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Abstract

Posidonia oceanica is an iconic and highly productive Mediterranean seagrass. As most studies have focused on the fate of
its production, temporal and plant part-specific variations of isotopic composition and biochemical content were overlooked.
Combined seasonal and plant-part stable isotope composition and biochemical concentrations were measured at the lower depth
limit of a P. oceanica meadow (~ 25 meter depth), and explained on the basis of previous knowledge of the specific metabolic
functioning of each part. The predominance of compounds with complex chemical structure was reflected by the high concentra-
tions of insoluble carbohydrates, high C/N ratios and high 3'*C values. Plant parts clustered in 3 groups with similar isotopic or
biochemical features and metabolism: rhizomes and juvenile leaves, intermediate and adult leaves, senescent and drifting leaves.
This result agrees with the vegetative phenology of the plant. The biochemical composition and the isotopic composition of the
plant parts were consistent with previous knowledge regarding the photosynthetic activity and its seasonal variation. Correlations
were found between N-linked descriptors (3'°N and protein content), and between 3'*C and insoluble carbohydrate concentration.
Epibiont values differed considerably from those of the leaf, as this community is taxonomically diverse and seasonally variable.
Biochemical and isotopic composition measured confirmed that the current complex metabolism of P. oceanica results from ad-

aptations to the specific features of life in a marine oligotrophic environment.
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Introduction

Seagrasses are emblematic marine primary producers,
widely distributed in the global ocean, fulfilling import-
ant ecological and economic functions, and are strongly
affected by human activities (Cambridge & McComb,
1984; Bell & Pollard, 1989; Short & Wyllie-Echeverria,
2000; Heck Jr., Hays & Orth, 2003; Boudouresque et al.,
2009; Waycott et al., 2009; Coles et al., 2013; Ourgaud
et al.,2015). In the Mediterranean Sea, five seagrass spe-
cies can be found, with Posidonia oceanica (Linnaeus)
Delile being the most common in open sea. Posidonia
oceanica is an iconic species of the Mediterranean coasts,
mostly due to its endemism and the numerous ecosys-
temic functions it fulfills (Bell & Harmelin-Vivien, 1982;
Harmelin-Vivien, et al.,, 1995; Jiménez et al., 1996; Ma-
teo et al., 1997; Boudouresque et al., 2012, 2014; Per-
gent et al., 2012). P. oceanica meadows are included in
the group of low nutrients/high chlorophyll ecosystems
(Boudouresque et al., 2014), being some of the most pro-
ductive ecosystems of the planet despite the oligotrophic
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nature of the Mediterranean Sea. Annual net primary
production can reach 1 500 g dry mass m™ a™! for leaves
and 900 g dry mass m? a’! for the epibiotic community
in shallow meadows (Libes et al., 1983; Pergent-Marti-
ni et al, 1994; Cebrian et al., 1997; Cebrian & Duarte
2001; Romero 2004; Vela et al., 2006). Analysis of the
biochemical concentrations in plant part types enabled
the resolution of this paradox through the identification
of fluxes of nutrients and organic matter from the envi-
ronment and within P. oceanica part types. It revealed
several physiological adaptations that enable P. oceanica
meadows to efficiently uptake nutrients from the environ-
ment, to store excess production in dedicated tissues and
to recycle organic compounds from senescent leaves (Au-
gier et al., 1982; Pirc 1989; Pirc & Wollenweber 1988;
Alcoverro et al. 2000, 2001; Lepoint, et al. 2000, 2002;
Romero 2004; Boudouresque et al., 2006). The seasonal
and plant part-type variations of photosynthetic activity
were also investigated with biochemical measurements.
Previous studies identify the youngest leaves as the most
photosynthetically active whereas the growth is reduced
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in older ones (Alcoverro ef al., 1998). This high primary
production is also due to the juxtaposition of two types of
primary production, leaves and epibionts (Boudouresque
et al., 2006). Epibionts can be considered as high nutri-
ent/high chlorophyll in eutrophic systems (Boudouresque
etal., 2014).

Understanding the fate of this massive production has
also been the focus of numerous studies, investigating no-
tably the organization of trophic networks, organic matter
(OM) fluxes within the trophic networks of P. oceanica
meadows and the actual ability of invertebrates and tele-
osts to directly graze on leaves or epibionts. The epibiont
biomass is considered as an important food source for in-
vertebrate and teleost grazers (Shepherd 1987; Verlaque
1990; Havelange et al., 1997; Tomas et al., 2005; Tomas
et al., 2006; Prado et al., 2007), whereas living leaves
are poorly consumed. Less than 10 % of the leaf biomass
production is considered as directly grazed. The vast
majority of this production is turned into necromass and
then (1) buried in sedimentary pools (Pergent et al., 1994;
Pergent, Rico-Raimondino & Pergent-Martini 1997; Pa-
padimitriou et al., 2005; Cresson et al., 2012; Personnic
et al., 2014; Boudouresque et al., 2016), (2) integrated in
complex detritus-feeder pathways (Lepoint et al., 2006;
Costa, Mazzola & Vizzini 2014; Michel et al., 2015),
or (3) exported to other marine or terrestrial ecosystems
(Pergent, Rico-Raimondino & Pergent-Martini 1997;
Romero 2004; Colombini et al., 2009; Boudouresque et
al., 2016). In contrast, epibionts are classically consid-
ered as the main trophic source of grazers. The differen-
tial consumption of these two adjacent primary producers
is explained by their different biochemical composition,
that drive a differential nutritional interest for grazers
(Ott & Mauer 1977; Shepherd 1987; Verlaque 1990; Pra-
do, Alcoverro & Romero 2010; Prado & Heck Jr. 2011).
The presence of structural compounds and chemical re-
pellents makes the leaves unpalatable for the vast majori-
ty of herbivores (Boudouresque et al., 2006; Tomas et al.,
2006; Prado et al., 2007; Prado et al., 2010). The gener-
alized use of C and N stable isotope measurement repre-
sented a major breakthrough in this field, and confirmed
the preferential assimilation of epibiotic biomass (Lep-
oint et al., 2004; Tomas et al., 2006; Fourqurean et al.,
2007; Vizzini 2009; Prado et al., 2010). Since leaves and
autotrophic epibionts use different photosynthetic metab-
olisms, their isotopic composition is different. Measur-
ing the isotopic composition of a grazer can provide the
means to determine the relative importance of leaves or
epibionts in their diet and to confirm the fluxes of organic
matter (eg. Dauby 1989).

Nevertheless, in most studies, C and N isotopic com-
position were measured in adult leaves only, and possibly
for epibionts. Adult leaves predominate in the shoot and
are thus a useful proxy (Scartazza et al.,, 2017), notably
when the aim of the study is to assess the fate of shoot
production. However, some leaf-type specific function-
ing, metabolism and phenology may be missed if only
adult leaves are considered, as leaves of different ages
and metabolisms coexist within the same shoot (Giraud
1979; Pergent et al., 1989; Boudouresque et al., 2012).
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Previous results have demonstrated that several biochem-
ical, metabolic or environmental factors affect the carbon
isotopic ratio (hereafter referred as 8'3C), such as growth
rate, leaf thickness, inorganic C concentration in water,
depth, light irradiance or pH (Cooper & DeNiro 1989;
Lepoint et al., 2003; Fourqurean et al., 2007; Scartazza
et al., 2017). Similarly, nitrogen isotopic ratio (hereafter
O"N) of marine primary producers is commonly used as
a proxy of anthropic nitrogen releases (Costanzo et al.,
2001; Vizzini & Mazzola 2004; Vizzini et al., 2005; Pérez
et al., 2008; Lassauque et al., 2010; Vermeulen et al.,
2011), but recent results indicated that 3'°N could be used
to track fluxes of matter within the shoot (Scartazza et al.,
2017). Thus, isotopic differences between plant part types
might be expected, since the physiology, metabolism and
environmental context of the P. oceanica meadow change
between plant-part types and seasons. To our knowledge,
seasonal variation has barely been investigated, and plant
part type variation only once (Vizzini et al., 2003). In
this paper, one storage organ (rhizomes), and several leaf
types were considered, so as to track the biochemical
and isotopic changes associated with creation, growth,
senescence and drift of leaves, and seasonal cycle of pri-
mary production. Earlier studies also demonstrated that
biochemical composition differed between leaves (e. g.
Pellegrini 1971; Augier et al., 1982; Pirc & Wollenweber
1988; Lawrence et al., 1989; Pirc 1989), and proposed
that the biochemical variations might lead to isotopic dif-
ferences (Lepoint et al., 2003; Vizzini et al., 2003), but no
study combining the two approaches has been performed
so far to verify this hypothesis (but see Scartazza et al.,
2017).

Consequently, the aims of the present study were
firstly to combine isotopic and biochemical analyses per-
formed on the same samples in order to document plant
part type and seasonal variations of those parameters in a
deep P. oceanica meadow. Even if the photosynthetic me-
tabolism was not specifically determined in the present
paper, results were analyzed in relation with the literature
with regard to this aspect, hypothesizing that seasonal
and plant part type specific variation of photosynthesis
intensity and of nutrient availability might drive the pat-
terns observed.

Material and Methods
Sampling

Several Posidonia oceanica live shoots (~5-10) were
collected seasonally in March, June, September and No-
vember 2012 at the lower depth limit (~ 25 meter depth)
of a meadow in the bay of Marseille (France, Mediterra-
nean Sea; Fig. 1). The sampling site is located in the vi-
cinity of an artificial reef system monitored since 2010 to
understand in particular what organic matter fuels artifi-
cial reefs food webs (Cresson, Ruitton & Harmelin-Vivi-
en 2014; Cresson et al., 2019), and how artificial reefs
may alter the density and lower depth limit of the mead-
ow (Astruch et al, 2015). In the laboratory, each shoot
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Fig. 1: Map of the sampling site (based on data from Andromede Océanologie, 2014)). The organization of a Posidonia oceanica
shoot is represented in the lower-right panel (redrawn from Boudouresque et al. (2012).

was separated among different leaf types depending on
their age following the classification of Giraud (1979):
juvenile (less than 5 cm long, with intact leaf tip), inter-
mediate (more than 5 cm and without basal sheath) and
adult (more than 5 cm, with a basal sheath). Adult leaves
were subsequently divided between the basal green part
without the sheath (photosynthetically active, hereafter
adult leaf) and the apical brown section (senescent leaf).
In addition, dead P. oceanica leaves drifting away were
collected at random close to the meadow, to investigate
the subsequent changes in isotopic and biochemical pa-
rameters of the P. oceanica leaves. As dead leaves are
also predominant contributors of sediment necromass
(e.g. 70% of leaf production is directed toward sediment,
Boudouresque et al. 2016), assessing their biochemical
composition may be useful to accurately assess detrital
fluxes in seagrass meadows (Boudouresque et al., 2016).
All leaves were cleaned and their epibionts removed by
gently scraping with a razor blade. Leaf epibionts were
preserved for isotopic and biochemical analyses. A small
apical section (~3 cm) of rhizome (belowground storage
plant part) was also collected on each shoot and included
in the analyses, after the removal of the persistent basal
leaf sheath (scales). All samples were stored frozen and
freeze-dried. The amount of matter needed for success-
ful replicated isotopic and biochemical analyses required
the pooling of several leaves of the same type collected
on several shoots at each site and in each season, even
if this procedure precluded detection of individual varia-
tion. They were integrally used and homogenized prior to
analyses with a mechanical grinding mixer mill. The re-
sulting powder was used for both isotopic and biochem-
ical analyses.

Medit. Mar. Sci., 20/2, 2019, 357-372

Isotopic and biochemical analyses

Prior to stable isotope measurement, powder resulting
from leaf epibiont grinding was divided into two parts.
Since carbonate can represent a bias for 3"C determi-
nation, one subsample was acidified following classical
procedure (e.g. Bosley & Wainright 1999; Jacob et al.,
2005). Briefly, powder resulting from epibiont grinding
was repeatedly immersed in 1% HCI until no more CO,
was released, then rinsed with deionized water and dried.
The effect of acidification on 6'"N composition is ques-
tioned but might represent a bias, thus this analysis was
run on the untreated subsample.

Stable isotope composition was determined using a
continuous-flow isotope-ratio mass spectrometer (Delta
V Advantage, Thermo Scientific, Bremmen, Germany)
coupled to an elemental analyzer (Flash EA1112 Thermo
Scientific, Milan, Italy). Results were expressed with the

Rsample

d notation, where 8§X = ( - 1) x 103, with X =

Rstandard
13C or N and R the isotopic ratio *C/>C or '"N/*N re-
spectively. Standards used were V-PDB for carbon, and
atmospheric N, for nitrogen. For both "°C and 3"°N, mea-
surement precision is <0.1%o (replicate measurements of
internal laboratory standards, acetanilide).

Biochemical concentrations (soluble and insoluble
carbohydrates and lipids) were determined with spectro-
photometric methods and based on replicated analyses of
P. oceanica samples. Briefly, these methods are based on
the specific reactivity of the biochemical molecules with
reagents, and by the production of solutions of which the
color intensity and light absorption at a specific wave-
length are proportional to the concentration. Comparison
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of the solution absorption with values measured for cal-
ibration standards of known concentration enables the
determination of the solution concentration. Soluble (SC)
and insoluble (IC) carbohydrates concentrations were de-
termined following the method of Dubois et al. (1956)
and expressed as glucose equivalent. Soluble carbohy-
drates were extracted from samples with distilled water
(100°C, 20 min) and insoluble carbohydrates from the
residual solution. Lipid concentrations were determined
following Bligh & Dyer (1959) and were expressed as
tripalmitic acid equivalent. Two methods were used for
protein determination. For leaf epibionts, protein content
was determined with the method of Lowry et al. (1951),
recommended as the most appropriate for most marine
algae (Barbarino & Lourengo 2005). Since this method
is known to interfere with phenolic compounds produced
in high concentrations by P. oceanica tannin cells (e. g.
Cuny et al., 1995), it is not well-suited for leaves and
rhizomes. Consequently, the protein content in leaves
and rhizomes was calculated from the %N, consider-
ing a conversion factor between %N and protein con-
centration. This technique is currently being called into
question. Recent studies calculated a nitrogen-to-protein
conversion factor lower than the theoretical 6.25 value,
and observed major differences between species and tax-
onomic groups (eg. Lourengo et al., 1998; Diniz et al.,
2011). To our knowledge, no dedicated study has inves-
tigated this conversion factor for P. oceanica or for any
other Magnoliophyta. Nevertheless, a conversion factor
of 4.28 was calculated from previous results (Augier et
al., 1982) as the ratio between protein concentration (cal-
culated as the sum of the total amino-acids) and % N of
P oceanica adult leaves collected at 30 m depth at the
Port-Cros National Park (~90 km east of Marseille). Prior
to actual chemical analyses, several tests with increasing
amounts of sample were performed. The aim was to de-
termine the most appropriate mass of sample for efficient
quantification, i.e. the amount of sample that would pro-
duce a solution the absorption of which would be within
the most effective range of the spectrometer. The amount
of matter used was dependent on the expected quantity of
each biochemical class in plant part-type, and was ~1 mg
for carbohydrates, ~ 10 mg for lipids and ~ 60 mg for
proteins. All biochemical concentrations were expressed
in mg g' dry mass. Finally, the inorganic matter content
of the samples was determined as the ash content deter-
mined by weight loss after combustion in a muffle fur-
nace (500°C, 5 h). Due to the amount of matter needed
for ash content determination, only one analysis per plant
part type and season was performed, precluding the use
of those results in statistical analyses. No ash content was
determined for juvenile leaves in spring and summer (as
not enough juvenile leaves were found in the shoots in
this period), or for leaf epibionts in all seasons.

Numerical analyses

After checking for normality and homogeneity of
variances, two-way ANOVAs, followed by Student’s
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Least Square Distance post-hoc tests when significant,
were performed to assess the effect of season and plant
part type on stable isotope composition and biochemical
content. If prerequisites were not reached, non-paramet-
ric Kruskall-Wallis ANOVAs were performed. The effect
of acid on the 3'*C composition and %C of epibionts was
assessed with a non-parametric Mann Whitney test. Fi-
nally, PCA analyses were performed on seasonal mean
isotopic composition, biochemical concentrations and
ash content to identify similar plant parts, including or
not epibionts in the analysis. All statistical analyses were
performed using R software with “FactoMineR” package
(Lé, Josse & Husson 2008; R Core Team 2018).

Results
Isotopic composition

Values measured for P. oceanica plant parts (i. e.
leaves and rhizomes) ranged between -17.60 + 0.13 %o
and -13.98 + 0.22 %o for 3"*C and between 2.77 + 0.02
and 6.42 +0.23 %o for 6'°N (Fig. 2). Leaf epibionts exhib-
ited a significantly lower 8"°C value than leaves and rhi-
zomes (ANOVA F(1,88)=465.50, p-value < 0.0001), but a
similar 6"°N value (ANOVAF Lgy = 117, p-value = 0.19).
Juvenile leaves and rhizomes exhibited the highest annu-
al average 6"°N composition (4.98 £ 0.94 %o and 5.00 +
0.28 %o, respectively; Table 1). Adult and intermediate
leaves had similar mean 8"C values (-15.97 £0.89 %o and
-15.97 £ 1.05 %o, respectively). Senescent and drifting
leaves exhibited rather similar mean 3"°N values, lower
than those of other parts. As expected, acidification has a
significant effect on both 8*C (Mann Whitney Z=4.36, p
<0.001) and %C (Mann-Whitney Z =4.37, p <0.001) of
leaf epibionts (Fig. 3). Acidification resulted in a ~3-fold
division of %C (15 to 18 % for untreated samples, 5.4 to
6.6 % for acidified samples) and in a 7 %o diminution of
d13C values (between -15.52 to -14.77 %o for untreated
samples, -21.52 to -20.64 %o for acidified samples). The
trend was less pronounced in spring (16.79 to 8.9 % for
%C, -17.13 to -22 %o for 6'*C) than in other seasons.

Seasonal variations for the whole plant (leaf epibionts
excluded) were only detected for 6'°N, with lowest values
measured in winter and spring (Table 2). This trend per-
sisted when plant parts were considered separately, ex-
cept for juvenile and dead drifting leaves. Juvenile leaves
exhibited higher 6"°N values in spring and summer and
lower values in winter. Regarding 8'°C, seasonal vari-
ations were only detected when considering each plant
part separately, with no consistent pattern among them
(Table S1).

Biochemical concentrations
Insoluble carbohydrates were the predominant bio-
chemical compounds detected in leaves and rhizomes, as

they always represented ~20 — 30 % of the sampled dry
mass (i.e. the mass of insoluble carbohydrates scaled to
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Fig. 2: Seasonal variation of isotopic values (3"°C and '°N, %o, mean + sd) of the shoot components, with colors standing for the
plant part (leaf epibionts: blue, drifting dead leaves: black, senescent leaves: brown, adult leaves: dark green, intermediate leaves:
light green, juveniles leaves: light green with black border, rhizome: orange) and symbols for season (spring: diamonds, summer:
triangle, autumn: circles, winter: squares). For graphic purposes, the x-axis is cut between -17 and -20 %o. For interpretation of the
references to color in this figure legend, the reader is referred to the online version of the paper.

Table 1. Average (mean + sd) of isotopic and biochemical parameters of different plant part types. SC: Soluble Carbohydrates, IC:
insoluble carbohydrates. Sum: sum of all biochemical concentrations. “Stats” line reports the results of ANOVA mean comparison
tests performed separately for each parameter (***: p-value < 0.0001), with significant differences assessed by LSD post-hoc tests
marked with different letters. No statistical tests were performed on protein concentration, since it results from %N. Leaf epibionts
31BC and %C values were measured on acidified samples. nd: no data. Since the number of replicates is not similar for all analyses,
sum of the means for each column may be slightly different from the means of the sums displayed in the two last columns. SC:
soluble carbohydrates, IC: insoluble carbohydrates.
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1 g, as expressed in Fig. 4). Soluble carbohydrates were ly, whereas they represented less than 10 % in all other

mainly detected in juvenile leaves and rhizomes, where plant parts. Soluble carbohydrate concentrations varied
they represented 12 and 23 % of the dry mass respective-  seasonally, whether considering all plant parts together or
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Table 2. Seasonal variation of isotopic and biochemical parameters with all plant parts pooled. Epibionts were not included in this
analysis. Letter in the stats column stands for the test used (H: Non-parametric Kruskall-Wallis ANOVA, F: parametric ANOVA).
Seasons are abbreviated by their first letters; SC: soluble carbohydrates, IC: insoluble carbohydrates.

Parameter Stats

p-value Post-hoc

o = 1.06
=523
=3.63

(3,73)

3sC H
3N F
%C H
%N / Proteins H
C/N F

SC H

IC F
Lipids F

(3.69)

0.782
0.003
0.304
0.172
0.073
0.025
0.842
<0.001
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Fig. 3: Effect of acidification on leaf epibionts %C (green bars,
above panel) and 3"3C ratios (blue bars, below panel). Values
represented are mean + standard deviation. Darkest bars repre-
sent values measured in acidified samples.
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separately (excluding epibionts), with maximum values
in summer and autumn (Table 2, Fig. 5). Percentage of
carbon (%C) was the only descriptor showing no season-
al variation, whether considering all plant parts together
or separately, with the exception of senescent leaves.
The lowest inorganic matter content (inferred from
ash content) was measured in rhizomes (~9 %), and fol-
lowed an increasing trend according to the age of leaves,
with less than ~16% in juvenile leaves, ~21% in interme-
diate leaves and ~ 26% in adult leaves. The highest values
were found in senescent and drifting dead leaves (~35
and 40 % respectively). The percentage of matter detect-
ed by the analyses (the sum of biochemical compounds as
a proxy of organic matter plus ash as the inorganic mat-
ter) ranged between 63 and 79 % of the total compounds
of plant parts, when all analyses could be performed. The
other part could be attributed to the non-reactive organic
molecules not detected with the chemical methods used.
For leaf epibionts, lipids, proteins and both classes of car-
bohydrates represented 17 % of the total biomass in all
seasons but spring. Values measured in spring represent-
ed 41 % of the total mass, mostly because of the high pro-
tein and insoluble carbohydrate concentrations (Fig. 5).
The undetermined part might be attributed to inorganic

Rhizome

Unexplained
28.6%

Leaf epibionts

Proteins 11.4% Pios 18%

Juvenile

Fig. 4: Average proportions of biochemical compounds (SC: soluble carbohydrates, IC: insoluble carbohydrates) and ash content
for the different components of the shoot. Ash content was not determined for leaf epibionts.
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are abbreviated. Letters above bars denote differences in post-hoc tests, bars with similar letters are not significantly different (ns:
no significant difference between all seasons). Parameters of the statistical tests are provided in Table S1.

matter (mostly calcium carbonate), since no ash content
measurement could be performed.

The PCA combining isotopic composition and bio-
chemical concentrations indicated that more than 70%
of the variance of data was explained by the first two
axes when epibionts were included (Fig. 6a), and more
than 50% without the epibionts (Fig. 6b). The PCA with
epibionts confirmed the major difference between this
community and the shoot. The higher protein content of
epibionts separated this group from shoot components on
the horizontal axis of the first PCA. The pattern observed
for the shoot was nonetheless similar in both analyses:
juvenile and intermediate leaves and rhizomes occurred
in the same zone of the PCA plot (lower part of the first
plot, right part of the second) due to their high and similar
0N composition, and protein and soluble carbohydrate
concentrations. In contrast, senescent and drifting leaves
occurred in the opposite part of the plots, in particular
as their ash content and 8"*C composition were higher.
This analysis also offered confirmation of correlations
between biochemical and isotopic parameters: as expect-
ed 6"*N and proteins were strongly correlated, but the dif-
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ferent pattern of correlation between the two PCA may
demonstrate differences in drivers of N isotopic compo-
sition between leaves and epibionts. Similarly, 6'*C was
always strongly correlated with insoluble carbohydrate
concentration.

Discussion

Functioning of Posidonia oceanica shoots and influ-
ence of the environment

The first biochemical result observed in the present
study is the predominance of insoluble carbohydrates,
consistently with previous knowledge (Table S2), accord-
ing to the taxonomic position (Magnoliophyta, kingdom
Archaeplastida) and the terrestrial origin of P. oceanica
(Larkum & Den Hartog 1989; Waycott & Les 2000; van
der Heide et al., 2012). Values are notably higher than
for some Chlorophyta (e.g. Codium spp., Caulerpa spp.)
or Rhodophyta species (e.g Gracilaria spp.) that ex-
hibit insoluble carbohydrate concentrations lower than
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colors standing for the plant part (leaf epibionts: blue, drifting dead leaves: black, senescent leaves: brown, adult leaves: dark
green, intermediate leaves: light green, juvenile leaves: light green with black border, rhizome: orange) and symbols for season
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legend, the reader is referred to the online version of the paper. Correlation circles are superimposed above each plot.

200 mg g!' (McDermid & Stuercke 2003, Table 3). In
P. oceanica, the high concentrations of insoluble carbo-
hydrates might be linked to the predominance of cellu-
lose, hemicellulose and lignin, a legacy of its terrestrial
origin (Ott & Mauer 1977; Vitale & Chessa 1998; Coletti
et al., 2013; Scartazza et al., 2017). These high concen-
trations also induce the high C/N ratios usually measured
in P. oceanica (Pirc & Wollenweber 1988; Fourqurean et
al., 2007; Scartazza et al., 2017). In addition, %C, lig-
nin and cellulose do not vary seasonally in all plant parts
except senescent leaves and are not affected by environ-
mental stress such as water acidification (Fourqurean et
al., 2007; Scartazza et al., 2017). In contrast, starch and
sucrose (i.e. soluble carbohydrates) content decreases
when pH decreases (Scartazza et al., 2017). These results
confirm that the structural role of insoluble carbohydrates
is a strongly constrained feature and a legacy of the ter-
restrial origin of P. oceanica. In the same way, low lipid
content is recorded in all tissues sampled in the present
and previous studies (Table S2). In addition, lipids and
chlorophyll may interfere during extraction through the
Bligh & Dyer method, leading to an overestimation of
lipids (Archanaa, Moise & Suraishkumar 2012). Actu-
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al lipid values could then be even lower than the values
presented here.

The range of §"°C values measured for leaves and
rhizomes was also consistent with the classical trend of
higher 8'3C values in seagrasses than in other marine pri-
mary producers. Even if seagrasses are considered to use
mainly a C3 photosynthetic metabolism, the coexistence
of intermediate C3-C4 metabolisms or of a C4-like me-
tabolism has been widely debated (Beer & Wetzel 1982;
Larkum & James 1996; Beer et al., 2002; Touchette &
Burkholder 2000a; Raven, Cockell & De La Rocha
2008). In addition, the 8"*C values also trace the predomi-
nant role of inorganic Carbon Concentrating Mechanisms
(CCM). CCM are mechanisms acquired by primary pro-
ducers to saturate rubisco with inorganic carbon and lim-
it its photorespiration activity (Griffiths 2006; Raven et
al., 2008). Thermodynamic properties of gas diffusion in
water increase the need for such mechanisms for marine
producers. The ability to use HCO,, the predominant dis-
solved form of inorganic carbon in marine waters, via the
activity of surface carbonic anhydrase is considered as
the predominant CCM for marine producers (Giordano
et al., 2005; Raven et al., 2008). For P. oceanica, more

Medit. Mar. Sci., 20/2, 2019, 357-372



10]021q WNY3.10g
‘9Ipa.ad 2]p2ag ¢ WNIND]S WNJas1

(epnserd

(9007) “Te 10 ooESEY ~utiag “24pS)0n wnapio] (suress B8w gz o6l B8w 6L 0965 BBw 67019 Ffwpel o8y BFw gy o BTV STERI)
1JOS pUR PIRY) WNAIISID WINDIJIA]
s i ‘vooys ity (sppseidaeoay)
P10 ‘T8 10 uewyay odo POISSILg SHUANOSD SIS -8 8w g0g 01 L 88wo9ggo16sy B3wgpzo19  [-83w oGy 016 88wezorg me_awaowmo% Ma:«_n
-0uljaqy ‘SMIPPNDI SNYIUDIDULY [BHOSILIDL
12UUOSIPAD DIUGUAPOYY
(sor0ads 7) “dds n.udyd.iog
7102 pipuippd DLDWID] 33
JueyS-1q % uiq 9 sweys ‘0102 smvjja1s Snd.wd01Svy EEITAVL - 33wgrcoozr  SBwegorg
“Ip 32 TRRYDS {0107 “Iv 12 sl suvysnioul wnjjAydoyry (epysejdaeyday)
$L00T v 12 jsukzomed ‘9007 ppyiypuuid vapunuisQ B BU Loy 01981 B BUI00S 1 0§ o m%ow Sw (payrore) (payrored) ejdydopoyy
“p 32 umboer fcO7 ‘ONoIOMIS 2 n.amgning pidnojayp.icy Pl o_‘ B3wepE 0169 BSwWglOl]
PIWLIDON ‘4661 1P 12 90U (sor0ads 7) “dds privjrov.in 658 01 0¢8
pipSuoja vipuv]oSIIT
snds1.4o Snipuoy)
T10T J2YS-19 % (sd10ads ¢) “dds pajn
Ul 9 sweys 900¢ 77 /2 ZB10 vivjoyad vijjaqo].q d
€007 “o1omS puny opouiiop /88w 08 01 05T 3 5w 00y 0 G 8 S sswqro g FRuLerorg (CRHSIRNIIV)
% PIWIRAIIN L6617V 12 ned) (sa109ds 7) “dds wnipo) 0v9 01 011 7 S OLT oY 0L YOO
-QIQIOH ‘4661 IV 12 9OUINJ[ ] (sor0ads ¢) “dds nd.iajnn)
Apnys Juasar DI1UDIIO DIUOPISO, QINSeaW jou 3w o 3 Sw - 8 Buw 33w /¢ o (epnserdaeyary)
pms ] d # D! nopisod % 1 - 80€ MICIT - 6ve-L8 88 €11 01 6L°9p LE ORI sosseadeag
vpifipuurd vrLvpu)
2107 ‘THYS-1 % W (so10ads 1) dds wnssv3ing
14 sweys m:.om “p 12 ﬁﬁmxﬁs_z po1uoAvd puipvd
b 1D 15 BRSO </ A0V “ID 19 (ser0ads 7) “dds vrwununy
_o %WNMBM _, o ...nwow N_N : DIDBUOL2 DHDIUDILIL] 3 Sw 0 3 3w 0 8 3w 3 3w 0 3 3w 0 (soandoudwreys)
.Moom dxomw%mo% vmzhum.%% ds suapdoppy - 096 OV ILE - €¢I 01 09 05§ 01 6L1 - 0s1 090t - e o8 e)kydoseyqg
n.gi v ENBEQ.@E Y661 pONDIIS SCPIPH
1 15 SOUSINOI ¢ hm. N (se0adsa 7) “dds snon,y
[P 72 90USINILA -T961T "BPUNN DI1JOUDIUD DID]JIAINC
(sor0ads ¢) “dds nrodpo1g
SAIUAIY sanadg sIqI sjeIpAyoqre) ysy BITRE spidry dnoig drmouoxe],

(3011 o} J0U) 910y PaIopIsuod are jueld oy Jo sjuouodwos oy AJuo :, "oeS[e par parjIojes Suneredss pue SUOHEIUIOUOD I} AINSLIW IO B[N
-[e2 0} pasn poyjaw Ay} JO ssA[pIedal ‘s1oonpoid Arewrid [B11ISOLI0) PUER QULIBW JUSISIFIP UL PUB DIIUDIIO DIUOPISOJ Ul PIAISSQO SUOIILIUIIUOD [EOIWIYD0I]Q JO saSuel Jo uosuedwo)) °¢ d[qe],

365

Medit. Mar. Sci., 20/2, 2019, 357-372



than 50 % of the inorganic carbon used in photosynthesis
is fixed by surface carbonic anhydrase, one of the highest
percentages measured in marine Magnoliophyta (Invers
et al., 1999; Touchette & Burkholder 2000a). The pres-
ence of an aerarium, a lacunar structure that runs from
leaf tips down to the rhizomes and harbors a gas complex,
enables P. oceanica to integrate gaseous inorganic carbon
instead of dissolved carbon (Boudouresque et al., 2000).
All these biochemical reactions are associated with isoto-
pic discrimination (i.e. modification of the C/"*C ratio)
and are likely to be a cause of the higher §'*C values mea-
sured in P. oceanica than in other marine benthic prima-
ry producers. The values measured in the present study
(-17 to -14 %o) seem slightly lower than the classical 8'*C
values (-15 to -5 %o) generally reported for seagrasses
(Bricout et al., 1980; Vizzini et al., 2003; Lepoint et al.,
2003; Fourqurean et al., 2007). This discrepancy might
be linked to the depth of our sampling (lower limit of
the meadows), while most studies are conducted in shal-
low meadows. Previous results demonstrated that depth
influences P. oceanica isotopic composition — the deeper
the meadow, the lower the 8"3C value — as light intensity
and photosynthetic activity decrease with depth (Lepoint
et al., 2003; Fourqurean et al., 2007). Regarding 8N,
measured values also range within the values previously
measured. As previously stated, 6'°N values are common-
ly considered as an effective proxy of anthropic contam-
ination. In the NW Mediterranean, §'°N values measured
for P. oceanica range between 2 %o in rather pristine sites
to 7 %o in polluted sites (Lepoint et al., 2000; Vizzini &
Mazzola 2004; Papadimitriou et al., 2005; Vizzini et al.,
2005; Tomas et al., 2006; Pérez et al., 2008; Lassauque et
al., 2010). The intermediate values measured in the pres-
ent study confirmed a moderate anthropic effect already
detected in suspended and sedimentary organic matter
pools at that site (Cresson et al., 2012).

Isotopic and biochemical features: proxies of plant
part-specific functioning

The comparison of isotopic and biochemical analyses
enabled the separation of the plant into several groups
with similar features, and thus potentially sharing sim-
ilar functioning. The separation on the basis of age is
clearly apparent on the PCA plot. Juvenile leaves and rhi-
zomes share similar biochemical features, notably a high
amount of soluble carbohydrates. In P. oceanica, soluble
carbohydrates are mainly stored as sucrose, a compound
highly synthesized during fast-growth periods (Pirc 1985,
1989; Touchette & Burkholder, 2000a; Alcoverro et al.,
2001; Scartazza et al., 2017). Glucose and fructose also
represent important soluble carbohydrates but in lower
concentrations (Pirc 1989; Scartazza et al., 2017). The
maximum soluble carbohydrate concentrations in sum-
mer or autumn, and in rhizomes and juvenile leaves, were
consistent with previous results (Pirc, 1989), with the
high photosynthetic activity in juvenile leaves (Alcover-
ro et al., 1998) and with the storage of the summer excess
production of the whole shoot in the rhizomes afterwards
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(Alcoverro, et al., 2000, 2001). This is also consistent
with trends observed in the rhizomes of several other sea-
grass species in Florida or in India (Dawes & Lawrence
1980; Pradheeba et al., 2011), and with the similarity be-
tween juvenile leaves and rhizomes previously detected
(Pirc 1985). Low values in spring may also result from
a shading effect of the abundant epibiotic community in
this season, potentially explained by a massive develop-
ment of brown algae (see below). The effect of epibiont
cover on leaf production was considered negligible (To-
mas, Turon & Romero, 2005), but this work was per-
formed in a shallow meadow (5-6 m depth) where light
might be less limiting than at ~30 m depth. Interestingly,
higher concentrations of structural compounds within
older leaves were also observed for terrestrial oaks Quer-
cus pubescens and Q. ilex (Damesin, Rambal & Joffre,
2002). These authors also observed a link between §'°C
values and the use of reserve carbon compounds. This
seems to demonstrate that photosynthetic activity and
storage mechanisms are well-conserved within marine
Magnoliophyta, another legacy of the terrestrial origin
of this group. In contrast, low values of soluble carbo-
hydrates in the rhizomes in winter and spring would re-
flect the use of stored carbohydrates to support the early
growth of juvenile leaves (Romero, 2004). Rhizomes and
juvenile leaves also share similarities regarding N-linked
descriptors, mainly high 8N values, high %N (and con-
sequently high protein concentrations). The protein con-
centrations calculated in the present study may suffer
from some limitations since they do not result from di-
rect measurement, but were calculated on the basis of an
inferred conversion factor. Since no accurate N-to-pro-
tein conversion factor is available for P. oceanica, using
the inferred value was the most cautious solution, as an
accurate but complex determination of amino acid con-
centrations by chromatographic methods was beyond the
scope of the present study (e.g Augier et al., 1982; Diniz
etal, 2011; Lourenco ef al., 2002). This value was lower
than the 6.25 Atwater coefficient, consistently with re-
sults obtained on several macroalgal species and with the
currently accepted view (Lourenco et al., 1998; Diniz et
al., 2011). This stresses the need for dedicated analyses of
the nitrogen and protein content in P. oceanica and for an
accurate determination of N-to-protein conversion fac-
tors for Magnoliophyta. Rhizome is clearly identified as
a N-storage organ and a source of amino-acids for juve-
nile leaves (Touchette & Burkholder, 2000b; Alcoverro et
al., 2001; Invers et al., 2002; Romero, 2004). One study
only compared isotopic composition in the different parts
of P. oceanica and records higher 8N value in rhizomes
(Vizzini et al., 2003). This high value could be caused
by the storage of nitrogen in rhizome as asparagine, ar-
ginine or glutamine (Pirc, 1985; Touchette & Burkhold-
er, 2000b; Invers, Pérez & Romero, 2002; Invers et al,,
2004). This hypothesis is further supported by the strong
correlation between leaf or rhizome 8'°N and asparagine
content (Scartazza et al., 2017). Regarding fast-growing
juvenile leaves, their high §'°N values can be explained
by their high photosynthetic activity which increases the
nutrient demand and decreases the isotopic discrimina-
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tion (meaning that more N is integrated), therefore con-
tributing to an increase in the §'*N value (Alcoverro et
al., 1998). In addition, the input of "N-rich amino acids
such as asparagine from the rhizome would also increase
the 6'°N value. Unfortunately, the isotopic composition of
juvenile leaves has never been documented to date, and
comparison is not possible. The seasonal trend observed
here (maximum &N value in spring and summer, mini-
mum values in winter) would nevertheless be consistent
with this hypothesis.

It is interesting to note that an opposite pattern is de-
tected when considering adult and intermediate leaves
separately, or when all leaves of the shoot are considered
pooled (Table 2 in the present study; Vizzini et al., 2003;
Fourqurean et al., 2007). The predominance of adult and
intermediate leaves explains why their variation drives
the variation observed when all leaves are pooled. This
discrepancy was attributed to an excess of nutrients to
support seagrass growth (Fourqurean et al., 2007), and
could be linked with the decline of the photosynthetic
activity of the leaves with increasing age (Alcoverro et
al., 1998), which is also denoted by their lower %N. The
lower 8'"°C values measured in adult leaves would also be
consistent with a decline in photosynthetic activity, and
thus an increase in the discrimination against '*C. This
discrepancy between juvenile and adult leaves could con-
firm recent results demonstrating that juvenile leaves are
the best proxy to assess the current productivity of sea-
grasses (Kim et al., 2014).

Finally, the third group comprising senescent and
drifting dead leaves was characterized by the predomi-
nance of insoluble carbohydrate and inorganic matter,
low %N values and low protein concentrations. The
decrease of %N with increasing age is consistent with
previous studies (Pirc 1985; Lepoint et al, 2002) and
with the internal nutrient recycling system of P. oceani-
ca, another legacy of its terrestrial origin. Before the fall
of the old leaves, their nutrient content is transferred to
rhizomes to support the high nutrient demand of grow-
ing tissues (Lepoint et al., 2000, 2002; Romero 2004;
Boudouresque et al., 2006). As a result, falling leaves
mostly comprised structural compounds, the amount of
which is fixed throughout the leaf’s life cycle, and inor-
ganic matter. The gradual degradation of these plant parts
can also explain the change in their isotopic composition.
Nevertheless, explaining the seasonal changes of these
plant parts appeared more complex since degradation and
alteration of biochemical and isotopic content is driven
by mechanisms at play for a longer period than the sea-
sonal variation of primary production. It is also a matter
of some complexity to estimate the actual age and deg-
radation stage of drifting leaves. The seasonal variation
of %C observed only for senescent leaves might thus be
more an artifact of sampling than a real pattern.

Leaf epibiotic community

Using P. oceanica leaves as a substrate, leaf epibi-
onts form a specific and heterogeneous community with
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its own functioning and under the influence of several
drivers, such as depth, environmental conditions, graz-
ing pressure, position along the leaf blade (e.g. basal vs.
apical) and leaf age (Romero, 1988; Alcoverro, Duarte
& Romero, 1997; Lepoint et al, 1999; Bedini, Cana-
Ii & Bertuccelli, 2003; Prado et al., 2007; Balata et al,,
2008, 2010; Nesti, Piazzi & Balata 2009; Michel et
al., 2015). Assessing the actual species composition of
this heterogeneous community is complex and requires
time-consuming microscopic observations (Panayotidis
& Boudouresque, 1981; Bedini ef al, 2003; Prado et
al., 2007; Balata et al., 2008; Nesti et al., 2009). Even if
such analyses are required to fully describe the epibiotic
community, its isotopic and biochemical features could
provide a simple tool to roughly describe its composition
and monitor changes over time. Biochemical concentra-
tions measured in the present study were lower than val-
ues measured for P. oceanica. This low organic matter
content is consistent with previous results, which showed
that inorganic matter represented 82 to 88 % of the to-
tal epibiotic biomass (Terrados & Medina Pons, 2008).
Even if the mass of ash was not determined in the present
study, the strong effect of acidification on %C and 8"°C
values similarly demonstrated the predominance of inor-
ganic carbon in the epibiotic community. Amongst the
epibiotic community, bryozoans and red algal members
of the order Corallinales (Rhodophyta) are the two main
calcified taxa (Van der Ben, 1971; Romero, 1988; Prado
et al., 2007; Nesti, et al., 2009). In such a deep meadow,
the epibiotic community might have been mostly com-
posed of bryozoans, since previous results demonstrat-
ed their increased predominance with increasing depth
and decreasing luminosity (Van der Ben, 1971; Lepoint
et al., 1999; Nesti, Piazzi & Balata, 2009). The protein
content measured is higher than values available in the
literature for the epiphytic community, i.e. a community
dominated by marine primary producers, which would be
consistent with the predominance of epibiotic consumers.
This conclusion has nevertheless to be confirmed since
the composition of the epiphytic community is general-
ly not specified (e.g. Lawrence et al., 1989). Seasonal
variations of the isotopic and biochemical features were
also consistent with previous knowledge of the biological
successions regarding the epibiotic community. The re-
sults obtained for leaf epibionts in spring were markedly
different than in other seasons, as denoted in particular
by the distance of the spring sample from the other epibi-
otic samples in the PCA plot (Fig. 6). The predominance
of Phaeophyta (brown algae) as epiphytes in spring, e.g
Cladosiphon Kiitz, Giraudya sphacelarioides Derbes
et Solier, Myriactula gracilis van der Ben, Myrionema
orbiculare J. Agardh, and Sphacelaria cirrosa (Roth)
C.Agardh, previously observed by several authors (Van
der Ben 1971; Panayotidis 1979; Thélin & Bedhomme
1983; Romero 1988), would be consistent with the in-
crease in biochemical concentrations, the lowest effect of
acidification and the lower 8N values recorded in this
season. Nevertheless, the development of this algal com-
munity might have been limited at the studied depth (~25
m), explaining why calcified organisms remain predom-
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inant.

Even if P. oceanica is a key species for the function-
ing of Mediterranean marine coastal ecosystems, its iso-
topic and biochemical features have never been investi-
gated using a combined approach. In addition, few works
have considered plant parts separately despite their dif-
ferent metabolisms. Results obtained in this study pro-
vided some useful information to fill this gap. The differ-
ences observed between plant part types were consistent
with the complex photosynthetic metabolism previously
described, and appeared to be a legacy of P. oceanica’s
terrestrial origin. It gave rise to higher 6'*C values than
those of other marine primary producers, and also the
presence of several structural compounds of complex
chemical structure, with an effect of seasonality and plant
part-specific metabolism. Correlations were observed
between isotopic and biochemical descriptors, notably
between N-linked descriptors (proteins and 6'°N). Even
if not specifically investigated in the present work, high
photosynthetic intensity could be considered a key driv-
er of the isotopic and biochemical features of juvenile
leaves, whereas lower values measured for older leaves
were consistent with reduced metabolic activity. These
results confirmed the suitability of stable isotope and bio-
chemical analyses to serve as efficient tracers of physio-
logical mechanisms.
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