
BOYKO CHRISTOPHER
1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024
2Department of Biology, Hofstra University, Hempstead, New York 11549

WILLIAMS JASON
Department of Biology, Hofstra University, Hempstead, New York 11549

ÖKTENER AHMET
Department of Fisheries, Sheep Research Institute, Çanakkale Street 7km., 10200, Bandırma, Balıkesir

https://doi.org/10.12681/mms.17412

Copyright © 2018 Mediterranean Marine Science

To cite this article:

CHRISTOPHER B. BOYKO1, 2, JASON D. WILLIAMS3 and AHMET ÖKTEM B
1 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A.
2 Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A.
3 Department of Fisheries, Sheep Research Institute, Çanakkale Street 7 km., 10200, Bandırma, Balıkesir, Turkey

Corresponding author: cboyko@amnh.org
Handling Editor: Agnese Marchini

Received: 14 June 2018; Accepted: 10 August 2018; Published online: 14 December 2018

Abstract
Seven species of bopyrid isopods were previously known from Turkish Mediterranean waters; a purported eighth species, Orthione griffenis Markham, 2004, is based on incorrect identification and likely represents Epipenaeon ingens ingens Nobili, 1906, a species already known from the area. In the present study, we report on specimens referable to Pleuroprypta amphiandra Codreanu, Codreanu & Pike, 1966, infesting Munida rutilanti Zariquey Alvarez, 1952, collected from the southern Aegean Sea off Turkey; this species was formerly known only from the Mediterranean off Algeria and the Adriatic Sea. The species is redescribed and illustrated for the first time and transferred to Anuropodion Bourdon, 1967, which is reviewed and A. austreiensis Bourdon, 1976, is transferred to Allorhimorphus Bourdon, 1976. A key to all species of Anuropodion and a list of all bopyrids found on squat lobsters and porcelain crabs in the Mediterranean are provided.

Keywords: Aegean Sea; boyprid; endemic; Epicaridea; squat lobster; Turkey.

Introduction
The parasitic isopod family Bopyridae contains over 600 species (Boyko et al., 2008 onwards), all of which are parasitic on calanoid copepods as larvae and decapod crustaceans as adults (Boyko & Williams 2009; Williams & Boyko 2012). Seven of these species have been reported from Turkish waters in the Mediterranean region: Bopyrina ocellata (Czerniavsky, 1868) from Hippolyte inermis Leach, 1816 (Artüz, 2017; Sea of Marmara); Bopyrus squillarum Latreille, 1802, from Palaemon adspersus Rathke, 1837, P. elegans Rathke, 1837, and P. serratus (Pennant, 1777) (Geldiay and Kocataş, 1972; Kirkem et al., 2008); Epipenaeon ingens ingens Nobili, 1906, from Peneaus aztecus Ives, 1891 (a western Atlantic species introduced into the Mediterranean) (Korun et al., 2013); Pleuroprypta galathea Hesse, 1865, from Galathea squamifera Leach, 1814 (Geldiay and Kocataş, 1972); P. longibranchiata (Bate & Westwood, 1867) from Galathea nana Embleton, 1834, and G. squamifera (Geldiay and Kocataş, 1972; Kirkem et al., 2008); P. microbranchiata G. O. Sars, 1898, from Galathea intermediia Liljeborg, 1851 (Geldiay and Kocataş, 1972; Kirkem et al., 2008); P. porcellanaelongicornis Hesse, 1876, from Pisidia cf. bluteli (Risso, 1816) and Pisidia sp. (Geldiay and Kocataş, 1972; Kirkem et al., 2008).

Mediterranean records of a purported eighth species of bopyrid, Orthione griffenis Markham, 2004, found infesting Peneaus kerathurus (Forskål, 1775) (Uluköy et al., 2008, cited by Ceyhan et al., 2009) are obvious misidentifications. Although Orthione griffenis has been documented as an invasive species in mud shrimp (Decapoda: Gephyreida) along the west coast of the US (Williams & An 2009; Hong et al., 2015; Boyko et al., 2017), no species of Orthione infest penaeid shrimp (Markham, 2004). It is most likely that these bopyrids are actually Epipenaeon ingens ingens Nobili, 1906, originally described from the Red Sea but which entered the Mediterranean before 1968 and was first reported from Turkey on the host P. semisulcatus De Haan, 1844 (Bourdon, 1968; An et al., 2014). This bopyrid is now also known in the Mediterranean from the introduced shrimp hosts P. aztecus and P. stylirostris (Stimpson, 1871) (Korun et al., 2013; An et al., 2014). Owens and Rothlisberg (1991) suggested that E. ingens ingens might eventually infest the Mediterranean endemic host P. kerathurus and this
prediction appears to have been born out; this is the first record of *E. ingens ingens* on any Mediterranean endemic shrimp host.

The squat lobster *Munida rutllanti* Zariquiey Alvarez, 1952, lives on muddy bottoms in depths between 130 and 540 m and is historically distributed in the eastern Atlantic from northwestern Spain south to Mauritania, including the Canary and Cape Verde Islands, as well as in the western Mediterranean and Aegean Sea (Fransen, 2014). However, the species has spread eastward into the eastern Mediterranean and the Adriatic Sea (Froglia et al., 2010; Petric et al., 2010). *Munida rutllanti* has potential as a fishery due to its relatively large size (carapace length, excluding rostrum, up to 22 mm) and ability to be caught in large quantities (Kocak et al., 2008; Froglia et al., 2010; Fransen, 2014) but does not currently have commercial value and is not a target species (Kocak et al., 2010).

Four squat lobster species in the genus *Munida* Leach, 1820 (*M. intermedia* A. Milne Edwards & Bouvier, 1899, *M. rugosa* Fabricus, 1775), *M. rutllanti*, and *M. tenuimana* G. O. Sars, 1872) have been reported from Turkish waters (Bakr et al., 2014), all of which have been recorded bearing bopyrids elsewhere in the Mediterranean (Table 1) but no bopyrids have previously been reported on any Turkish specimens belonging to these species of *Munida*. Three species of *Pleurocrypta* have been reported from squat lobster hosts collected off Turkey, but all were on hosts in the genus *Galathea* Fabricius, 1793 (Galatheidae) (Table 1; see also Boyko et al., 2012; Bakr et al., 2014).

The present paper reports for the first time the presence of *Anuropodione amphiandra* (Codreanu, Codreanu & Pike, 1966) n. comb., parasitic on *M. rutllanti* from Turkish waters. Examination of a large series of specimens allowed us to determine that this species does not belong to *Pleurocrypta* Hesse, 1865, the genus to which it was originally assigned, and to quantify the variability in the pleon morphology of males.

Material and Methods

Squat lobsters were collected at depths from 60 to 400 m with a commercially used bottom trawl (mesh size: 44 mm; time of haul period: 08:00-12:00 and 13:00-17:00; engine power of the commercial trawler: 700 hp; bottom type: muddy), off Babakale Port, North Aegean Sea, Turkey (39°25’2.32”N-39°28’11”N; 26°03’39.46”E-26°20’18”E) in March 2017 (93 specimens) and August 2018 (150 specimens).

Hosts and parasites were placed in 70% ethanol and parasites were subsequently removed from the host branchial chambers; male parasites were firmly attached to the ventral pleon region of females in all cases. Select parasites were dissected using a Wild M5 and an Olympus XZS12 stereomicroscope. Dissected parts were mounted

Table 1. List of bopyrid species known from squat lobsters and porcelain crabs (Anomura: Galatheoidea) in the Mediterranean Sea.

<table>
<thead>
<tr>
<th>Bopyrid Species</th>
<th>Hosts</th>
<th>Mediterranean Localities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anuropodione amphiandra</td>
<td>Munida rutllanti Zariquiey Alvarez, 1952</td>
<td>Algeria; Adriatic Sea</td>
<td>Codreanu, Codreanu & Pike, 1966; Petric et al., 2010</td>
</tr>
<tr>
<td>(Codreanu, Codreanu & Pike, 1966) n. comb.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurocrypta galateae</td>
<td>Galathea dispersa Bate, 1859</td>
<td>France, Monaco</td>
<td>Bourdon, 1968; Geldiy & Kocatas, 1972</td>
</tr>
<tr>
<td>Hesse, 1865</td>
<td>Galathea nixa Embleton, 1834</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galathea squamifera Leach, 1814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurocrypta longibranchiata (Bate & Westwood, 1867)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurocrypta microbranchiata G. O. Sars, 1898</td>
<td>Galathea intermedia Lilljeborg, 1851</td>
<td>Spain, Turkey</td>
<td>Bourdon, 1968; Geldiy & Kocatas, 1972</td>
</tr>
<tr>
<td>Pleurocrypta piriformis</td>
<td>Galathea strigosa (Linnaeus, 1761)</td>
<td>Spain</td>
<td>Bourdon, 1968</td>
</tr>
<tr>
<td>Bourdon, 1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurocrypta porcellanaeongicornis Hesse, 1876</td>
<td>Pisidia longicornis (Linnaeus, 1761)</td>
<td>Turkey</td>
<td>Geldiy & Kocatas, 1972</td>
</tr>
<tr>
<td>Pleurocrypta strigosa</td>
<td>Galathea strigosa (Linnaeus, 1761)</td>
<td>Spain</td>
<td>Bourdon, 1968</td>
</tr>
<tr>
<td>Bourdon, 1968</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudione crenulata G. O. Sars, 1898</td>
<td>Munida intermedia A Milne Edwards & Bouvier, 1899</td>
<td>Spain, Italy</td>
<td>Zariquiey Alvarez, 1958; Casriota et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Munida rugosa (Fabricius, 1775)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Munida tenuimana G. O. Sars, 1872</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

on slides in glycerine-gelatine mounting medium; pleopods were stained with methylene blue. Line drawings were made with a camera lucida drawing tube attached to Olympus compound or dissecting microscopes. Final images were created by tracing a scanned copy of the original sketch with a Wacom Cintiq pen display using Adobe Illustrator. In addition to conventional light micrographs, some specimens were imaged with a Macropod Pro kit (MacroscopicSolutions) and resulting pictures were aligned and stacked with the focus stacking software Zerene Stacker (10–65 images from bottom to top of specimens).

Carapace length (CL, inclusive of rostrum) is provided as an indicator of size for the hosts. Isopod size is given as total body length (anterior margin of head to posterior margin of pleotelson). Measurements were made to 0.1 mm using an ocular micrometer, micro-scale tool (Electron Microscopy Services), or a micrometric programme (Pro-way).

Authors and dates of hosts and bopyrid parasites were verified using WoRMS (Boyko et al., 2008 onwards). Bibliographic references are provided for authors and dates of all parasite taxa but not for those of host species.

Voucher specimens were deposited in the collections of the Muséum National d’Histoire Naturelle (MNHN) and the National Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM).

Results

Systematics

Family Bopyridae Rafinesque, 1815
Subfamily Pseudioninae Codreanu, 1967
Genus Anuropodione Bourdon, 1967
Type species: *Anuropodione senegalensis* Bourdon, 1967

Remarks

Prior to the present study, *Anuropodione* contained five species (Boyko et al., 2008 onwards) but a review of these taxa shows that *A. australiensis* Bourdon, 1976, is not properly placed in this genus, *A. dubius* (Nierstrasz & Brender à Brandis, 1929) is questionably placed here, and *Pleurocrypta amphiandra* should be transferred to *Anuropodione*. Examination of the description and illustrations of *A. australiensis* shows that this species is not correctly generically placed. The minimal development of the lateral plates on the pleon, expanded posterior lobe with acute ventral point on the first oostegite of the female, as well as the rounded, extended head and weakly projecting pleotelson and overall body proportions of the male indicate that this species is not congeneric with *A. senegalisensis* Bourdon, 1967, the type species of *Anuropodione*. In many characters, *A. australiensis* is closer to *Allorbinomorphus haigae* Bourdon, 1976, but it differs from that species in the females of *A. haigae* having only four pairs of biramous pleopods (four pairs biramous pleopods, fifth pair uniramous in *A. australiensis*), uniramous uropods (no uropods in *A. australiensis*), and in males of *A. haigae* having all pleomeres distinct (1-3 pleomeres in *A. australiensis*). It is possible that *A. australiensis* should be placed in a new genus, but we refrain from such an action in the absence of material; however, we transfer the species to *Allorbinomorphus* Bourdon, 1976, the genus to which it shares most characters, as *Allorbinomorphus australiensis* (Bourdon, 1976) n. comb.

It is unclear if *A. dubius* is correctly placed in this genus. The female shows essentially no lateral plate development on the pleomeres compared to other species of *Anuropodione* and there are 5 uniramous pleopods, which contrasts with the typical 5 biramous pairs in species of *Anuropodione* (excepting *A. megacephalon*, which has 4 biramous and 1 uniramous pair). However, the pleon of the male greatly resembles that of one of the morphs found in *A. amphiandra* and the morphology of the first oostegite and maxillilipped (see Bourdon, 1972) are very similar to those of other *Anuropodione* species. Bourdon (1972) compared *Probopyrus dubius*, which was clearly not correctly placed in *Probopyrus* Giard & Bonnier, 1888, to all other species known where females lacked uropods: *Parioninella obovata* Shino, 1958 (now *Ovoinella obovata* (Shino, 1958); see Boyko, 2004), *A. senegalensis*, and *Bopyrisso magellanica* (Nierstrasz & Brender à Brandis, 1929) and concluded that the male and female of *P. dubius* resembled those of *A. senegalensis* more than the other species. We concur with Bourdon’s (1972) conclusion, inasmuch as the male of *O. obovata* is very different from that of *P. dubius* and the female of *B. magellanica* actually does have well-developed uropods, a fact not known to Bourdon (1972; see Williams et al., submitted). Unfortunately, it will be difficult to recollect *A. dubius* and garner a larger sample size, as the host was only given by Nierstrasz & Brender à Brandis (1929) as “*Galathea* spec.”

Pleurocrypta amphiandra Codreanu, Codreanu & Pike, 1966, belongs to *Anuropodione* on the basis of the females lacking well-developed uropods as well as maxilliped palps. Females of *Pleurocrypta* always have well-developed uropods (uniramous or biramous, depending on the species) and maxillipeds. Codreanu et al. (1966) described the pleotelson of *Pleurocrypta amphiandra* as bearing “exceptionnellement des uropodes rudimentaires”; in all specimens we examined, there are small ridges on the pleotelson but they are not true uropods. Bourdon (1972), however, did report very small, poorly developed uropods on some specimens of *A. senegalensis*.

Key to species of Anuropodione Bourdon, 1967, based on females

1a. Lateral plates of pleon weakly developed, closely adpressed … *A. dubius* (Nierstrasz & Brender à Brandis, 1929) [Thailand, 27.4 m depth, infesting “*Galathea* sp.”]

1b. Lateral plates of pleon forming distinct lateral ex-
Anuropodione amphiandra (Codreanu, Codreanu & Pike, 1966) n. comb. (Figs. 1–4)

Pleurocrypta sp. Délère, 1955: 84 [Béni-Saf, west of Oran, Algeria, infesting Munida iris ssp. rutlanti (sic) = M. rutlanti]; Markham, 1974: 270 [mention], 271 [table], 265 [list]; Petric et al., 2010: 1395–1403, fig. 7a [Adriatic Sea, infesting M. rutlanti].

“le Bopyridae des Munida iris rutlanti [sic] Zariquiey Alvarez des côtes algériennes” Bourdon, 1968: 221 [mention].

“parasite (non encore décrit à notre connaissance) des Munida iris rutlanti [sic]” Bourdon, 1972: 833 [mention].

Material examined and used as basis for redescription

1 dextral ovigerous female (5.5 mm), 1 mature male (1.6 mm, pleon elongate with 3 pereomeres) from right branchial chamber of unknown sex and size Munida rutlanti Zariquiey Alvarez, 1952, off Babakale Port (39°25′2.32″N-39°28′11″N; 26°03′39.46″E-26°20′78″E, North Aegean Sea, Turkey)

Fig. 1: Munida rutlanti Zariquiey Alvarez, 1952, dorsal view of male specimen (USNM 1492241) with swollen right branchial chamber caused by Anuropodione amphiandra (Codreanu, Codreanu & Pike, 1966) n. comb. Scale bar = 3 mm.

Fig. 2: Anuropodione amphiandra (Codreanu, Codreanu & Pike, 1966) n. comb., female specimen USNM 1492250 (A-I). A, dorsal view. B, ventral view. C, right antennule (top) and antenna (bottom). D, left barbula. E, left maxilliped, outer view. F, left oostegite 1, outer view. G, left oostegite 1, inner view. H, left pereopod 1. I, left pereopod 7. Scale bars = 2 mm (A, B), 250 μm (C, D, H), 500 μm (E-G, I).
in March 2017 or August 2018 (USNM 1492241; Fig. 1) (all other specimens cited below with same collection data); 1 dextral ovigerous female (8.6 mm), 1 mature male (4.8 mm, pleon short with all pleomeres coalesced), from right branchial chamber of unknown sex and size *M. rutllanti* (USNM 1492244); 1 dextral ovigerous female (7.5 mm), 1 mature male (1.7 mm, pleon short with all pleomeres coalesced), from right branchial chamber of unknown sex and size *M. rutllanti* (USNM 1492250); 1 sinistral ovigerous female (7.0 mm), 1 mature male (pleon elongate with 5 pleomeres), from left branchial chamber of unknown sex and size *M. rutllanti* (USNM 1492279); 1 dextral ovigerous female (5.5 mm), 1 mature male (pleon short with all pleomeres coalesced), from right branchial chamber of male *M. rutllanti* (15 mm CL) (USNM 1492233); 1 dextral ovigerous female (7.3 mm), infesting unknown size and sex *M. rutllanti* (MNHN-IU-2017-72).

Additional material examined

All specimens with same collection data as USNM 1492241: 1 sinistral ovigerous female (6.48 mm), 1 mature male (1.85 mm), infesting left branchial chamber of female *M. rutllanti* (36 mm CL); 1 sinistral ovigerous female (6.89 mm), 1 mature male (1.24 mm), infesting left branchial chamber of female *M. rutllanti* (37 mm CL); 1 dextral ovigerous female (6.94 mm), 1 mature male (1.57 mm), infesting right branchial chamber of female *M. rutllanti* (39 mm CL); 1 sinistral ovigerous female (7.09 mm), 1 mature male (1.28 mm), infesting left branchial chamber of female *M. rutllanti* (39 mm CL); 1 dextral ovigerous female (6.94 mm), 1 mature male (1.57), infesting right branchial chamber of female *M. rutllanti* (39 mm CL); 1 dextral ovigerous female (7.01 mm), 1 mature male (1.49 mm), infesting right branchial chamber of female *M. rutllanti* (39 mm CL); 1 dextral ovigerous female (7.65 mm), 1 mature male (1.76 mm), infesting right branchial chamber of female *M. rutllanti* (40 mm CL); 1 sinistral ovigerous female (7.09 mm), 1 mature male (1.72 mm), infesting left branchial chamber of female *M. rutllanti* (40 mm CL); 1 sinistral ovigerous female (7.47 mm), 1 mature male (1.56 mm), infesting left branchial chamber of female *M. rutllanti* (41 mm CL); 1 sinistral ovigerous female (7.22 mm), 1 mature male (2.47 mm), infesting left branchial chamber of female *M. rutllanti* (41 mm CL); 1 dextral ovigerous female (7.24 mm), 1 mature male (3.63 mm), infesting right branchial chamber of female *M. rutllanti* (41 mm CL); 1 sinistral ovigerous female (7.22 mm), 1 mature male (2.47 mm), infesting left branchial chamber of female *M. rutllanti* (41 mm CL); 1 dextral ovigerous female (7.24 mm), 1 mature male (3.63 mm), infesting right branchial chamber of female *M. rutllanti* (41 mm CL);
(42 mm CL); 1 sinistral ovigerous female (7.74 mm), 1 mature male (1.82 mm), infesting left branchial chamber of female *M. rutllanti* (42 mm CL); 1 sinistral ovigerous female (7.87 mm), 1 mature male (1.74 mm), infesting left branchial chamber of female *M. rutllanti* (42 mm CL); 1 sinistral ovigerous female (7.96 mm), 1 mature male (2.10 mm), infesting left branchial chamber of female *M. rutllanti* (42 mm CL); 1 sinistral ovigerous female (6.65 mm), 1 mature male (2.31 mm), infesting left branchial chamber of female *M. rutllanti* (43 mm CL); 1 dextral ovigerous female (7.63 mm), 1 mature male (1.64 mm), infesting right branchial chamber of female *M. rutllanti* (43 mm CL); 1 sinistral ovigerous female (7.90 mm), 1 mature male (1.89 mm), infesting left branchial chamber of female *M. rutllanti* (44 mm CL); 1 sinistral ovigerous female (8.02 mm), 1 mature male (1.51 mm), infesting left branchial chamber of female *M. rutllanti* (45 mm CL); 1 sinistral ovigerous female (7.68 mm), 1 mature male (1.69 mm), infesting left branchial chamber of female *M. rutllanti* (45 mm CL); 1 dextral ovigerous female (7.67 mm), 1 mature male (2.99 mm), infesting right branchial chamber of female *M. rutllanti* (45 mm CL); 1 dextral ovigerous female (8.15 mm), 1 mature male (1.87 mm), infesting right branchial chamber of female *M. rutllanti* (46 mm CL); 1 sinistral ovigerous female (8.42 mm), 1 mature male (1.54 mm), infesting left branchial chamber of female *M. rutllanti* (47 mm CL); 1 sinistral ovigerous female (8.34 mm), 1 mature male (2.19 mm), infesting left branchial chamber of female *M. rutllanti* (50 mm CL); 1 sinistral ovigerous female (8.30 mm), 1 mature male (1.98 mm), infesting left branchial chamber of female *M. rutllanti* (52 mm CL).

Variation

Females occur in both dextral and sinistral forms in approximately equal numbers (~40% dextral vs. ~60% sinistral). Seven distinct peromeres, broadest across pereomere 3, tapering gently towards head, markedly towards pleon. Prominent coxal plates on pereomeres 1-7, those on 1-4 elongate, recurved, those on 5-7 as posteriorly expanded flattened plates, flat on longer side of body, curled on shorter side of body; elongate, ovate dorsolateral bosses on pereomeres 1-4, smaller than corresponding coxal plates (Fig. 2A). Tergal prongs absent. Pereopods subequal in size, each with large smooth-edged lobe projecting from dorsal surface of basis, size of basal lobe increasing on posterior pereopods, surface of lobe with minute scales; pereopods 1-3 spaced apart, 4-7 spaced closely together (Figs. 2H, I, 3G-M). Pleon of 6 distinct pleomeres, first 5 pleonal segments with lateral plates expanded posteriorly and overlapping from pleomeres 1-5 (Figs. 2A, 3A). Five pairs of biramous pereopods, visible in dorsal view, posteriorly extending well beyond margins of lateral plates; anterior pairs triangular, posterior pairs more elongate and tapered distally, all margins smooth (Figs. 2A, B, 3A-F); pleomere 6 lacking uropods (Figs. 2A, 3A).

Redescription

Female (based on USNM 1492241): body length 8.9 mm, maximal width 6.1 mm, head length 1.8 mm, head width 2.6 mm, pleon length 2.7 mm. Head dextrally deflexed with ~10° distortion angle. Body broad anteriorly, tapered posteriorly, all body regions and segments distinct (Fig. 2A, B). Head large, subovate, moderately set into pereon; frontal lamina broad, posterior margin with small median projection (Fig. 2A); eyes absent. Antennules and antennae of 3 articles each, with setae at distal tip of distal segment of both; antennae with basal segment greatly expanded, approximately 3x width of second segment (Fig. 2C). Maxillipeds with short, acute spur, palp absent or as a low non-articulated lobe with few marginal setae, no setae on margins (Fig. 2E). Barbula with two short, smooth, falcate lateral projections with tapered tips; median region smooth (Fig. 2D). Oostegite surfaces smooth, completely enclosing brood chamber; setae on posterior margin of fifth oostegite (Fig. 2B); oostegite 1 with ovate anterior lobe, narrow triangular posterior lobe with short, rounded, posterolateral extension (Fig. 2F); inner ridge of oostegite 1 with numerous low digitate projections (Fig. 2G). Pereon of 7 distinct peromeres, broadest across pereomere 3, tapering gently towards head, markedly towards pleon. Prominent coxal plates on pereomeres 1-7, those on 1-4 elongate, recurved, those on 5-7 as posteriorly expanded flattened plates, flat on longer side of body, curled on shorter side of body; elongate, ovate dorsolateral bosses on pereomeres 1-4, smaller than corresponding coxal plates (Fig. 2A). Tergal prongs absent. Pereopods subequal in size, each with large smooth-edged lobe projecting from dorsal surface of basis, size of basal lobe increasing on posterior pereopods, surface of lobe with minute scales; pereopods 1-3 spaced apart, 4-7 spaced closely together (Figs. 2H, I, 3G-M). Pleon of 6 distinct pleomeres, first 5 pleonal segments with lateral plates expanded posteriorly and overlapping from pleomeres 1-5 (Figs. 2A, 3A). Five pairs of biramous pereopods, visible in dorsal view, posteriorly extending well beyond margins of lateral plates; anterior pairs triangular, posterior pairs more elongate and tapered distally, all margins smooth (Figs. 2A, B, 3A-F); pleomere 6 lacking uropods (Figs. 2A, 3A).

Additional hosts examined

All specimens with same collection data as USNM 1492241: 1 female *M. rutllanti* (16 mm CL), with swollen left branchial chamber (parasite not present) (USNM 1492232); 1 male *M. rutllanti* (22.4 mm CL), with swollen left branchial chamber (parasite not present); host also infested with immature *Lernaeodiscus ingolfi* (1.0 x 2.5 cm) (see Remarks) (USNM 1492232).

Remarks

Male (based on USNM 1492241, 1492250, 1492279): length 1.8 mm, maximal width 0.8 mm at pereomere 4, head length 0.3 mm, head width 0.5 mm, pleon length 0.5 mm. Head subovate, distinct from pereomere 1, all body segments distinct (Fig. 4A); prominent eyes on postero-lateral border of head (Fig. 4A). Antennules of 3 articles each, setae on distal tip of article 3, setae subterminally on other articles (Fig. 4C); antennae of 4 articles each, tuft of setae on distal tip of terminal article (Fig. 4C). Pleon of 7 distinct peromeres, broadest across pereomeres 3-5, tapering slightly anteriorly and posteriorly. Pereopods subequal in size, all articles distinct; dactyli of pereopods 1-3 proportionally longer than those of 4-7, propodi with ridges of scales on anterior portion underneath dactyl, tuft of setae on anterior tip of propodi opposed to tip of dactyl (Fig. 4C, D), meri and carpi slightly larger in posterior pairs. Pleon variable, ranging from one large, triangular, posteriorly tapered segment (Fig. 4A) with faint lateral undulations to 3 distinct segments (2 narrow pleomeres plus a globose pleotelson; Fig. 4F) or 5 distinct segments (4 narrow pleomeres plus elongate pleotelson showing lateral constriction; Fig. 4E). Midventral tubercles, pleopods and uropods absent; anal cone present but not projecting (Fig. 4B, E, F).

Variation

Females occur in both dextral and sinistral forms in approximately equal numbers (~40% dextral vs. ~60% sinistral).
sinistral). Male pleon morphology is highly variable (see redescription above); a similar level of variation was noted by Codreanu et al. (1966) for this species and is known across the genus as a whole (Table 2).

Ecology

The rate of parasitism by *A. amphipandra* on *M. rutllanti* is relatively high compared to what is known for most bopyrid species (~1-5%; Ceriola & Williams, 2015). At least 9 of the 93 squat lobsters (~9.7%) collected in March 2017 bore bopyrids and at least 16 of the 150 hosts (~10.7%) collected in August 2018 contained *A. amphipandra* (these prevalences are conservative estimates because six additional parasitized hosts were collected but not assignable to a specific collecting date). All of the hosts were female, except for a single male that was co-infested with a rhizocephalan.

Remarks

Codreanu et al. (1966) reported that, of their nine males examined, four had all pleomeres fused into a single segment, two had two segments, and three had six segments and an overall elongate pleon. We found males with one, three, and five pleonal segments in the present material (Table 2). Codreanu et al. (1966) also described the pereomeres of the males as having “finement spinuleux” but these are merely small setae.

Codreanu et al. (1966) interpreted the variation in the number of pleomere segments as a response by males to incomplete inhibition of pleomere development by some kind of chemical secretion exuded by the female bopyrids. They labeled the males as being “néoténiques” but as that term specifically refers to the retention of larval features in the adult, they applied it incorrectly in this situation. The assumption that male bopyrids are in some way prevented from transitioning from the male to female phase by the influence of females already present in or on the host has been mentioned in the literature (summarized in Trilles, 1999) but the mechanism is unknown and there are few studies which have experimentally demonstrated that it occurs (see Reverberi & Pitotti, 1943; Reverberi, 1947; Reinhard, 1949). Reinhard (1949) dealt with the transformation of cryptoniscus larvae, so the only studies that have shown males transforming into females are those on *Ione thoracica* Montagu, 1808 (Reverberi & Pitotti, 1943; Reverberi, 1947) and in this species the pleomeres of males are quite similar morphologically to those of the female and not variable in the number of segments, unlike in the present case with *Anuropodione* or with species of *Pleurocrypta* (Bourdon, 1965). In fact, in the case of the observed variability in the number of pleomeres of males in species of *Anuropodione*, it is unlikely that a male to female transition is occurring because if the male with one pleomere was transitioning to six pleomeres (the number possessed by the females), then that would mean the cryptoniscus larvae had all their pleomeres fused and subsequently separated again, a seemingly non-parsimonious developmental trajectory. The converse situation, that a male with six segments will transition to a male with one segment is also not probable, as females consistently present six pleomeres. It is more likely that in all species of *Anuropodione*, as with species of *Pleurocrypta*, the number of pleomeres of males is a polymorphic character lacking an evolutionary pressure for fixation at a particular number of segments. These genera provide an opportunity to test this hypothesis and examine the underlying genetic controls of the segmentation process.

One host (USNM 1492232) was doubly infested by *A.
amphiandra n. comb. and an immature specimen of Lernaediscus cf. ingolfi host, collected in the Ionian Sea (Öksnebjerg, 2000, who recorded the parasite as L. ingolfi and the host variously as Munida iris, M. iris ssp. rutllanti [sic], and M. iris ssp. rutllanti [sic]). However, because the host examined by Öksnebjerg (2000) bore a dried externa and the present specimen is immature, it is not certain that M. rutllanti hosts true L. ingolfi.

Petric et al. (2010) incorrectly stated that M. rutllanti was parasitized by two species of bopyrids: Pleurocycpta amphiandra (which they incorrectly credited Délye, 1955, with authorship of the species) and P. intermedia Bonnier, 1900 (which they incorrectly credited Codreanu et al., 1966, with authorship and which is a synonym of P. microbranchiata G. O. Sars, 1898). Pleurocycpta microbranchiata has never been reported from M. rutllanti.

Acknowledgements

We gratefully acknowledge the assistance of the fisherman Mr. Şenol Demirtaş from the fishing boat Sadık Huseyin for making collections. Laure Corbari kindly made the MNHN specimens available for examination by the first author. We would also like to thank the reviewers for their constructive comments.

References

Boyko, C.B., Williams, J.D., Markham, J.C., 2012. Recent and fossil Isopoda Bopyridae parasitic on squat lobsters and porcelain crabs (Crustacea: Chirostylidea and Galatheidioidea), with notes on nomenclature and biogeography. Zoazza, 435, 251-301.

Froggia, C., Gramitto, M.E., Morello, E.B., 2010. In less than 10 years the squat lobster Munida rutllanti has replaced M. intermedi in the western Pomo Pit (Central Adriatic). Rapport du Commission Internationale Pour l’Exploration

Montagu, G., 1808. Description of several marine animals found on the south coast of Devonshire. Transactions of the Linnean Society of London, 9, 81-114, pls. 2-8.

