Stepanek & Kociolek [B] *Tetramphora rhombica* (Kitton) Stepanek & Kociolek [S] Thalassiosira sp. [B] Toxarium hennedyanum (Gregory) Pelletan [B. Sp. *] Toxarium undulatum J. W.Bailey Trachyneis aspera (Ehrenberg) Cleve *Trigonium formosum* (Brightwell) Cleve [S] Tryblionella apiculata W. Gregory [B. Su.*] Tryblionella coarctata (Grunow) D. G. Mann [B.A] Tryblionella compressa (J. W. Bailey) Poulin Tryblionella didyma (Hustedt) D. G. Mann [B. Su. *] Tryblionella hungarica (Grunow) Frenguelli [Su]