Fish assemblages along the coasts of Tunisia: a baseline study to assess the effectiveness of future Marine Protected Areas

BEN LAMINE EMNA
Côte d'Azur University and national agronomic institute of Tunisia

GUIDETTI PAOLO
Université Côte d’Azur, CNRS

ROMDHANE MOHAMED SALAH
National Agronomic Institute of Tunisia, UR Ecosystems and Aquatic Resources

FRANCOUR PATRICE
Université Côte d’Azur, CNRS

https://doi.org/10.12681/mms.14206

To cite this article:

Fish assemblages along the coasts of Tunisia:
a baseline study to assess the effectiveness of future Marine Protected Areas

EMNA BEN LAMINE1,2, PAOLO GUIDETTI1, MOHAMED SALAH ROMDHANE3 and PATRICE FRANCOUR2

1National Agronomic Institute of Tunisia, UR Ecosystems and Aquatic Resources, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
2Université Côte d’Azur, CNRS, FRE 3729 ECOMERS, Parc Valrose 28, Avenue Valrose, 06108 Nice, France
3PAOLO GUIDETTI
Corresponding author: emna.lamine@gmail.com
Handling Editor: Carlo Bianchi
Received: 14 June 2017; Accepted: 24 September 2017; Published on line: 15 March 2018

Abstract

The present study investigated coastal fish assemblages, using Underwater Visual Census (UVC) transects, that can be used as a baseline, at 3 locations in Tunisia (southern Mediterranean basin) where 3 MPAs will be established, before the implementation of protection measures. At each location, we used a sampling design where fish censuses were performed in two types of zone: zones that will be inside MPAs, and zones that will remain outside. On the whole, 49 taxa belonging to 19 families were censused. Our findings provided evidence of overfishing throughout the sampled areas, especially in terms of dominance of small- and medium-sized individuals of commercially relevant species. Our analyses, moreover, did not show any significant difference between fish assemblages (considering both density and biomass of whole assemblages, the different trophic categories and size distribution of commercial species) between future protected and unprotected zones. Overall, results suggest that: 1) current fish assemblages at the three studied locations are likely to be seriously impacted by fishing activities, and 2) these data could be used as a reliable baseline to assess the effectiveness of protection measures within the MPAs that will be established in the future. Our study is the first in Tunisia, and along the North African coasts, that has assessed distribution patterns of coastal fish assemblages by means of UVC, using a formal spatially replicated sampling design for resource management.

Keywords: Underwater Visual Census (UVC), Marine Protected Areas, Southern Mediterranean, Tunisia.

Introduction

Tunisia is located in the south-central Mediterranean Sea. It includes about 1670 km of coastline. It is considered as a crossroad between the eastern and western Mediterranean as it lies biogeographically in the Strait of Sicily, known for its high biodiversity, especially in terms of fish diversity (Bianchi et al., 2012). As in the rest of the Mediterranean (Sala et al., 2012 and references therein), professional (artisanal and industrial) and recreational fishing, along with a number of illegal practices, are seriously threatening coastal fish assemblages in Tunisia (Coll et al., 2010; CAR/ASP - PNUE/PAM, 2014; Halouani et al., 2015). In this context, Marine Protected Areas (MPAs) that include fully protected zones (also referred to as no-take zones or marine reserves) are important tools for conservation and management (PISCO & UNS, 2016). Worldwide, MPAs with fully protected zones have been clearly demonstrated to be effective for protecting fish assemblages (Di Franco et al., 2009; Guidetti et al., 2014, Mellin et al., 2016; PISCO & UNS, 2016; Bergseth et al., 2017). In the Mediterranean Sea, recent studies provided significant evidence that well-managed and well-enforced MPAs trigger clear ecological responses (particularly from large predatory fishes; Guidetti et al., 2014; Giakoumi et al., 2017) and provide fishery benefits (Di Franco et al., 2016).

In most MPAs worldwide, scientists monitor the effectiveness of MPAs by assessing fish assemblages using Underwater Visual Census (UVC) methods after the establishment of the MPA, often comparing data collected under protected and fished conditions (e.g. Sala et al., 2012; Edgar et al., 2014; Aburto-Oropeza et al., 2015; Caldwell et al., 2016). Some authors have highlighted the importance of having time reference data, to be able to compare patterns before and after implementation of the MPA. This can be done by formally adopting the so-called ‘Before vs After Control Impact’ experimental design in the specific context of MPA studies (e.g. Guidetti, 2002; Pelletier et al., 2008). The point is that comparing fish assemblage patterns only after MPA implementation by sampling at protected and fished control sites, might be subject to interference the ‘reserve effect’ (i.e. the response to protection, especially in terms of increased
abundance, size and biomass of fish as a consequence of protection measures) because, without ‘before’ data, uncontrolled factors, e.g. habitat and seascape complexity (García-Charton et al., 2000; Guidetti, 2002; Huntington et al., 2010), may mask the effects of protection.

In this perspective, the present study has been undertaken to assess the status of coastal fish assemblages at three locations in Tunisia that will host MPAs in the near future (CAR/ASP - PNUE/PAM, 2015, but see also: http://www.apal.nat.tn/site_web/contenu/creation_et_gestion_des_amcp.html). The aim is to describe the status of these fish assemblages and use these data as ‘before data’ to test the effectiveness of MPAs once they are established and protection measures are implemented. To the best of our knowledge, this is the first study carried out in Tunisia, and along the coasts of North Africa, that has assessed distribution patterns of coastal fish assemblages by means of UVC, and that has used a formal spatially replicated sampling design.

Methods

Sampling locations

UVC sampling was performed at three locations, referred to as Tabarka, Cap Negro-Cap Serrat and Kuriat Islands. Each location encompassed 4 sites that will be protected (i.e. that will be included within an MPA), and 2 adjacent sites (controls) that will remain open to fishing. Tabarka is situated on the west coast of Tunisia and the MPA will cover 327.855 ha, down to 40-m depth; Cap Negro-Cap Serrat is located in the north, and the MPA will cover 1 300 ha, down to 45-m depth; Kuriat islands, situated off the east coast, will be the site of an MPA covering 19 674 ha, down to 40-m depth (Fig. 1).

Sampling design and data collection

Six sampling sites were surveyed at each location (4 sites that will in the future be protected and 2 that will remain unprotected), using the visual census transect method (see Harmelin-Vivien et al., 1985) performed on rocky reefs from 10 to 20 meters depth. All sampling sites have similar characteristics in terms of habitat type, with rocky bottoms covering ~70%, and Posidonia meadows and sand covering the remaining ~30% of the substrate. One sampling survey per year was conducted (from 2014 to 2016 at Tabarka and Kuriat Islands, and in 2014 and 2016 at Cap Negro-Cap Serrat) during the warm season (from August to September) and under similar weather and sea conditions. The same person performed all fish counts at all sites, diving in one direction at constant speed, and performing three types of transects in terms of length and width: (1) transect A: 25 m x 5 m for nectobenthic fishes

![Fig. 1: Locations where MPAs will be established along the Tunisian coast. Location of future protected sites (FP) and those outside (that will remain unprotected) (UP) (separated with dotted lines indicating borders of future MPAs as they are proposed in management plans).](http://epublishing.ekt.gr)
(e.g. sea bream), (2) transect B: 35 m x 10 m for large mobile high-level predators (e.g. grouper), and (3) transect C: 10 m x 1 m for crypto-benthic fishes (e.g. Gobiidae) (Prato et al., 2017 for further methodological details) (see Suppl. mat. 1 for the species list). Three replicates of each transect type were performed at each site and in each sampling year for a total of 144 replicates conducted in this study. At each transect, each species encountered was identified and its abundance recorded. Fish size (total length) was recorded within 5 cm size classes for large sized fishes (species maximum size > 50 cm), 2 cm size classes for other necto-benthic fish species and 1 cm for small crypto-benthic fishes (following Prato et al., 2017).

Based on density and size data, fish biomass was estimated using length-weight relationships (Froese & Pauly, 2017).

Data analyses

Overall fish assemblage structure (based on density and biomass data) was analysed using multivariate statistical techniques. Specifically, two “taxon x samples” matrices of species density and biomass (n = 49 taxa, n = 144 samples) were analysed. Univariate techniques were used for: (1) species richness (one matrix n = 1 variable, n = 144 samples), (2) total density and total biomass (two other matrices: n = 1 variable, n = 144 samples), and, (3) density and biomass per trophic category (12 matrices: n = 1 variable, n = 144 samples). Univariate and multivariate analyses were performed using a four-way permutation analysis of variance (PERMANOVA, Anderson, 2001). For all Permanovas, the following factors have been taken into account: factor “Protection” (P) (2 levels, Future Protected (FP) and Unprotected (UP)) was considered as fixed; factor “Location (Lo)” (3 levels: Kuriat, Cap Negro-Cap Serrat, Tabarka) and factor “Site” (Si), (2 to 4 levels) nested in each level of P, and factor “Time (Ti)” (2 to 3 levels), were both considered as random. We used MonteCarlo permutations whenever the number of possible permutations was < 200. The PRIMER 7 package implemented with PERMANOVA+ was used to perform the analyses.

Results

Multivariate analyses

Overall, fish assemblages comprised 49 taxa belonging to 19 families: 48 taxa were found at Tabarka, 45 at Kuriat islands and 34 at Cap Negro-Cap Serrat. Sparidae and Labridae were strongly represented families in terms of number of species (see Table in Supp. Mat. 1).

Multivariate analyses performed on density data show that fish assemblage structure changed significantly between sites that will be protected and those that will remain outside MPAs (factor ‘P’ significant; Table 1). Assemblage structures in terms of both density and biomass also changed significantly over time, but with changes that were not the same at the spatial scales of locations and sites (interaction ‘TxixLoxSi(P)’ significant; Table 1).

Univariate analyses

Mean species richness ranged from 8.2 ± 0.7 taxa in UP Kuriat to 14.2 ± 1.4 taxa in UP Tabarka (Fig. 2-a). Mean fish density (pooling all species) ranged from 0.7 ± 0.1 ind/m² in UP Kuriat to 1.5 ± 0.3 ind/m² in UP Cap Negro Cap Serrat (Fig. 2-b). Mean fish biomass (again pooling all species) ranged from 11.9 ± 2.9 in UP Kuriat to 50.1 ± 7.9 gr/m² in UP Tabarka (Fig. 2-c).

Table 1. PERMANOVA (multivariate analysis) on square root transformed data of fish density and biomass. Ti: Time; Lo: Location; Si: Site; P: Protection. *p < 0.05; **p < 0.01; ***p < 0.001.
Univariate analyses showed that: 1) none of the three variables (species richness, total density and biomass of fish) significantly differed between UP and FP (factor ‘P’ was never significant; Table 2), 2) species richness was significantly variable over sampling times (factor ‘Ti’ significant); 3) fish density displayed a variability over sampling times that differed at the spatial scales of locations and sites (interaction ‘TiXLoSi(P)’ significant); 4) fish biomass changed over time (factor ‘Ti’ significant) and was significantly variable at the scale of locations (factor ‘Lo’ significant).

Trophic category density and biomass

Density per trophic category displayed different patterns (Fig. 3, Table 3). Density patterns of herbivore fishes did not change for any factor considered here. Large predator and invertivore 1 densities showed a significant temporal variability (‘Ti’ significant). Small predator density was not consistent over time between locations (interaction ‘TiXLo’ significant). Finally, mean densities of invertivore 2 fishes changed over time at both the spatial scales of locations and sites (interaction ‘TiXLoXSi(P)’ significant), while density of planktivores changed over time at the scale of locations (interaction ‘TiXLo’ significant). Patterns of biomass also changed, depending on the trophic category (Fig. 4, Table 4). Biomass patterns of herbivores and invertivores 1 did not change for any factor considered here. Biomass of large predator fishes showed a significant variability over time (‘Ti’ significant). Small predator biomass was not consistent between times and locations (interaction ‘TiXLo’ significant). Mean biomass of herbivores was not consistent either, in the spatial (locations and sites) and temporal scales (interaction ‘TiXLoXSi(P)’ significant). Finally, biomass of invertivores 2 changed over time, but differently for sites

Table 2. PERMANOVA (univariate analysis) on species richness, total density and total biomass of fish. Ti: Time; Lo: Location; Si: Site; P: Protection. *p < 0.05; **p < 0.01; ***p < 0.001.

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>Density</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>Biomass</th>
<th>MS</th>
<th>Pseudo-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>2</td>
<td>394.25</td>
<td>21.59***</td>
<td>9546.8</td>
<td>13.46***</td>
<td>11532</td>
<td>10.326***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo</td>
<td>2</td>
<td>221.54</td>
<td>4.43</td>
<td>1415.7</td>
<td>0.74</td>
<td>8621.9</td>
<td>3.9498**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>287.76</td>
<td>1.95</td>
<td>6112.3</td>
<td>2.77</td>
<td>5629.4</td>
<td>1.9601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si(P)</td>
<td>5</td>
<td>178.62</td>
<td>1.41</td>
<td>1428.5</td>
<td>1.94</td>
<td>948.87</td>
<td>0.83033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiXLo</td>
<td>2</td>
<td>150.75</td>
<td>0.51</td>
<td>1532.4</td>
<td>1.63</td>
<td>1443.7</td>
<td>1.4839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiXPs</td>
<td>2</td>
<td>86.99</td>
<td>0.79</td>
<td>1316.2</td>
<td>1.85</td>
<td>2748.6</td>
<td>2.4612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LoxP</td>
<td>10</td>
<td>237.76</td>
<td>2.94</td>
<td>931.1</td>
<td>1.03</td>
<td>5348.9</td>
<td>2.1407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiXLoSi(P)</td>
<td>10</td>
<td>86.24</td>
<td>2.09</td>
<td>761.65</td>
<td>1.932*</td>
<td>1166.8</td>
<td>1.4275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LoxSi(P)</td>
<td>6</td>
<td>155.41</td>
<td>1.01</td>
<td>1632.2</td>
<td>1.71</td>
<td>936.74</td>
<td>0.9539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TsiXLoP</td>
<td>3</td>
<td>108.46</td>
<td>1.79</td>
<td>231.28</td>
<td>0.24</td>
<td>1951.3</td>
<td>2.0056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TsiXLoSi(P)</td>
<td>8</td>
<td>85.40</td>
<td>1.85</td>
<td>959.02</td>
<td>2.43**</td>
<td>979.65</td>
<td>1.1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res</td>
<td>99</td>
<td>49.72</td>
<td></td>
<td>394.22</td>
<td></td>
<td>817.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3: Mean density (±standard error) per trophic category at the sampling locations (KU: Kuriat Islands, CNCS: Cap Negro-Cap Serrat, TA: Tabarka) and per protection level (UP: Unprotected, FP: Future Protected).

Table 3. PERMANOVA (univariate analysis) on density data per trophic category. Ti: Time; Lo: Location; Si: Site; P: protection. *p < 0.05; **p < 0.01; ***p < 0.001.

<table>
<thead>
<tr>
<th>Density</th>
<th>Large predator</th>
<th>Small predator</th>
<th>Planktivore</th>
<th>Herbivore</th>
<th>Invertivore 1</th>
<th>Invertivore 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>df</td>
<td>MS</td>
<td>Pseudo-F</td>
<td>df</td>
<td>MS</td>
<td>Pseudo-F</td>
</tr>
<tr>
<td>Ti</td>
<td>2</td>
<td>9958</td>
<td>0.00*</td>
<td>0.01</td>
<td>6.55*</td>
<td>1.70</td>
</tr>
<tr>
<td>Lo</td>
<td>2</td>
<td>0.00</td>
<td>0.92</td>
<td>7.875E-06</td>
<td>0.09</td>
<td>1.04</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>5.651E-08</td>
<td>0.63</td>
<td>0.00</td>
<td>0.67</td>
<td>1.63</td>
</tr>
<tr>
<td>Si(P)</td>
<td>5</td>
<td>0.00</td>
<td>1.36</td>
<td>0.00</td>
<td>0.88</td>
<td>0.44</td>
</tr>
<tr>
<td>TixLo</td>
<td>3</td>
<td>0.00</td>
<td>1.01</td>
<td>0.00</td>
<td>8.94**</td>
<td>1.10</td>
</tr>
<tr>
<td>TixP</td>
<td>2</td>
<td>2.499E-06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.76</td>
<td>0.45</td>
</tr>
<tr>
<td>LoxP</td>
<td>2</td>
<td>0.00</td>
<td>1.12</td>
<td>0.00</td>
<td>1.19</td>
<td>0.21</td>
</tr>
<tr>
<td>TixSi(P)</td>
<td>10</td>
<td>0.00</td>
<td>0.60</td>
<td>0.00</td>
<td>1.65</td>
<td>0.30</td>
</tr>
<tr>
<td>TixLoSi(P)</td>
<td>6</td>
<td>0.00</td>
<td>0.94</td>
<td>0.00</td>
<td>0.92</td>
<td>0.56</td>
</tr>
<tr>
<td>TixLoxSi(P)</td>
<td>3</td>
<td>0.00</td>
<td>0.86</td>
<td>0.00</td>
<td>0.83</td>
<td>0.02</td>
</tr>
<tr>
<td>TixLoxSi(P)</td>
<td>8</td>
<td>0.00</td>
<td>0.36</td>
<td>0.00</td>
<td>0.49</td>
<td>0.12</td>
</tr>
<tr>
<td>Res</td>
<td>99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4: Mean biomass (±standard error) per trophic category at the sampling locations (KU: Kuriat Islands, CNCS: Cap Negro-Cap Serrat, TA: Tabarka) and per protection level (UP: Unprotected, FP: Future Protected).

Table 4. PERMANOVA (univariate analysis) on biomass data per trophic category. Ti: Time; Lo: Location; Si: Site; P: protection. *p < 0.05; **p < 0.01; ***p < 0.001.

<table>
<thead>
<tr>
<th>Biomass</th>
<th>Large predator</th>
<th>Small predator</th>
<th>Planktivore</th>
<th>Herbivore</th>
<th>Invertivore 1</th>
<th>Invertivore 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>df</td>
<td>MS</td>
<td>Pseudo-F</td>
<td>df</td>
<td>MS</td>
<td>Pseudo-F</td>
</tr>
<tr>
<td>Ti</td>
<td>2</td>
<td>620.92</td>
<td>4.20*</td>
<td>4.55</td>
<td>2.38*</td>
<td>135.7</td>
</tr>
<tr>
<td>Lo</td>
<td>2</td>
<td>348.03</td>
<td>1.20</td>
<td>1.21</td>
<td>0.22</td>
<td>3.261</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>188.36</td>
<td>0.58</td>
<td>2.52</td>
<td>0.73</td>
<td>140.39</td>
</tr>
<tr>
<td>Si(P)</td>
<td>5</td>
<td>367.81</td>
<td>2.55</td>
<td>2.03</td>
<td>1.02</td>
<td>32.69</td>
</tr>
<tr>
<td>TixLo</td>
<td>3</td>
<td>227.73</td>
<td>1.50</td>
<td>8.40</td>
<td>11.43**</td>
<td>65.21</td>
</tr>
<tr>
<td>TixP</td>
<td>2</td>
<td>216.16</td>
<td>1.46</td>
<td>4.22</td>
<td>2.20</td>
<td>32.08</td>
</tr>
<tr>
<td>LoxP</td>
<td>2</td>
<td>424.44</td>
<td>1.32</td>
<td>1.20</td>
<td>0.74</td>
<td>30.04</td>
</tr>
<tr>
<td>TixSi(P)</td>
<td>10</td>
<td>140.1</td>
<td>0.72</td>
<td>2.04</td>
<td>1.77</td>
<td>65.48</td>
</tr>
<tr>
<td>TixLoSi(P)</td>
<td>6</td>
<td>180.27</td>
<td>1.20</td>
<td>0.03</td>
<td>0.04</td>
<td>31.73</td>
</tr>
<tr>
<td>TixLoxP</td>
<td>3</td>
<td>246.18</td>
<td>1.63</td>
<td>2.46</td>
<td>3.34</td>
<td>2.10</td>
</tr>
<tr>
<td>TixLoxSi(P)</td>
<td>8</td>
<td>149.08</td>
<td>0.77</td>
<td>0.71</td>
<td>0.62</td>
<td>57.36</td>
</tr>
<tr>
<td>Res</td>
<td>99</td>
<td>193.59</td>
<td>1.15</td>
<td>36.69</td>
<td>207.3</td>
<td>1662.1</td>
</tr>
</tbody>
</table>

Medit. Mar. Sci., 19/1, 2018, 11-20
that will be protected compared to sites that will remain outside MPAs (interaction ‘TiXP’ significant).

Size-class frequency distribution

Overall, small and medium-sized individuals dominated and large-sized fishes were fairly rare (Fig. 5). Large-sized *Epinephelus marginatus*, *Dentex dentex*, *Sparus aurata* and *Serranus cabrilla* were censused only in UP, at Cap Negro-Cap Serrat and Tabarka. Large-sized *Epinephelus costae* and *Coris julis* were only recorded in FP at Tabarka. Large-sized individuals belonging to other species, such as *Sciaena umbra*, *Diplodus sargus*, *Diplodus vulgaris*, *Diplodus annularis*, *Diplodus puntazzo* and *Mullus surmuletus*, were recorded in both UP and FP conditions.

Discussion

The taxa composition of the assemblages censused at the three locations investigated in Tunisia showed that fishes belonging to Sparidae, Labridae and Serranidae families were the most strongly represented in terms of number of species, a classic pattern for the western Mediterranean fish assemblage (e.g. García-Charton & Pérez-Ruzafa, 2001; Seytre & Francour, 2014). Fishes belonging to Sparidae and Labridae families were also the most strongly represented at the three studied locations in terms of both density (minimum 59% of total density) and biomass (minimum 71% of total biomass). It is worth noting the presence of vulnerable and endangered species, such as the grouper *Mycteroperca rubra* and *Epinephelus marginatus*, and the common guitarfish *Rhinobatos rhinobatos* [see IUCN red list of threatened species, (IUCN, 2017)].

Fish assemblage structure, both in terms of density and biomass (see multivariate results), was quite variable over time and space. It differed slightly between sites that will be protected and sites that will remain outside MPAs. The observed patterns can be attributed to factors that are clearly not dependent on protection (not yet in place in the studied locations), such as habitat type distributions, slope, algal cover, bottom rugosity or seascape complexity, that have not been taken into account in the present study (see Garcia-Charton et al., 2000). Thus, this finding shows that other factors could contribute to differences in fish assemblage density and has, therefore, implications for future monitoring. This result stresses once more the usefulness of adopting proper sampling designs, such as, in this case, the crucial importance of ‘before data’ in the framework of BACI (before-after/control-impact) designs, to properly test hypotheses related to MPA effectiveness (Guidetti, 2002).

Mean values of total fish density assessed in this study are far lower than those assessed in many well-protected MPAs and are, on the other hand, comparable with the values reported from unprotected rocky reefs, open to fishing in the Mediterranean (e.g. Harmelin-Vivien et al., 2008; Guidetti et al., 2014; La Mesa et al., 2017). Concerning the total fish biomass, the values observed in the present study range between ~11 and 50 gr/m², with an overall average around 40 gr/m². These values are lower than those reported from many well-managed MPAs in the Mediterranean (e.g. Tavolara, Cabo de Palos, Torre Guaceto, Medes Island, Carry-le-Rouet, Banyuls-sur-Mer) where values range between ~65 and 120 gr/m² (Harmelin-Vivien et al., 2008, Guidetti et al., 2014).

The fish biomass values observed in this study in Tunisia are in any case relatively high, in comparison with other Mediterranean sites open to fishing, where average values range from ~5 to 30 gr/m² (Guidetti et al., 2014).

With regard to the fish biomass, it is widely accepted that this variable is the most relevant (much more important than density) as a basis for drawing conclusions regarding the effects of protection in MPAs (McClanahan & Mangi, 2000; Harmelin-Vivien et al., 2008; Guidetti & Sala, 2007). Biomass integrates information regarding the abundance and size of fish. This is of paramount importance, considering that fishing usually targets large individuals of commercial species (Sandin et al., 2008). In our data set, it is important to highlight the presence of a few large-sized fishes (e.g. *Dasyatis pastinaca* and *Rhinobatos rhinobatos*). However, given that they are not very abundant, they did not significantly contribute to average values of total fish biomass in our assessment. From this perspective, most of the fish biomass estimated at the different locations in Tunisia is attributable to invertivore (~53%), planktivore (~10%) and herbivore (~11%) fishes, while the contribution of large predators was negligible, i.e. no more than 9%, versus ~38% at Cabo de Palos (Spain), Tavolara (Italy) and Scandola (France) (Prato et al., 2017).

As far as size of fishes is concerned, fish size at the studied locations was quite variable (with no obvious differences between sites that will be protected and sites that will remain outside MPAs in the future), and fish assemblages were generally dominated by small- and medium-sized fishes. Previous studies have shown that it is the large individuals of commercially relevant species that are chiefly removed by fishing as they have the highest market value (Pauly et al., 1998). The fact that large individuals are missing is thus widely considered a symptom of overfishing and of the community-wide impact of fisheries (Pauly et al., 1998; Guidetti & Sala, 2007).

The evidence from the present study commented on above suggests that fish assemblages at the studied Tunisian locations are likely to be impacted by fishing, which is capable of removing a remarkably large fraction of the fish biomass, in particular that of large-sized predatory fishes such as *Epinephelus marginatus*, *Epinephelus costae* and *Dentex dentex*. Meanwhile, the creation of MPAs at these locations is ongoing, in order to protect the biodiversity and enhance sustainable economic activities (CAR/ASP - PNUE/PAM, 2015). Like other well-enforced Mediterranean MPAs (Guidetti et al., 2014), we may expect that the future MPAs in Tunisia, if well-en-
Fig. 5: Size-class (S: small, M: medium and L: large) frequency distribution (%) of relevant target fishes in Unprotected (UP) and Future Protected (FP) zones at the three studied locations (KU: Kuriat Islands, CNCS: Cap Negro-Cap Serrat, TA: Tabarka), (Number of individuals used to calculate percentages is given in Supp. Mat. 2).
forced, could provide benefits with regard to fish assemblages, and in the long-term for fisheries.

The present study is the first carried out in Tunisia (and, to the best of our knowledge, the first performed along the southern coasts of the Mediterranean Sea) that has reported quantitative data and assessed distribution patterns of coastal fish assemblages using the appropriate underwater visual census method (UVC; Harmelin-Vivien et al., 1985; Prato et al., 2017), and adopting a formal spatio-temporally replicated sampling design (Guidetti, 2002; Pelletier et al., 2008; Bonaldo et al., 2017).

From a methodological viewpoint, the UVC transect technique is widely accepted as a method that gathers quantitative data using a formal and appropriate sampling design, and offers a suitable basis for drawing reliable conclusions regarding the effects of protection within MPAs (Guidetti, 2002; Caldwell et al., 2016). This study satisfies both criteria, and could set a precedent for other studies that, it is to be hoped, will be carried out in Tunisia and in other countries in the southern and eastern Mediterranean in the future. This is important considering that a number of surveys and meta-analyses have reported that numerous studies have been carried out on the effects of Mediterranean MPAs, but almost all of them concern MPAs in Spain, France and Italy, fewer in Greece and Turkey, while the rest of the Mediterranean (more than half of its coasts) has been virtually ignored (Giakoumi et al., 2017 and references therein).

In conclusion, this study can be considered as an important baseline for future assessments of the health status of fish assemblages along the coasts of Tunisia, and the effects of protection measures that will be introduced after the implementation of the three planned MPAs. In addition, this study could trigger investigations in other North African Mediterranean countries and in the eastern Mediterranean that will provide a basis for a more exhaustive assessment of the effects of MPAs in the region as a whole. In Tunisia and in other south-eastern Mediterranean countries, it is of crucial importance, in addition to monitoring fish assemblages, that the proposed zoning of MPAs is applied and that restrictions, especially in no-take zones, are enforced in order to enable fish assemblages to recover. Otherwise, the expected benefits for fish assemblages, overall biodiversity and ecosystems, along with a number of positive effects for society (e.g. with regard to sustainable economic activities such as artisanal fishing and diving), will not be forthcoming (PISCO and UNS, 2016). In this framework, monitoring, using appropriate methods for collecting data with proper sampling designs, is a very important resource management tool.

Financial support

This paper is part of the Ph.D. thesis of Emna Ben Lamine. This work has received funding from the MedMPAnet Project and MedKeyHabitat project (both coordinated by the SPA/RAC), the Agence de Protection et d’Aménagement du Littoral (APAL), the local NGO Abysses Plongée (Tunisia), the Agence de l’Eau Rhône-Méditerranée-Corse (France) and the MMMPA (Training Network for Monitoring Mediterranean Marine Protected Areas project).

Acknowledgements

The authors gratefully acknowledge the help of scuba diving instructors Mourad Saidane, Sofiane Ben Aissa, Mahdi Aguir, Wissem Houji and Abderrahmane Milki. The diving equipment was partially provided by the company Aqualung.

References

Di Franco, A., Thiriet, P., Di Carlo, G., Dimitriadias, C., Francour, P. et al., 2016. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Scientific Reports, 6, 38135. doi:10.1038/ srep38135