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Abstract 

Aquaculture is related to environmental impacts, both locally and globally. The purpose of this study was to identify environ-
mental hotspots linked to fish feeds of various granulations, in seabass and meagre farming using Life Cycle Assessment (LCA) 
approach, given that recent studies suggest that fish feed is the predominant factor affecting marine fish farming. This, in turn, 
enabled a detailed comparison of environmental performance throughout the rearing cycle, in both species. LCA was applied to 
the production process of fish feeds taking into account the quantities of raw materials, heat and energy needed for the production 
of feed. Similarly, LCA was applied to cage farms in Greece, involving the quantity of feed per size class, energy and fuel need-
ed for the production of one tonne of seabass and meagre, respectively. The smaller sized feed (SSF) class distributed to the fry, 
performed better compared to the medium (MSF) and large sized feed (LSF) classes fed to juveniles/adults, in relation to various 
environmental impact indicators. In medium and large sized feeds, the main negative contributor was the use of sunflower meal, 
while small sized feed affected these indicators through higher electricity demands and the quantity of fishmeal. A comparison 
between seabass and meagre revealed that meagre had a significantly lower impact on all eighteen environmental impact indica-
tors. This should be attributed to reduced feed conversion ratio and lower fry requirements compared to seabass. Improvements in 
cultivation methods of raw materials, optimized reductions of raw materials of marine origin and improved feeding management 
could contribute to overall ecological sustainability of the sector.
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Introduction 

Aquaculture is a flourishing industry that plays a ma-
jor role in food production, food security, employment 
and economic development (Massa et al., 2018). Accord-
ingly, its contribution to fish protein intake, which is ap-
proximately 8.8% of world animal protein consumption 
(FAO, 2020), is expected to rise, in order to fulfil global 
demand of rising world population (Béné et al., 2015). 
In Mediterranean countries in particular, aquaculture 
production has grown steadily in recent decades and this 
trend is expected to continue. On the other hand, sea cage 
farms are located in coastal areas mainly and, therefore, 
sustainable coastal zone management strategies are re-
quired for an environmentally-friendly aquatic food pro-
duction sector (Børresen, 2013; Ababouch, 2015).

In Greece, intensive marine fish farming has a 36-
year old successful record. Gilthead seabream (Sparus 
auratus Linnaeus, 1758) and Mediterranean seabass (Di-
centrarchus labrax Linnaeus, 1758) production reached 

120,500 tonnes in 2019. Minor volumes of around 4,300 
tonnes of total production consist of ‘new’ candidate 
species, with meagre (Argyrosomus regius Asso, 1801) 
constituting almost half of such production (FGM, 2020). 
Meagre is a promising species for Mediterranean fish 
farms (Estevez et al., 2018); it adapts well in captivity, 
achieves relatively fast growth rates (Costa et al., 2013; 
Ribeiro et al., 2013) and higher prices (Saavedra et al., 
2015) compared to seabream and seabass. It can grow 
up to 1 kg/year (Estevez et al., 2018) under good rearing 
conditions and accumulates low amounts of mesenter-
ic and muscle lipids compared to other farmed species. 
Moreover, it is characterized by high fillet yield and a 
balanced fatty acid profile (Grigorakis et al., 2011; Gar-
cía Mesa et al., 2014).

In intensive sea cage farming, earlier environmental 
studies have focused mainly on the local impacts of farms 
and they were related to the release of organic waste 
derived mainly from feed (in dissolved and particulate 
forms) (Pitta et al., 1998). However, many other impacts 
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related to several wider/global-scale industrial processes 
are involved in fish farming (e.g. extraction of raw mate-
rials, feed production, construction and use of infrastruc-
ture and equipment; Luna et al., 2013; Farmaki et al., 
2014; Ottinger et al., 2016). These environmental bur-
dens are responsible for emissions of air pollutants that 
cause environmental problems, such as global warming, 
air quality degradation, acidification and eutrophication, 
which cause damage to ecosystems, loss of biodiversity 
and human health problems (e.g. respiratory and cardio-
vascular; WHO, 2003).

In view of the aforementioned issues, Life Cycle 
Assessment (LCA) is a useful tool; it can be used for 
quantitative assessment of materials, energy flows and 
impacts of production systems and evaluation of the envi-
ronmental performance of products and/or services. It is 
an International Organization for Standardization (ISO) 
(ISO, 2006a,b) environmental management technique 
(ISO:14000 family and specifically ISO:14044, 14046). 
It takes into account a product’s life cycle; from the ex-
traction of resources, processing of raw materials, pro-
duction, use, possible recycling, to the final disposal of 
the remaining wastes. In other terms, LCA is a material 
and energy balance application, combined with environ-
mental assessment of the impacts related to the inputs 
and outputs of the production system. Therefore, LCA 
provides criteria for decision-making on issues such as 
environmental product development, policy making and 
strategic planning. It has been promoted in European di-
rectives as a robust quantitative tool and a keystone deci-
sion-making process for producers and stakeholders. It is 
used increasingly to assess the environmental impacts of 
fish farming (Bohnes & Laurent, 2019) and can provide 
industry stakeholders with information to improve pro-
cess efficiency and identify production stages that per-
form well and those that can be improved. 

During the past 16 years, assessment of aquaculture 
feeds by LCA has been applied to various farmed species 
(Papatryphon et al., 2004; Pelletier & Tyedmers, 2007; 
Boissy et al., 2011; Iribarren et al., 2012; Samuel-Fitwi et 
al., 2013; Avadí et al., 2015; Cashion et al., 2016; Avadí 
et al., 2019; Le Feon et al., 2019). However, among the 
limited studies on seabass/seabream feeding, none have 
assessed the commercially available granulations used 
typically during the entire fish production cycle (i.e. 
three feed size classes; however, see García García et al., 
(2019) who involved two feed size classes).

Concerning fish species of Mediterranean origin, ear-
lier LCA studies on seabass farming concerned assess-
ment against trout and turbot in different production sys-
tems (Aubin et al., 2009) and a comparison between two 
different land-based growing facility systems (Jerbi et al., 
2012). More recent works have dealt with a comparison 
between seabass and seabream, both fed on a single type 
of feed (Abdou et al., 2017), the design of a bioeconom-
ic model under different types of quota commonly used 
in Europe (Besson et al., 2017), the identification of the 
influence of variability in farming practices on environ-
mental performance (Abdou et al., 2018) and, finally, the 
explanation of the variability of potential environmen-

tal impacts (García García et al., 2019). Additionally, a 
recently published work compared seabass farming in 
two cage farms (one in Thesprotia-Greece and one in 
Vlore-Albania; Konstantinidis et al., 2020). The main 
conclusions drawn from the above studies were related to 
the role of feed formulation and FCR as the predominant 
contributors to potential climate change and acidification 
impacts, followed by cage dimensions and fuel consumed 
by vessels operating on the farm. The rest of the available 
studies concerning gilthead seabream farming (García 
García et al., 2016; Abdou et al., 2017; Basto Silva et 
al., 2019), produced similar findings, while the environ-
mental impacts of new fish species proposed for farming 
in the Mediterranean, including meagre, have never been 
assessed using LCA.

Given that Konstantinidis et al. (2020) showed that 
fish feeds had the most significant effect on the various 
environmental impact categories during the grow-out 
phase in two selected farms (in Greece and Albania, re-
spectively), the present work focused in depth on feed 
manufacturing and the assessment of three pellet size 
classes routinely used during the on-growing cycle. Ac-
cordingly, the principal goals of this cradle-to-gate study 
were: a) to comparatively assess the impacts of feed and 
its granulation in particular (i.e. three pellet sizes), during 
the formulation process (including transportation) and 
shed light on the underlying factors affecting the predom-
inant impact categories; and b) to compare the perfor-
mance of seabass and meagre rearing, taking into account 
their commercial (i.e. at harvest) weight differences.

Material and Methods 

Functional unit, system boundaries and LCA inventory

The functional unit (FU) of this study is defined as 
one tonne of harvested fish in isothermal bins transported 
to the packaging plant’s gate for further packaging and 
was used as a reference unit for the quantification of all 
environmental impacts. This type of functional unit used 
to measure live-weight fish is the most commonly used 
in this type of studies (Henriksson et al., 2012; Cao et 
al., 2013).

The definition of system boundaries is critical for the 
assessment of environmental impacts associated with in-
puts and outputs, and the results of LCA are highly de-
pendent on the product system defined (Mungkung & 
Gheewala, 2007). The system boundaries of this cradle-
to-gate study were from fry stocking to the fish farm up 
to the output of one tonne of fish in isothermal bins, filled 
with ice and transported to the packaging plant’s gate. 
During the fattening stage at the fish farms, feed, energy, 
fuel and water were needed (Fig.1, Table 1). Transporta-
tion of fry and aquafeed ingredients were not included 
in the calculations since they depend on availability and 
prices and, thus, country of origin/distance that influence 
transportation parameters. Aquafeed ingredients were 
taken into account from the entrance to the feeding plant. 

In both sectors (feed plant and fish farms), as in most 
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relevant LCA studies, infrastructure, capital goods and 
equipment such as cages and buildings, were excluded 
from the calculations (Mungkung & Gheewala, 2007; 
Roma et al., 2015), based on the lifespan of these facili-
ties (i.e. long periods of amortization) (Ayer & Tyedmers, 
2009; Iribarren et al., 2012). This assumption is usually 
made due to the fact that the environmental impacts in-
volved, referring to the FU, can be neglected. 

The selected impact assessment method was ReCiPe 
2016 with 18 impact categories (Table 2).

Feeds

Raw data were acquired, following the ISO 14044 
principles, from one feeding plant, located in the Pelo-
ponnese (southern Greece). Data were collected during 
2016-2018, referring to a total annual quantity of 21,600 
tonnes of aquaculture feed. Three types of fish feeds were 
assessed based on their initial ingredient composition 
and size (exact feed composition is available to the au-
thors but not publically disclosed due to confidentiality 
reasons). The granulation of these types of feed ranged 

Fig. 1: System boundaries.

Table 1. Amount of fuel, energy and water needed per FU.

Diesel (l) Petrol (l) Electricity (KW) Water (m3)

Seabass 47.07 21.65 47.66 0.278

Meagre 59.77 26.30 68.59 0.278

Table 2. The 18 impact categories of mid-point Recipe 2016 (H).

Impact category Symbol Impact category Symbol

Global warming GW Terrestrial ecotoxicity TEx

Stratospheric ozone depletion SozD Freshwater ecotoxicity Fex

Ionising radiation Irad Marine ecotoxicity Mex

Ozone formation, human health OzFHH Human carcinogenic toxicity HCTx

Fine particulate matter formation FPMF Human non-carcinogenic toxicity HnCTx

Ozone formation, terrestrial ecosystems OzFTE Land use LU

Terrestrial acidification Tac Mineral resource scarcity MRSc

Freshwater eutrophication Feu Fossil resource scarcity FRSc

Marine eutrophication Meu Water consumption WC
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from 0.3 to 2.5 mm (Small Sized Feed, SSF), 3.0 to 4.0 
mm (Medium Sized Feed, MSF) and equal to or great-
er than 4.5 mm (Large Sized Feed, LSF). Within each 
feed size class (i.e. SSF, MSF and LSF), the composition 
was exactly the same (Table 3). For instance, fry need 
feed with pellet size from 0.3 to 2.5 mm, juveniles from 
3.0 to 4.0 mm and adult fish need feed size equal to or 
greater than 4.5 mm. These three feed size classes have 
a different composition (“formulas”), including different 
amounts of fishmeal, fish oil, wheat, soy, vitamins, etc. 
All three different formulas were taken into consideration 
when conducting LCA. Moreover, the amount of energy 
consumed by the feeding plant was exclusively used to 
fulfil electricity (in KW) and heating (in Kg of propane) 
needs (Table 3). 

Packaging material of feeds (i.e. wood for pallets, 
polyethylene for plastic bags and LDPE for stretching 
film), transportation (including atmospheric emissions 
due to fuel and maintenance oil) from the feeding plant 
to fish farms in Amvrakikos Gulf (263 km) and Sagiada 
Strip (390 km), were also taken into account for the cal-
culations. 

Fish farms

Raw data were acquired from four fish farms accord-
ing to ISO 14044 principles with similar infrastructure 
and equipment levels. These sea cage farms are located 
in Sagiada Strip (Thesprotia) and in Amvrakikos Gulf 
(Preveza), western Greece, close to the shoreline (at a 
distance of 50-100 m). Data were collected during 2016-
2018 and the total amount of harvested fish was 1,534.63 
tonnes of seabass and 604.81 tonnes of meagre (Suppl. 
file on line, S1).

For the production of 1 tonne of commercial-sized 
product, the stocking of 2,868.7 seabass and 751.88 mea-
gre fry individuals are required. The mean harvest size 
of farmed seabass was 0.437 kg, while the mean size for 
meagre was 2.142 kg. Seabass reached the above weight 
at 23.8 months and meagre at 32.8 months. During that 
period of time, the FCR value was 2.147 and 1.963 for 
seabass and meagre, excluding mortalities that reached 
18.8% and 46.1%, respectively. Concerning the high 
mortality rate in meagre, this is mainly observed during 
the early stages of the on-growing phase and has a minor 
effect on the overall FCR value. Both species were fed on 
the same aforementioned types (i.e. pellet size classes) of 

Table 3. Life cycle inventory of feed type per pellet size class in the feed production plant (for the production of 1 tonne feed).

0.3 – 2.5 mm 
(small size feed)

3.0 – 4.0 mm 
(medium size feed)

≥ 4.5 mm 
(large size feed)

Fish meal 62.00 28.50 28.00

Fish oil 9.00 14.50 14.50

Vegetable origin 
 (wheat meal, corn gluten meal, soy meal, sun-

flower meal, etc)
22.50 41.05 41.30

Amino acids 
 (lycine, methionine) 1.10 1.90 1.00

Vitamins and minerals 1.40 1.05 1.10

Other  
(transformed animal proteins) 4.00 13.00 14.10

100% 100% 100%

Packaging

EU pallet (items) 0.8

Plastic bags (kg) 1.5

Stretch film (kg) 4.0

Production capacity per hour (tn) 1.438 3.500 5.125

Electricity per tn (KWh) 152.24 62.53 42.7

Heat (kg propane) 237.75 97.64 66.86
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feed. Seabass were given 143.41 tonnes, 474.10 tonnes 
and 2,613.03 tonnes of SSF, MSF and LSF, respective-
ly. For meagre, 21.21 tonnes, 40.93 tonnes and 1,121.40 
tonnes of SSF, MSF and LSF were provided, respectively. 

During the rearing stage, emissions of nitrogen (N) 
and phosphorus (P) due to feed metabolism (faeces, ex-
cretion), combined with N and P from uneaten feed and 
flesh retaining were taken into consideration and were 
related directly to the FCR value (Paspatis et al., 2000; 
Karakassis et al., 2005; Brigolin et al., 2014). Moreover, 
fuel (diesel and petrol) is required for the boats/barges, 
for on-sea transportation and also for the forklift truck, 
passenger cars and trucks associated with the day-to-day 
operations of the farming units. As for all transportation, 
atmospheric emissions from fuels and oil used for main-
tenance were calculated. Finally, during harvesting, ice 
(water) is needed for filling the isothermal bins.

Calculation method

The midpoint ReCiPe 2016 (H) impact assessment/
calculation method was selected because it is a prob-
lem-oriented method and allows identifying specific en-
vironmental hotspots during the production cycle. More-
over, this calculation method was chosen in order to avoid 
missing major impact parameters through grouping (i.e. 
end-point) (Huijbregts et al., 2016). The contributional 
analysis (i.e. for comparison of the results) methodology 
was used, through normalization steps, in order to quanti-
fy the impact of the production system on the operation of 
the feeding plant. All midpoint impacts in this study were 
normalized according to the global normalization factor 
for year 2010. Finally, concerning climate change (i.e. 

impact category “global warming”), the midpoint method 
refers to a 100-year timeframe, as this is the basis adopted 
by the Kyoto Protocol I (EC-JRC, 2011). All calculations 
were performed with the SimaPro software package, ver. 
9.0 (PRé Sustainability BV, Netherlands) using the Eco-
Invent® (ver. 3.5; Wernet et al., 2016) and Agribalyse® 
(ver. 1.3; Koch & Salou, 2016) databases.

Results

Feeds

Calculations for each feed were made in order to iden-
tify the main factors contributing to environmental im-
pacts, depending on their size. Using the characterization 
calculation method, the worst impact scores 100% per 
impact category and all other impacts are expressed as a 
relation to that. For eight impact categories, SSF scored 
lower, followed by LSF in seven categories. For most of 
them, environmental performance of MSF was between 
SSF and LSF. In particular, SSF scored lower than the 
MSF and the LSF regarding “global warming” (up to 
20.0%), “stratospheric ozone depletion” (up to 29.4%), 
“terrestrial acidification” (up to 12.8%), “land use” (up 
to 46.2%), “mineral resource scarcity” (up to 39.4%), 
“water consumption” (up to 2.3%), (SSF<MSF<LSF). 
However, LSF performed better compared to MSF (SS-
F<LSF<MSF) for “marine eutrophication” (up to 21.1%) 
and “freshwater ecotoxicity” (up to 57.6%) (Fig. 2).

In three impact categories, MSF scored lower com-
pared to the rest of the feed sizes (MSF<LSF<SSF), 
namely, “ionizing radiation” (up to 8.2%), “ozone forma-
tion human health” (up to 15.6%) and “ozone formation, 

Fig. 2: Comparison of different feed types (i.e. pellet size classes) (characterization). GW: Global warming, SozD: Stratospheric 
ozone depletion, Irad: Ionising radiation, OzFHH: Ozone formation, human health, FPMF: Fine particulate matter formation, 
OzFTE: Ozone formation, terrestrial ecosystems, Tac: Terrestrial acidification, Feu: Freshwater eutrophication, Meu: Marine 
eutrophication, TEx: Terrestrial ecotoxicity, Fex: Freshwater ecotoxicity, Mex: Marine ecotoxicity, HCTx: Human carcinogenic 
toxicity, HnCTx: Human non-carcinogenic toxicity, LU: Land use, MRSc: Mineral resource scarcity, FRSc: Fossil resource scar-
ity, WC: Water consumption.
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terrestrial ecosystems” (up to 15.5%) (Fig. 2). 
Concerning LSF, lower scores (LSF<SSF<MSF) were 

documented in impact categories “fine particulate matter 
formation” (up to 1.4%), “terrestrial ecotoxicity” (up to 
2.5%), “human non-carcinogenic toxicity” (up to 11.7%) 
and also in (LSF<MSF<SSF) “freshwater eutrophica-
tion” (up to 21.5%), “marine ecotoxicity” (up to 12.0%), 
“human carcinogenic toxicity” (up to 26.3%) and “fossil 
resource scarcity” (up to 34.1%) (Fig. 2).

In order to identify major categories affected by aqua-
feeds, the normalization method was applied. Based on 

the normalization results, feed production mostly affect-
ed the impact categories “freshwater ecotoxicity” and 
“marine ecotoxicity”, followed by “human carcinogenic” 
and “non-carcinogenic toxicity” (Fig. 3).

In the SSF class, electricity (KW/tn feed) was the pre-
dominant (40.1%) factor in the “freshwater ecotoxicity” 
impact category, while fishmeal (28.5%) and electricity 
(33.9%) were the predominant contributing factors in the 
“marine ecotoxicity” impact category (Fig. 4). On the oth-
er hand, sunflower meal contributed most to the “fresh-
water ecotoxicity” impact category, both in the MSF and 

Fig. 3: Comparison of different feed types (i.e. pellet size classes) (normalization). GW: Global warming, SozD: Stratospheric 
ozone depletion, Irad: Ionising radiation, OzFHH: Ozone formation, human health, FPMF: Fine particulate matter formation, 
OzFTE: Ozone formation, terrestrial ecosystems, Tac: Terrestrial acidification, Feu: Freshwater eutrophication, Meu: Marine 
eutrophication, TEx: Terrestrial ecotoxicity, Fex: Freshwater ecotoxicity, Mex: Marine ecotoxicity, HCTx: Human carcinogenic 
toxicity, HnCTx: Human non-carcinogenic toxicity, LU: Land use, MRSc: Mineral resource scarcity, FRSc: Fossil resource scar-
ity, WC: Water consumption.

Fig. 4: Percentage contribution of feed ingredients and other resources and materials to “freshwater ecotoxicity” (Fex) (in kg 
1.4DCB-eq) and to “marine ecotoxicity” (Mex) (in kg 1.4DCB-eq), in three different feed size (pellet) classes.



131Medit. Mar. Sci., 22/1 2021, 125-136

LSF classes (63.2% and 55.4%, respectively). Similarly, 
sunflower meal contributed most to the MSF and LSF 
classes (27.0% and 21.6%, respectively), regarding the 
impact category “marine ecotoxicity” (Fig. 4).

Fattening

Calculations were made for each fish species using 
the characterization method in order to identify the main 
factors contributing to environmental impacts. LSF con-
sumption was the prominent factor, affecting almost all 
environmental indicators in both species, with minor dif-
ferences between them (Fig. 5a, b). Only impact catego-
ry “water consumption” was affected to a higher degree 
by fry production, in both species. More specifically, in 
seabass, fry production affected impact categories “wa-
ter consumption” by 85.4% and “ionizing radiation” by 
53.2%. In addition, MSF affected 16 impact categories, 
from 11.8% to 16.8%, and SSF up to 5.5% in all catego-
ries. Similarly, in meagre, fry production affected impact 
categories “water consumption” by 66.2% and “ionizing 
radiation” by 27.3%. MSF affected 17 (out of 18) impact 
categories by 2.3% - 4.0% and SSF up to 2.3% in all im-
pact categories.

Following feed size assessment and having in mind 
the significant amount of feed consumption needed per 
FU, a direct comparison of seabass and meagre hotspot 
analysis, showed that meagre scored lower (from 6.9% to 
60.3%, with a mean reduction of 14.6%) than seabass in 
all environmental impact categories (Fig. 6). The highest 
difference was evident in “water consumption” (60.3%) 
and in “ionizing radiation” (40.6%) due to the different 
amount of fry required for each species. Concerning 
“global warming” the difference was lower by 8.4% in 
meagre. 

Discussion

Assessment of aquaculture’s environmental perfor-
mance is a difficult task because activities and potential 
impacts vary. However, there is an increasing emphasis 
on using more holistic analysis to compare the overall 
impact of different agricultural production systems for 
the assessment of environmental impacts and resource 
use in a production process and to identify opportunities 
for increasing resource use efficiency. The challenge, 
therefore, is to satisfy the growing demand while reduc-
ing and mitigating environmental impacts (Besson et al., 
2017). LCA is the most widely used method to quantify 
the environmental impacts of a production system on a 
global scale (Bohnes & Laurent, 2019).

The LCA comparison between three different pellet 
sizes, revealed that the SSF performed better compared 
to MSF and LSF, for various environmental impact indi-
cators (i.e. “global warming”, “stratospheric ozone deple-
tion”, “terrestrial acidification”, “marine eutrophication”, 
“freshwater ecotoxicity”, “land use”, “mineral resource 
scarcity” and “water consumption”). This does not imply 
that ingredients/formula and the formulation process in 
the starter feed have a more overall eco-friendly profile. 
In fact, fish meal, energy and heat requirements per tonne 
of feed production were 34%, 356% and 355% higher, re-
spectively, compared to the lower requirements of larger 
pellet sizes. Moreover, the SSF displayed inferior envi-
ronmental performance in other impact categories such 
as “ozone formation human health”, “ozone formation, 
terrestrial ecosystems“, “freshwater eutrophication”, 
“human carcinogenic toxicity” and “fossil resource scar-
city”, suggesting that certain aspects of resource use and 
processing contribute environmental burdens to the feed 
formulation process.

Based on the normalization LCA assessment process, 
it was evident that feed production mostly affected the 

Fig. 5: Major environmental impacts in farmed (a) seabass and (b) meagre during cage farming (characterization). GW: Global 
warming, SozD: Stratospheric ozone depletion, Irad: Ionising radiation, OzFHH: Ozone formation, human health, FPMF: Fine 
particulate matter formation, OzFTE: Ozone formation, terrestrial ecosystems, Tac: Terrestrial acidification, Feu: Freshwater 
eutrophication, Meu: Marine eutrophication, TEx: Terrestrial ecotoxicity, Fex: Freshwater ecotoxicity, Mex: Marine ecotoxicity, 
HCTx: Human carcinogenic toxicity, HnCTx: Human non-carcinogenic toxicity, LU: Land use, MRSc: Mineral resource scarcity, 
FRSc: Fossil resource scarity, WC: Water consumption.
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“freshwater ecotoxicity” and “marine ecotoxicity” im-
pact categories. Concerning the “freshwater ecotoxicity” 
impact category, MSF and LSF were mostly affected by 
sunflower meal. Sunflower meal has been used as a sub-
stitute for fish meal with good results as regards substi-
tution (up to 30%) (Olim, 2012). The negative impact of 
sunflower meal was mainly due to the use of Chorpyri-
fos, an aerial-sprayed chlorinated organophosphate pes-
ticide that is widely used for the control of soil-born in-
sects (US-EPA, 2002; Ali et al., 2009). Moreover, during 
sunflower cultivation, the use of significant amount of 
fertilizers such as boric acid and especially phosphate, 
which are rich in heavy metals such as nickel, copper and 
manganese, contributes negatively, through emissions, to 
the “freshwater ecotoxicity” category (Matsuura et al., 
2017). Finally, this impact category was affected by the 
use of animal proteins. More specifically, it was impacted 
by animal feeds containing sunflower meal and lysine, an 
essential amino acid used for the biosynthesis of proteins 
that can be obtained from livestock and a variety of crop 
plants (particularly cereals and legumes) (Galili & Amir, 
2013). On the contrary, the “freshwater ecotoxicity” cat-
egory in SSF class, which does not include sunflower 
meal, was mostly affected by electricity. This is because 
Greece’s energy mix relies on lignite/coal for electricity 
production (29.5%) (Angelopoulos et al., 2017), which in 
turn produces negative environmental impacts. 

Contrary to the previous pattern, SSF displayed the 
greatest environmental impact on “marine ecotoxicity”, 
mainly due to the lower production capacity per hour 
of the feeding plant (i.e. 1.438 t/h compared to 3.500 

t/h and 5.125 t/h for MSF and LSF, respectively). This 
category was predominantly affected by electricity due 
to the aforementioned reasons (i.e. production capacity 
and Greece’s energy mix) and secondarily fishmeal. The 
higher contribution of fishmeal compared to MSF and 
LSF, was due to the larger amount required in the formula 
(62.0% vs 28.5% & 28.0%). Given that, under conditions 
of intense industrial exploitation, climatic oscillations 
may push stocks destined for fishmeal/fish oil production 
beyond their replacement rate, the use of fishmeal raises 
concerns about the sustainability of aquaculture and its 
resilience to climate change (Naylor & Marshall, 2005; 
Beveridge et al., 2018). Although the inclusion of sun-
flower meal produced the predominant impact, the inclu-
sion of fishmeal affected the performance of MSF and 
LSF (in relation to the “marine ecotoxicity” category). 

The assessment of the farming cycle in both species 
showed that the LSF class affected, to various degrees, 
almost all environmental impact categories. This was 
expected given that the amount of feeds produced and 
distributed to the farmed stocks during the on-growing 
stage is huge, compared to the rest of the feed size class-
es. In fact, the LSF class accounts for 80% in seabass and 
94% in meagre of overall feed consumption. This is in 
line with relevant studies on other farmed species such 
as salmon (Ellingsen & Aanondsen, 2006; Pelletier et al., 
2009). Finally, the “water consumption” impact category 
was primarily affected by fry production, due to the vast 
water requirements of hatcheries. 

Overall, the comparison between seabass and mea-
gre rearing revealed that meagre, although harvested at 

Fig. 6: Comparison of impacts on environmental indicators in seabass and meagre (characterization). GW: Global warming, 
SozD: Stratospheric ozone depletion, Irad: Ionising radiation, OzFHH: Ozone formation, human health, FPMF: Fine particulate 
matter formation, OzFTE: Ozone formation, terrestrial ecosystems, Tac: Terrestrial acidification, Feu: Freshwater eutrophication, 
Meu: Marine eutrophication, TEx: Terrestrial ecotoxicity, Fex: Freshwater ecotoxicity, Mex: Marine ecotoxicity, HCTx: Human 
carcinogenic toxicity, HnCTx: Human non-carcinogenic toxicity, LU: Land use, MRSc: Mineral resource scarcity, FRSc: Fossil 
resource scarity, WC: Water consumption.
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a much bigger (commercial) size compared to seabass, 
displayed a significantly lower impact for all eighteen 
environmental impact indicators considered. This should 
be attributed to the fact that: a) meagre is a better food 
converter than seabass, based on the relevant mean FCR 
values, which is reflected in the lower demand for feed 
for the production of 1 tonne of harvested fish; and b) 
the production of one tonne of meagre requires almost 
4 times fewer fry individuals (including mortalities), 
compared to seabass, which means that the water re-
quirements are higher. Accordingly, the overall impacts 
of meagre farming compared to seabass farming, based 
on the total production per species in Greece (i.e. 2,000 
tonnes vs 55,200 tonnes; FGM, 2020) are much lower 
than their actual relative percentage contribution to ma-
rine fish farming production.

According to Waite et al. (2014), if aquaculture is to 
double its production by 2030 and in order for this growth 
to be sustainable, the sector must improve its productiv-
ity, without compromising environmental performance 
(Lotze et al., 2019). Further research on fishmeal and fish 
oil substitution is imperative. Available options leading to 
60-75% reduction of dietary fishmeal and fish oil for the 
majority of farmed fish species is biologically feasible; 
these options could be based on alternative lipid sources, 
without significantly affecting growth performance, feed 
efficiency and feed intake (Turchini et al., 2009). Raw 
materials such as soya, corn, wheat and sunflower, pro-
vide proteins and oils that have been largely introduced 
in fish diet formulation (Glencross et al., 2007; Sales, 
2009). The high prices of fishmeal and fish oil are forcing 
feed manufacturers to reduce the amounts of fish-based 
ingredients in favour of oilseeds and meal from plant ma-
terial and to search for cheaper, alternative sources, such 
as fish processing wastes (Little et al., 2016), single cell 
proteins and yeasts. Therefore, the aquafeed industry is 
bound to seek alternative dietary proteins and lipid sourc-
es. However, shifting to alternative raw materials will 
need to be thoroughly studied and optimized to ensure 
that these raw materials are more sustainable than the 
currently used ones. Terrestrial raw materials have totally 
different impacts than those of marine origin and should 
be evaluated in detail aiming at the formulation of more 
eco-friendly fish feeds. 

This work documented the usefulness of the LCA 
method of environmental management in seabass and 
meagre farming. Although it is not the ‘silver bullet’ for 
any problem, it does provide valuable information that 
can be used as a basis for decision-making and the adop-
tion of policy measures to assess the environmental per-
formance of production processes and mitigate any prob-
lems caused to the natural environment.

The application of LCA to three different feed size 
classes revealed that SSF pellets had a lower impact on 
many environmental indicators, followed by the LSF 
and the MSF size classes. The assessment demonstrated 
that the greatest environmental impact was evident for 
the “freshwater ecotoxicity” and “marine ecotoxicity” 
categories and sunflower was the predominant factor, 
followed by electricity consumption and fishmeal in-

clusion. Meagre cage farming, displayed better overall 
environmental performance, compared to seabass. The 
differences should be attributed to the FCR value and the 
amount of fry required for the entire production cycle. 
The results are in line, from another standpoint, with rel-
evant research showing the prospects of meagre farming 
due to good adaptability to captivity, impressive growth 
rate, flesh quality, low FCR ratio, excellent marketing po-
tential and higher commercial price (Soares et al., 2015). 
Moreover, added-value products can be produced from 
meagre, such as fillet and fresh or frozen portions (Saave-
dra et al., 2015). Given that feed formulation, feeding 
management and eventually FCR are the most crucial 
factors defining the environmental performance of Med-
iterranean fish farms (e.g. Tunisia: Abdou et al., 2017; 
Greece and Albania: Konstantinidis et al., 2020), atten-
tion should be paid to improve the cultivation and pro-
cessing methods of raw materials and especially seeds, 
through better procurement practices and eco-labelling. 
Nutritionally balanced fish feeds with optimized inclu-
sion of raw materials of marine origin would contribute 
to the economic performance of the fish farming industry 
with possible positive effects on the overall ecological 
sustainability of final products.
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